
Windows Operating System Family -

Concepts & Tools

2

Roadmap for This Lecture

High-level Overview on Windows Concepts

Design goals of NT

Processes, Threads

Virtual Memory, Protection

Objects and Handles

Security

Key monitoring tools

Windows is thoroughly instrumented

Extra resources at http://www.sysinternals.com

http://www.sysinternals.com/

3

Requirements and Design Goals
for the original Windows NT project

Provide a true 32-bit, preemptive, reentrant, virtual memory operating

system

Run on multiple hardware architectures and platforms

Run and scale well on symmetric multiprocessing systems (in addition to

uni-processor machines)

Be a great distributed computing platform (Client & Server)

Run most existing 16-bit MS-DOS and Microsoft Windows 3.1 applications

Meet government requirements for POSIX 1003.1 compliance

Meet government and industry requirements for operating system security

Be easily adaptable to the global market by supporting Unicode

In this course, the term Windows refers to

Windows 2000, XP, Server 2003, Vista and Win 7.

4

Goals (contd.)

Extensibility

Code must be able to grow and change as market requirements change.

Portability

The system must be able to run on multiple hardware architectures and must
be able to move with relative ease to new ones as market demands dictate.

Reliability and Robustness

Protection against internal malfunction and external tampering.

Applications should not be able to harm the OS or other running applications.

Compatibility

User interface and APIs should be compatible with older versions of Windows
as well as older operating systems such as MS-DOS.

It should also interoperate well with UNIX, OS/2, and NetWare.

Performance

Within the constraints of the other design goals, the system should be as fast
and responsive as possible on each hardware platform.

5

Portability

HAL (Hardware Abstraction Layer):

support for x86 (initial), MIPS (initial), Alpha AXP, PowerPC
(NT 3.51), Itanium (Windows XP/2003)

Machine-specific functions located in HAL

Layered design:

architecture-specific functions located in kernel

Windows kernel components are primarily written in C:

OS executive, utilities, drivers

UI and graphics subsystem - written in C++

HW-specific/performance-sensitive parts:
written in assembly lang: int trap handler, context switching

6

Windows API & Subsystems

Windows API (application programming interface):

Common programming interface to Windows
NT/2000/XP/2003, Windows 95/98/ME and Windows CE

OS implement (different) subsets of the API

MSDN: http://msdn.microsoft.com

Windows supports multiple subsystems (APIs):

Windows (primary), POSIX, OS/2

User space application access OS functionality via
subsystems

Subsystems define APIs, processes, and file system
semantics

OS/2 used to be primary subsystem for Windows NT

7

64-bit vs. 32-bit Windows APIs

Pointers and types derived from pointer, e.g. handles,
are 64-bit long

A few others go 64, e.g. WPARAM, LPARAM, LRESULT, SIZE_T

Rest are the same, e.g., 32-bit INT, DWRD, LONG

Only five replacement APIs!

Four for Window/Class Data

Replaced by Polymorphic (_ptr) versions

Updated constants used by these APIs

One (_ptr) version for flat scroll bars properties

API Data Model int long pointer

Win32 ILP32 32 32 32

Win64 LLP64 32 32 64

UNIXes LP64 32 64 64

Win32 and

Win64 are

consistently

named the

Windows API

8

Services, Functions, and Routines

Windows API functions:

Documented, callable subroutines

CreateProcess, CreateFile, GetMessage

Windows system services:

Undocumented functions, callable from user space

NtCreateProcess is used by Windows CreateProcess and
POSIX fork() as an internal service

Windows internal routines:

Subroutines inside the Windows executive, kernel, or HAL

Callable from kernel mode only (device driver, NT OS
components)

ExAllocatePool allocates memory on Windows system heap

9

Services, Functions, and Routines

(contd.)

Windows services:

Processes which are started by the Service Control Manager

Example: The Schedule service supports the AT command

DLL (dynamic link library)

Subroutines in binary format contained in dynamically loadable

files

Examples: MSVCRT.DLL – MS Visual C++ run-time library

 KERNEL32.DLL – one of the Windows API libraries

10

Processes & Threads

What is a process?

