
Core System Mechanisms

and Windows API

2

Roadmap for This Lecture

Core System Mechanisms

Object Manager & Handles

System Worker Threads

Advanced Local Procedure Calls

Wow64

The Windows APIs

Principles

Windows vs. Unix

File copy example

3

Object Manager (I)

Executive component for managing system-defined

“objects”

Manage: creating, deleting, protecting and tracking

Objects are data structures with optional names

“Objects” managed here include Executive objects and Kernel

objects, but not Windows User/GDI objects (Win32k.sys)

Object manager implements user-mode handles and the

process handle table

Object manager is not used for all Windows data
structures

Generally, only those types that need to be shared, named, or
exported to user mode

Some data structures are called “objects” but are not managed
by the object manager (e.g. “DPC objects”)

4

Object Manager (II)

In part, a heap manager…

Allocates memory for data structure from system-wide, kernel
space heaps (pageable or nonpageable)

… with a few extra functions:

Assigns name to data structure (optional)

Allows lookup by name

Objects can be protected by ACL-based security

Provides uniform naming, sharing, and protection scheme

Simplifies C2 security certification by centralizing all object
protection in one place

Maintains counts of handles and references (stored pointers in
kernel space) to each object

Object cannot be freed back to the heap until all handles and
references are gone

Executive Objects vs. Kernel

Objects

5

Name

HandleCount

ReferenceCount

Type

Executive Object

Kernel Object

Owned by the

Object manager

Owned by the

kernel

Owned by the

executive

Kernel objects are primitive

objects implemented by the

kernel

Executive objects are

implemented by executive

components e.g. process

manager, memory manager, I/O

subsystem, etc.

Executive objects can contain

kernel objects

6

Executive Objects

Object type Represents

Object directory Container object for other objects: implement

hierarchical namespace to store other object types

Symbolic link Mechanism for referring to an object name indirectly

Process Virtual address space and control information

necessary for execution of thread objects

Thread Executable entity within a process

Section Region of shared memory (file mapping object in

Windows API)

File Instance of an opened file or I/O device

Port Mechanism to pass messages between processes

Access token Security profile (security ID, user rights) of a process

or thread

Event An object with a persistent state that can be used for

synchronization or notification

7

Executive Objects (contd.)
Object type Represents

Semaphore Counter and resource gate for critical section

Mutex Synchronization construct to serialize resource access

Timer Mechanism to notify a thread when a fixed period of

time elapses

Queue Method for threads to enqueue/dequeue notifications

of I/O completions (Windows I/O completion port)

Key Reference to registry data – visible in object manager

namespace

Profile Mechanism for measuring execution time for a

process within an address range

Window Station Contains a clipboard, a set of global atoms, a group of

Desktop objects

Desktop Has logical display surface and contains windows,

menus and hooks

8

Object name

Object directory

Security descriptor

Quota charges

Open handle count

Open handles list

Object type

Reference count

Object-specific data

Object Structure

Object header

(owned by object

manager)

Object body

(owned by

executive

component)

Process 1

Process 2

Process 3

Type name

Access types

Synchronizable? (Y/N)

Pageable? (Y/N)

Methods:

 open, close, delete

 parse, security,

 query name

Type object

Object name

Object directory

Security descriptor

Quota charges

Open handle count

Open handles list

Object type

Reference count

Object-specific data

Object name

Object directory

Security descriptor

Quota charges

Open handle count

Open handles list

Object type

Reference count

Object-specific data

Object Header

9

Field Purpose

Handle count Number of currently opened handles to the object

Pointer count Number of references to the object (>= handle count)

Kernel components can refer to an object without opening a handle

Security

descriptor

Determines who can use the object and what they can do with it.

Unnamed objects cannot have security

Object type Points to the Type Object that contains common attributes

Subheader

offset

Negative offsets to the optional subheader structures, which if present,

always precedes the object header

Flags Characteristics and object attributes for the object

Type Object

Contains data which remains constant for all

objects of the same type

Type name

Access type

Some common methods (next slide)

Saves memory

If “object-tracking” flag is set, then type object

links together all objects of the same type

Enumeration

10

11

Object Methods

Process opens handle to object \Device\Floppy0\docs\resume.doc

Object manager traverses name tree until it reaches Floppy0

Calls parse method for object Floppy0 with arg \docs\resume.doc

Method When method is called

Open When an object handle is opened

Close When an object handle is closed

Delete Before the object manager deletes an object

Query name When a thread requests the name of an object, such as a file, that

exists in a secondary object domain

Parse When the object manager is searching for an object name that exists in

a secondary object domain

Security When a process reads/changes protection of an objects, such as a file,

that exists in a secondary object domain

Example:

12

Objects and Handles

When a process creates or opens an object, it
receives a handle (or access) to the object

Processes can also acquire handles by
inheritance

Benefits of handles:

Faster – no name lookups

Indirect pointers to objects – prevents direct fiddling
with the system data structures

No difference between file handle, process handle or
event handle – a consistent interface to reference all
objects

All handle creation done by object manager – has
exclusive rights to scrutinize every user action

13

Handles and Security

Process handle table

Is unique for each process

But is in system address space, hence cannot be modified from user mode

Hence, is trusted

Security checks are made when handle table entry is created

i.e. at CreateXXX time

Handle table entry indicates the “validated” access rights to the object

Read, Write, Delete, Terminate, etc.

APIs that take an “already-opened” handle look in the handle table
entry before performing the function

For example: TerminateProcess checks to see if the handle was opened for
Terminate access

No need to check file ACL, process or thread access token, etc., on every write
request---checking is done at file handle creation, i.e. “file open”, time

14

HandleCount = 1

ReferenceCount = 1

Event Object

Handles, Pointers, and Objects

Handle Table

Process A

Handle Table

Process B

System Space

handles

index

Handle to a kernel object is an index
into the process handle table, and
hence is invalid in any other process

Handle table entry contains the
system-space address (8xxxxxxx or
above) of the data structure; this
address is the same regardless of
process context

Although handle table is per-
process, it is actually in system
address space (hence protected)

HandleCount = 1

ReferenceCount = 1

15

Event Object 1

Handle and Reference Count

Handle Table

Process A

Handle Table

Process B

System Space
handles

index

HandleCount = 1

ReferenceCount = 1

DuplicateHandle

Event Object 2

HandleCount = 2

ReferenceCount = 2

HandleCount = 2

ReferenceCount = 3

Thread

(in a wait state

for the event)

Note: there is

actually another

data structure,

a “wait block”,

“between” the

thread and the

object it’s

waiting for

16

Object Manager Namespace
System and session-wide internal namespace for all objects

exported by the operating system

View with Winobj from www.sysinternals.com

17

Interesting Object Directories

in \ObjectTypes

objects that define types of objects

in \BaseNamedObjects

these will appear when Windows programs use

CreateEvent, etc.

mutant (Windows mutex)

queue (Windows I/O completion port)

section (Windows file mapping object)

event

Semaphore

In \GLOBAL??

DOS device name mappings for console session

18

Object Manager Namespace
Namespace:

Hierarchical directory structure (based on file system model)

System-wide (not per-process)

With Terminal Services, Windows objects are per-session by default

Can override this with “global\” prefix on object names

Volatile (not preserved across boots)

As of Server 2003, requires SeCreateGlobalPrivilege

Namespace can be extended by secondary object managers (e.g. file system)

Hook mechanism to call external parse routine (method)

Supports case sensitive or case blind

Supports symbolic links (used to implement drive letters, etc.)

Lookup done two occasions:

Creates a named object – check for existing names

Opens a handle to a named object

Not all objects managed by the object manager are named

e.g. file objects are not named (they are named in the secondary obj manager (file
system)

un-named objects are not visible in WinObj

19

System Worker Threads

Created at system initialization time

Perform work on behalf of other threads

Most device drivers and executive components use system worker
threads

Request system worker thread service by calling

ExQueueWorkItem or IoQueueWorkItem functions

Put a work item on a queue dispatcher object

System worker threads look for work from the queue dispatcher

Three types of system worker threads (and default #):

Delayed worker threads (pri 12): 7 (deferred object deletion)

Critical worker threads (pri 13): 5 (used by time-critical items)

Hypercritical worker threads (Pri 15): 1 (used by process manager)

20

Advanced Local Procedure Calls

(ALPCs)
IPC – high-speed message passing

Not available through Windows API – Windows OS internal

Application scenarios:

RPCs on the same machine are implemented as ALPCs

Some Windows APIs result in sending messages to Windows
subsystems processes

WinLogon uses ALPC to communicate with local security
authentication server process (LSASS)

Security reference monitor uses ALPC to communicate with LSASS

ALPC communication:

Short messages < 256 bytes are copied from sender to receiver

Larger messages are exchanged via shared memory segment

For data larger than will fit in shared section, server (kernel) may
write directly in client‘s address space