Represents an instance of a running program

you create a process to run a program

starting an application creates a process

Contains the program code and its current
activity

Made up of multiple threads of execution that
execute instructions concurrently

Per-process

address space

Systemwide

Address Space

Thread

Thread

Thread

11

Processes & Threads

A process consists of:

An image of the executable machine code associated

with a program.

Memory (typically some region of virtual memory):

executable code,

process-specific data (input and output)

a call stack

a heap to hold intermediate computation data

Operating system descriptors of resources:

file descriptors (Unix) or handles (Windows)

data sources and sinks (stream buffers)

Security attributes:

process

process' set of permissions (allowable operations)

Processor state (context):

the content of registers

physical memory addressing, etc.

Per-process

address space

Systemwide

Address Space

Thread

Thread

Thread

12

Processes & Threads

What is a thread?

An execution context within a process

Unit of scheduling (threads run, processes don’t
run)

All threads in a process share the same per-process
address space

Services provided so that threads can synchronize
access to shared resources (critical sections,
mutexes, events, semaphores)

All threads in the system are scheduled as peers to
all others, without regard to their “parent” process

System calls

Primary argument to CreateProcess is image file
name (or command line)

Primary argument to CreateThread is a function
entry point address

Per-process

address space

Systemwide

Address Space

Thread

Thread

Thread

13

Processes & Threads

Every process starts with one thread

First thread executes the program’s “main” function

Can create other threads in the same process

Can create additional processes

Why divide an application into multiple threads?

Perceived user responsiveness, parallel/background execution

Examples: MS Word background print – can continue to edit during print

Take advantage of multiple processors

On an MP system with n CPUs, n threads can literally run at the same time

Question: given a single threaded application, will adding a 2nd processor
make it run faster?

Does add complexity

Synchronization

Scalability is a different question…

of multiple run-able threads vs # CPUs

Having too many run-able threads causes excessive context switching

14

Memory Protection Model

No user process can touch another user process address space

(without first opening a handle to the process, which means passing

through Windows security)

Separate process page tables prevent this

“Current” page table changed on context switch from a thread in one

process to a thread in another process

No user process can touch kernel memory

Page protection in process page tables prevent this

OS pages only accessible from “kernel mode”

x86: Ring 0, Itanium: Privilege Level 0

Threads change from user to kernel mode and back (via a secure

interface) to execute kernel code

Does not affect scheduling (not a context switch)

15

A Process and its Resources

Process

object

Access token

VAD VAD VAD

Virtual address space descriptors (VADs)

Handle table

Object

Object

thread thread thread

Access token

Acquire an access token to

impersonate other process

16

Virtual Memory

32-bit address space (4 GB)

2 GB user space (per process)

2 GB operating system

64-bit address space

7192 GB user space (Itanium)

8192 GB user space (x64)

~6000 GB operating system

Memory manager maps virtual
onto physical memory

2 GB

User

Process

space

2 GB system

Kernel/HAL

Boot drivers

System cache

Paged pool

Nonpaged pool

Unique per process

Systemwide

Default 32-bit layout

17

2 GB

User

process

space

2 GB

System

Space

32-bit x86 Address Space

3 GB

User

process

space

1 GB

System Space

Default 3 GB user space

32-bits = 232 = 4 GB

Boot time option: increaseuserva

Even Larger User Address Space?