21

Port Objects

ALPC exports port objects to maintain state of communication:

Server connection port: named port, server connection request
point

Server communication port: unnamed port, one per active client,
used for communication

Client communication port: unnamed port a particular client
thread uses to communicate with a particular server

Typical scenario:

Server creates named connection port

Client makes connection request

Two unnamed ports are created, client gets handle to server port,
server gets handle to client port

These two new ports will be used for communication

22

Use of ALPC ports

Client address

space
Kernel address

space

Server address

space

Message

queue

Connection port

Client process Server process

Handle

Handle

Server view

of section

Handle

Client view

of section

Shared

section

Client

communication

port

Server

communication

port

23

Wow64

Allows execution of Win32 binaries on 64-bit Windows

Wow64 intercepts system calls from the 32-bit application

Converts 32-bit data structure into 64-bit aligned structures

Issues the native 64-bit system call

Returns any data from the 64-bit system call

IsWow64Process() function can tell if a 32-bit process is
running under Wow64

Performance

On x64, instructions executed by hardware

On IA64, instructions have to be emulated

New Intel IA-32 EL (Execution Layer) does binary translation of
Itanium to x86 to improve performance

Downloadable now – bundled with Server 2003 SP1

24

Wow64 Components

64-bit ntdll.dll

Wow64.dll Wow64win.dll

Wow64cpu.dll

Win32k.sys Executive

Kernel

Mode

User Mode

32-bit ntdll.dll

32-bit EXE, DLLs

Wow64.dll - provides core

emulation infrastructure, and

hooks exception dispatching

and base system calls by

Ntoskrnl.exe

Wow64win.dll - Intercepts

GUI system calls exported by

Win32k.sys

Wow64cpu.dll – manages

thread contexts, supports

mode-switch instructions

25

Wow64 File Locations

Location of system files

64-bit system files are in \windows\system32

32-bit system files are in \windows\syswow64

32-bit applications live in “\Program Files (x86)”

64-bit applications live in “\Program Files”

File access to %windir%\system32 redirected to
%windir%\syswow64

%PROGRAMFILES% set to the appropriate program
directory

Two areas of the registry redirected (see next slide)

26

Wow64 Registry Redirection

Two registry keys have 32-bit
sections:

HKEY_LOCAL_MACHINE\Software

HKEY_CLASSES_ROOT

Everything else is shared

32-bit data lives under
\Wow6432Node

When a Wow64 process
opens/creates a key, it is
redirected to be under
Wow6432Node

27

Example: Cmd.exe on 64-bit System

32-bit Cmd.exe process:

64-bit Cmd.exe process:

28

Wow64 Limitations

Wow64 Feature Support on 64-bit Windows

Platforms

IA64 x64

16-bit Virtual DOS Machine (VDM) support N/A N/A

Physical Address Extension (PAE) APIs N/A Yes

GetWriteWatch() API N/A Yes

Scatter/Gather I/O APIs N/A Yes

Hardware accelerated with DirectX version 7,8 and 9 Software-

Emulation

Only

Yes

Cannot load 32-bit DLLs in 64-bit process and vice versa

Does not support 32-bit kernel mode device drivers

Drivers must be ported to 64-bits

Special support required to support 32-bit applications using

DeviceIoControl to driver

Driver must convert 32-bit structures to 64-bit

29

Windows API - Overview

APIs to Windows systems evolved over time:

Win16 - introduced with Windows 2.0

Win32 - introduced with Windows NT, Windows 95

Win64 – introduced with Windows 64-bit edition

“Windows API” summarizes all of the above

In this course, Windows API refers to Win32 and

Win64

30

Windows API - major functionality

File System and Character I/O

Direct File Access and File Attributes

Structured Exception Handling

Memory Management and Memory-Mapped Files

Security

Process Management

Inter-process Communication

Threads and Scheduling, Windows Synchronization

31

Windows API Principles

System resources are kernel objects referenced by a

handle (handle vs. UNIX file descriptors & PIDs)

Kernel objects must be manipulated via Windows API

Objects – files, processes, threads, IPC pipes, memory

mappings, events – have security attributes

Windows API is rich & flexible:

convenience functions often combine common sequences of

function calls

Windows API offers numerous synchronization and

communication mechanisms

32

Windows API principles (contd.)

Thread is unit of executions

(vs. process in Unix)

A process can contain one or more threads

Function names are long and descriptive

(as in VMS)

- WaitForSingleObject()

- WaitForMultipleObjects()

33

Windows API Naming Conventions

Predefined data types are in uppercase

BOOL (32 bit object to store single logical value)

HANDLE

DWORD (32 bit unsigned integer)

LPTSTR

LPSECURITY_ATTRIBUTE

Prefix to identify pointer & const pointer

LPTSTR (defined as TCHAR *)

LPCTSTR (defined as const TCHAR *)

 (Unicode: TCHAR may be 1-byte char or 2-byte wchar_t)

See \$MSDEV\INCLUDE\WINDOWS.H, WINNT.H,
WINBASE.H

 (MSDEV=C:\Program Files\Microsoft Visual Studio\VC\)

34

64-bit vs. 32-bit Windows APIs

Pointers and types derived from pointer, e.g. handles,
are 64-bit long

A few others go 64, e.g. WPARAM, LPARAM, LRESULT, SIZE_T

Rest are the same, e.g., 32-bit INT, DWORD, LONG

Only five replacement APIs!

Four for Window/Class Data

Replaced by Polymorphic (_ptr) versions

Updated constants used by these APIs

One (_ptr) version for flat scroll bars properties

API Data Model int long pointer

Win32 ILP32 32 32 32

Win64 LLP64 (P64) 32 32 64

UNIXes LP64 32 64 64

Win32 and

Win64 are

referred to as the

Windows API

35

Differences from UNIX

HANDLEs are opaque (no short integers)

No analogy to file descriptors 0,1,2 in Windows

No distinctions between HANDLE and process ID

Most functions treat file, process, event, pipe identically

Windows API processes have no parent-child
relationship

Although the Windows kernel keeps this information

Windows text files have CR-LF instead of LF (UNIX)

Anachronisms: “long pointer“ (32 bit)

LPSTR, LPVOID

36

Portability: The Standard C Library

Included in the Windows API

C library contains functions with limited

capability to manage OS resources (e.g.; files)

Often adequate for simple programs

Possible to write portable programs

Include files:

<stdlib.h>, <stdio.h>, <string.h>

37

Example Application

Sequential file copy:

The simplest, most common, and most essential

capability of any file system

Common form of sequential processing

Comparing programs:

Quick way to introduce Windows API essentials

Contrast different approaches

Minimal error processing

38

Sequential File Copy

UNIX:

File descriptors are integers; error value: -1

read()/write() return number of bytes processed,

0 indicates EOF

Positive return value indicates success

close() works only for I/O objects

I/O is synchronous

Error processing depends on perror() & errno (global)

39

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <stdio.h>

#include <errno.h>

#define BUF_SIZE 256

int main (int argc, char *argv []) {

 int input_fd, output_fd;

 ssize_t bytes_in, bytes_out;

 char rec [BUF_SIZE];

 if (argc != 3) {

 printf ("Usage: cp file1 file2\n");

 return 1;

 }

 input_fd = open (argv [1], O_RDONLY);

 if (input_fd == -1) {

 perror (argv [1]); return 2;

 }

 output_fd =

 open(argv[2],O_WRONLY|O_CREAT,0666);

 if (output_fd == -1) {

 perror (argv [2]); return 3;

}

/* Process the input file a record

 at atime. */

while ((bytes_in = read

 (input_fd, &rec, BUF_SIZE)) > 0) {

 bytes_out =

 write (output_fd, &rec, bytes_in);

 if (bytes_out != bytes_in) {

 perror ("Fatal write error.");

 return 4;

 }

 }

 close (input_fd);

 close (output_fd);

 return 0;

}

Basic cp file copy program. UNIX

Implementation

40

File Copy with Standard C Library

Open files identified by pointers to FILE structures

NULL indicates invalid value

Pointers are “handles” to open file objects

Call to fopen() specifies whether file is text or binary

Errors are diagnosed with perror() of ferror()

Portable between UNIX and Windows

Competitive performance

Still constrained to synchronous I/O

No control of file security via C library

41

Basic cp file copy program. C library

Implementation

#include <stdio.h>

#include <errno.h>

#define BUF_SIZE 256

int main (int argc, char *argv []) {

 FILE *in_file, *out_file;

 char rec [BUF_SIZE];

 size_t bytes_in, bytes_out;

 if (argc != 3) {

 printf ("Usage: cp file1 file2\n");

 return 1;

 }

 in_file = fopen (argv [1], "rb");

 if (in_file == NULL) {

 perror (argv [1]);

 return 2;

 }

 out_file = fopen (argv [2], "wb");

 if (out_file == NULL) {

 perror (argv [2]);

 return 3;