Address Windowing Extension (AWE)

32-bit application to allocation up to 64GB of

physical memory

Map views/windows onto 2GB virtual address space

Burden on the programmer

18

19

Kernel Mode vs. User Mode

No protection against components running in kernel
mode

Transition from user mode to kernel mode through
special instruction (processor changes privilege level)

OS traps this instruction and validates arguments to syscalls

Transition from user to kernel mode does not affect thread
scheduling

Performance Counters: System/Processor/Process/
Thread – Privileged Time/User time

Windows kernel is thoroughly instrumented

Hundreds of performance counters throughout the system

Performance Monitor – perfmon.msc - MMC snap-in

Fibers vs. Threads

Schedule its own “threads” of execution

Not relying on Windows build-in scheduler

“Light-weight threads”

To create an initial fiber:

Call ConvertThreadToFiber

To create additional fiber from existing one:

Call CreateFiber

To run a fiber:

Call SwitchToFiber

20

21

Objects and Handles

Object: single, runtime instance of statically
defined type

Process, thread, file, event objects in Windows -

 are based on low-level executive objects

Object attributes: defines object’s state

Object methods: means for manipulating
objects – read/write attributes

Objects and Handles (cont’d)

Objects enable:

Human-readable names for system resources

Resource sharing among processes

Resource protection against unauthorized
access

Reference counting – let system know when
an object is no longer in use and can be
deallocated

22

23

Security
Key capabilities:

Mandatory integrity protection of all shareable
system objects (files, directories, processes, threads)

Security auditing

User authentication at logon

Prevention of access of other user’s uninitialized
resources (e.g. free memory)

Three forms of access control:

Discretionary control: read/write/access permissions

Privileged access: administrator may take ownership
of files

Mandatory integrity control: protection within the
same account (e.g. protected mode internet explorer)

24

Common Criteria

New standard, called Common Criteria (CC), is the new standard for

computer security certification

Consortium of US, UK, Germany, France, Canada, and the

Netherlands in 1996

Became ISO standard 15408 in 1999

For more information, see http://www.commoncriteriaportal.org/ and

http://csrc.nist.gov/cc

CC is more flexible than TCSEC trust ratings, and includes concept

of Protection Profile (PP) to collect security requirements into easily

specified and compared sets, and the concept of Security Target

(ST) that contains a set of security requirements that can be made

by reference to a PP

Windows XP and Server 2003 was certified as compliant with the

CC Controlled Access Protection Profile (CAPP) in 2006

http://www.commoncriteriaportal.org/
http://csrc.nist.gov/cc
http://csrc.nist.gov/cc

25

Networking

Integral, application-transparent networking

services

Basic file and print sharing and using services

A platform for distributed applications

Application-level inter-process communication (IPC)

Windows provides an expandable platform for

other network components

26

Registry

System database : boot & config info

System wide software settings: operation of Windows

Security database

Per-user profile settings

Window to In-memory volatile data (current hardware
state)

What devices are loaded?

Resources used by devices

Performance counters are accessed through registry functions

Regedit.exe is the tool to view/modify registry settings

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services

HKEY_LOCAL_MACHINE\Software

27

Unicode

Most internal text strings are stored/processed as 16-bit
wide Unicode strings

Windows API string functions have 2 versions

Unicode (wide) version

L“This string uses 16-bit characters“

ANSI(narrow) version

“This string uses 8-bit characters“

Generic character representation in Windows API

_T (“This string uses generic characters“)

 (Windows 95/98/ME have Windows API but no Unicode
characters, Windows CE has Windows API but Unicode
characters only)

28

Tools used to dig in

Many tools available to dig into Windows internals

Helps to see internals behavior “in action”

We’ll use these tools to explore the internals

Many of these tools are also used in the labs that you can do after
each lecture

Several sources of tools

Support Tools

Resource Kit Tools

Debugging Tools

Sysinternals.com

Additional tool packages with internals information

Platform Software Development Kit (SDK)

Device Driver Development Kit (DDK)

29

Tool Image Name Origin

Startup Programs Viewer AUTORUNS www.sysinternals.com

Dependency Walker DEPENDS Support Tools, Platform SDK

DLL List LISTDLLS www.sysinternals.com

EFS Information Dumper EFSDUMP www.sysinternals.com*

File Monitor FILEMON www.sysinternals.com

Global Flags GFLAGS Support Tools

Handle Viewer HANDLE www.sysinternals.com

Junction tool JUNCTION www.sysinternals.com

Kernel debuggers WINDBG, KD Debugging tools, Platform SDK,

 Windows DDK

Live Kernel Debugging LIVEKD www.sysinternals.com

Logon Sessions LOGINSESSIONS www.sysinternals.com

Object Viewer WINOBJ www.sysinternals.com

Open Handles OH Resource kits

Page Fault Monitor PFMON Support Tools, Resource kits,

 Platform SDK

Pending File Moves PENDMOVES www.sysinternals.com

Tools for Viewing Windows Internals

30

Tools for Viewing Windows Internals
(contd.)

Tool Image Name Origin

Performance tool PERFMON.MSC Windows built-in tool

PipeList tool PIPELIST www.sysinternals.com

Pool Monitor POOLMON Support Tools, Windows DDK

Process Explorer PROCEXP www.sysinternals.com

Get SID tool PSGETSID www.sysinternals.com

Process Statistics PSTAT Support Tools, Windows 2000

 Resource kits, Platform SDK,

 www.reskit.com

Process Viewer PVIEWER (in the Support

 Tools) or PVIEW

 (in the Platform SDK) Platform SDK

Quick Slice QSLICE Windows 2000 resource kits

Registry Monitor REGMON www.sysinternals.com

Service Control SC Windows XP, Platform SDK,

 Windows 2000 resource kits

Task (Process) List TLIST Debugging tools

Task Manager TASKMGR Windows built-in tool

TDImon TDIMON www.sysinternals.com

31

Support Tools

A suite of management, administration and

troubleshooting tools

Win2K: 40+ tools, WinXP: 70+ tools, Server 2003:

70 tools

Located on Windows Installation CD in

\support\tools

Not shipped with installation since Windows

Vista

32

Windows Resource Kit Tools

Windows 2000 Server Resource Kit Tools (Supplement 1 is latest)

Not freely downloadable

Comes with MSDN & TechNet, so most sites have it

May be legally installed on as many PCs as you want at one site

Installs fine on 2000/XP Professional (superset of 2000 Professional
Resource Kit)

Windows XP/Vista/7 Resource Kit: no tools, just documentation

Windows Server 2003 Resource Kit Tools

Free download – visit
http://www.microsoft.com/windows/reskits/default.asp

Tool updates are at
http://www.microsoft.com/download/en/details.aspx?displaylang
=en&id=17657

NOTE: Windows 2000 Server Resource Kit has more tools than
2003 Resource Kit (225 vs 115 .EXEs)

Many tools dropped due to lack of support

Tools are still officially unsupported

But, can send bug reports to ntreskit@microsoft.com

http://www.microsoft.com/windows/reskits/default.asp
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=17657
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=17657

33

Windows Debugging Tools

Separate package of advanced debugging tools

Installs XP, 2003, Vista and Win 7

Download latest version from:

http://www.microsoft.com/whdc/ddk/debugging

Tools

User-mode and kernel-mode debuggers

Kd – command line interface

WinDbg – GUI interface (kernel debugging still mostly “command line”)

Allow exploring internal system state & data structures

Ntsd, Cdb – command line user-mode debugger (newer versions
than what ships with OS)

Misc other tools (some are also in Support Tools):

kill, remote, tlist, logger/logview (API logging tool), Autodump

http://www.microsoft.com/whdc/ddk/debugging

34

Live Kernel Debugging

Useful for investigating internal system state not available from other tools

Previously, required 2 computers (host and target)

Target would be halted while host debugger in use

XP & Server 2003 support live local kernel debugging

Technically requires system to be booted /DEBUG to work correctly

You can edit kernel memory on the live system (!)