 }

/* Process the input file a record

at a time. */

while ((bytes_in =

 fread (rec,1,BUF_SIZE,in_file)) > 0) {

 bytes_out =

 fwrite (rec, 1, bytes_in, out_file);

 if (bytes_out != bytes_in) {

 perror ("Fatal write error.");

 return 4;

 }

}

fclose (in_file);

fclose (out_file);

return 0;

}

42

File Copying with Windows API

<windows.h> imports all Windows API function

definitions and data types

Access Windows objects via variables of type HANDLE

Generic CloseHandle() function works for most objects

Symbolic constants and flags

INVALID_HANDLE_VALUE, GENERIC_READ

Functions return boolean values

System error codes obtained via GetLastError()

Windows security is complex and difficult to program

43

Basic cp file copy program. Windows API

Implementation

#include <windows.h>

#include <stdio.h>

#define BUF_SIZE 256

int main (int argc, LPTSTR argv []) {

 HANDLE hIn, hOut;

 DWORD nIn, nOut;

 CHAR Buffer [BUF_SIZE];

 if (argc != 3) {

 printf("Usage: cp file1 file2\n");

 return 1;

 }

 hIn = CreateFile (argv [1],

 GENERIC_READ,

 FILE_SHARE_READ, NULL,

 OPEN_EXISTING,

 FILE_ATTRIBUTE_NORMAL,

 NULL);

 if (hIn == INVALID_HANDLE_VALUE) {

 printf ("Input file error:%x\n",

 GetLastError ());

 return 2;

 }

 hOut = CreateFile (argv [2],

 GENERIC_WRITE, 0, NULL,

 CREATE_ALWAYS,

 FILE_ATTRIBUTE_NORMAL,

 NULL);

 if (hOut == INVALID_HANDLE_VALUE) {

 printf("Output file error: %x\n",

 GetLastError ());

 return 3;

 }

 while (ReadFile (hIn, Buffer,

 BUF_SIZE, &nIn, NULL)

 && nIn > 0) {

 WriteFile (hOut, Buffer,nIn,&nOut,NULL);

 if (nIn != nOut) {

 printf ("Fatal write error: %x\n",

 GetLastError ());

 return 4;

 }

 }

 CloseHandle (hIn);

 CloseHandle (hOut);

 return 0;

}

44

File Copying with Windows API

Convenience Functions

Convenience functions may improve performance

Programmer does not need to be concerned about arbitrary
buffer sizes

OS manages speed vs. space tradeoffs at runtime

#include <windows.h>

#include <stdio.h>

int main (int argc, LPTSTR argv [])

{

 if (argc != 3) {

 printf ("Usage: cp file1 file2\n"); return 1;

 }

 if (!CopyFile (argv [1], argv [2], FALSE)) {

 printf ("CopyFile Error: %x\n", GetLastError ()); return 2;

 }

 return 0;

}

45

Further Reading

Mark E. Russinovich et al., Microsoft Windows Internals, 5th Edition,

Microsoft Press, 2009, Chapter 3 - System Mechanisms

Object Manager (from pp. 133)

System Worker Threads (from pp. 198)

Advanced Local Procedure Calls (ALPCs) (from pp. 202)

Wow64 (from pp. 211)

Johnson M. Hart, Win32 System Programming: A Windows® 2000

Application Developer's Guide, 2nd Edition, Addison-Wesley, 2000.

 (This book discusses select Windows programming problems and addresses

the problem of portable programming by comparing Windows and Unix

approaches).

Jeffrey Richter, Programming Applications for Microsoft Windows, 4th

Edition, Microsoft Press, September 1999.

(This book provides a comprehensive discussion of the Windows API –

suggested reading).

46

Source Code References

Windows Research Kernel sources

\base\ntos\ob – Object Manager

\base\ntos\ex\handle.c – handle management

\base\ntos\ex\pool.c, \base\ntos\inc\pool.h – Kernel

memory pools (nonpaged, paged)

Also see \base\ntos\mm\allocpag.c

\base\ntos\lpc – Local Procedure Call

exceptn.c, trap.asm in \base\ntos\ke\i386,

\base\ntos\ke\amd64 – Exception Dispatching

Lab: 2013-9-23

Handles & ALPC

Viewing Handles

Handle: a non-transparent pointer

Use Handle.exe

Use Process Explorer

View the Maximum number of handles

ALPC Port Objects

Use Winobj.exe to view ALPC Port Objects