But, not all commands work

LiveKd (http://live.sysinternals.com/livekd.exe)

Tricks standard Microsoft kernel debuggers into thinking they are looking at a crash dump

Works on Windows XP, Server 2003, Vista and Windows 7

Was originally shipped on Inside Windows 2000 book CD-ROM—now is free on Sysinternals

Commands that fail in local kernel debugging work in LiveKD:

Kernel stacks (!process, !thread)

Lm (list modules)

Can snapshot a live system (.dump)

Does not guarantee consistent view of system memory

Thus can loop or fail with access violation

Just quit and restart

http://live.sysinternals.com/livekd.exe

35

Sysinternals Tools

Freeware Windows internals tools from www.sysinternals.com

Written by Mark Russinovich & Bryce Cogswell (cofounders of Winternals)

Useful for developers, system administrators, and power users

Most popular: Process Explorer, Diskmon, TCPView

Require no installation – run them directly after downloading and

unzipping

Many tools require administrative privileges

Some load a device driver

Tools regularly updated, so make sure to check for updated versions

RSS feed available

Free Sysinternals newsletter

See Mark’s blog: http://blogs.technet.com/b/markrussinovich/

http://www.sysinternals.com/
http://blogs.technet.com/b/markrussinovich/

36

Platform SDK
(Software Development Kit)

a set of tools, code samples, documentation, compilers, headers,
and libraries developers can use to create applications that run on
Microsoft Windows operating systems using native (Win32) or
managed (.NET Framework) programming models.

“Core SDK” contains core services, COM, messaging, active directory,
management, etc.

Latest version for Windows 7:

 http://msdn.microsoft.com/en-us/windows/bb980924

Part of MSDN Professional (or higher) subscription

Always matches operating system revision

Check the “archive”

Not absolutely required for Win32 development (because VC++
comes with the Win32 API header files), but…

VC++ headers, libs, doc are not updated

Also provides a few tools (e.g. WinObj, Working Set Tuner) not available
elsewhere

http://msdn.microsoft.com/en-us/windows/bb980924
http://msdn.microsoft.com/en-us/windows/bb980924
http://msdn.microsoft.com/en-us/windows/bb980924
http://msdn.microsoft.com/en-us/windows/bb980924

Lab: sysinternal website

37

Lab: Viewing the Process Tree
C:\Program Files\Debugging Tools for Windows (x86)>tlist.exe/t

System Process (0)

System (4)

 smss.exe (300)

csrss.exe (392)

wininit.exe (452)

 services.exe (500)

 svchost.exe (652)

 BTStackServer.exe (4352)

 WmiPrvSE.exe (4592)

 WmiPrvSE.exe (5080)

 wlcomm.exe (11144)

 FlashUtil10i_ActiveX.exe (10852) OleMainThreadWndName

 OfficeLiveSignIn.exe (9576) OleMainThreadWndName

 WmiPrvSE.exe (8024)

 WmiPrvSE.exe (9132)

 nvvsvc.exe (708)

38

Lab: No more than Parent PID!

Open a cmd prompt window

Start another cmd prompt by typing “cmd” from the first window

Bring up task manager

Type “mspaint” from the second window

Goto the second cmd window and type “exit” (notice mspaint still

remains)

Switch to task manager, click on “Application” tab

Right click command prompt task select “Go to process”

Click on cmd.exe highlighted in blue

Right click on this process and select “End process tree”

Click “yes” in the Task Manager Warning message box

The first cmd window will disappear and mspaint remains since it’s

the grandchild

39

Lab: Using Process Explorer

“Super Task Manager”

Shows full image path, command line, environment variables,

parent process, security access token, open handles, loaded

DLLs & mapped files

40

Lab: Viewing Proc. Info in TaskMgr

41

42

Lab: Performance Monitor

Lab: Explorer to view security

attributes
Lab:

• Use Explorer to view Windows FS Access rights/ownerships,

ACLs

• Passwd change: CTRL-ALT-DEL (secure login sequence)

43

Lab: Kernel Debugging

Run livekd from elevated command prompt

To display the kernel structures

dt nt!_* -- for all

dt nt!_*interrupt* -- for interrupt object

dt nt!_kinterrupt -- show details of a specific

structure

dt nt!_kinterrupt –r -- show substructures

44

45

Further Reading

Mark E. Russinovich, et al.
Windows Internals,

5th Edition, Microsoft Press, 2009.

Ch 1. Concepts and Tools (pp. 1 – pp. 32)

