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--- Windows Traps 
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The Critical-Section Problem 

n threads all competing to use a shared 

resource (i.e.; shared data) 

Each thread has a code segment, called 

critical section, in which the shared data is 

accessed 

Problem: 

Ensure that when one thread is executing in 

its critical section, no other thread is allowed to 

execute in its critical section 
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Three Requirements 

1. Mutual Exclusion  

Only one thread at a time is allowed into its critical section, among all 
threads that have critical sections for the same resource or shared 
data. 

2. Progress  

If no thread is in the critical section and some threads want to enter, 
then only those threads not in the remainder section can participate 
in the decision of which thread gets to enter next. 

The selection process cannot be postponed indefinitely. 

3. Bounded Waiting 

There must be a bound on the number of times that other processes 
are allowed to enter their critical section after a process has 
requested to enter its critical section and before the request is 
granted. 
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Initial Attempts to Solve Problem 

Only 2  threads, T0 and T1 

General structure of thread Ti (other thread Tj) 

  do { 

   enter section 

    critical section 

   exit section 

    reminder section 

  } while (1); 

Threads may share some common variables to 
synchronize their actions. 
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First Attempt: Algorithm 1 

Shared variables - initialization 

  int turn = 0; 

turn == i  Ti can enter its critical section 

Thread Ti 

  do { 

   while (turn != i) ; 

    critical section 

   turn = j; 

    reminder section 

  } while (1); 

Strict alternation between i and j 

Satisfies mutual exclusion, but not progress 
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Second Attempt: Algorithm 2 

Shared variables - initialization 

 int flag[2]; flag[0] = flag[1] = 0; 

flag[i] == 1  Ti can enter its critical section 

Thread Ti 

  do { 

   flag[i] = 1; 

  while (flag[j] == 1) ;   

    critical section 

   flag[i] = 0;  

   remainder section 

  } while(1); 

Satisfies mutual exclusion, but not progress requirement. 

Very sensitive to timing of the two threads 
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Third Attempt: Algorithm 3 
(Peterson’s Algorithm - 1981) 

Shared variables of algorithms 1 and 2 - initialization: 

 int flag[2]; flag[0] = flag[1] = 0; 

int turn = 0; 

Thread Ti 

  do { 

   flag[i] = 1; 

  turn = j; 

  while ((flag[j] == 1) && turn == j) ; 

    critical section 

   flag[i] = 0; 

    remainder section 

  } while (1); 

Solves the critical-section problem for two threads. 
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Dekker’s Algorithm (1965) 

This is the first correct solution proposed for the 
two-thread (two-process) case.  

Originally developed by Dekker in a different 
context, it was applied to the critical section 
problem by Dijkstra. 

Dekker adds the idea of a favored thread and allows 
access to either thread when the request is 
uncontested.  

When there is a conflict, one thread is favored, and 
the priority reverses after successful execution of 
the critical section. 
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Dekker’s Algorithm (contd.) 

Shared variables - initialization: 

 int flag[2]; flag[0] = flag[1] = 0; 

int turn = 0; 

Thread Ti 

 do { 

 flag[i] = 1; 

  while (flag[j] )  

  if (turn == j) { 

   flag[i] = 0; 

   while (turn == j); 

   flag[i] = 1; 

   } 

    critical section 

  turn = j; 

  flag[i] = 0; 

    remainder section 

 } while (1); 
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Bakery Algorithm  
(Lamport 1979) 

A Solution to the Critical Section problem for n threads 

 

Before entering its critical section, a thread receives a 

number. Holder of the smallest number enters the critical 

section. 

If threads Ti and Tj receive the same number,  

if i < j, then Ti is served first; else Tj is served first. 

The numbering scheme generates numbers in 

monotonically non-decreasing order; 

 i.e., 1,1,1,2,3,3,3,4,4,5... 
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Bakery Algorithm  

Notation “<“ establishes lexicographical order  

among 2-tuples (ticket #, thread id #) 

 (a,b) < (c,d) if a < c or if a == c and b < d 

 max (a0,…, an-1) = { k |  k  ai for i = 0,…, n – 1 } 

Shared data 

 int choosing[n]; 

 int number[n];    - the ticket 

    Data structures are initialized to 0 
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Bakery Algorithm  

do {  

 choosing[i] = 1; 

 number[i] = max(number[0],number[1] ...,number[n-1]) + 1; 

 choosing[i] = 0; 

 for (j = 0; j < n; j++) { 

  while (choosing[j] == 1) ;  

  while ((number[j] != 0) &&  

   ((number[j],j) ‘’<‘’ (number[i],i))); 

 } 

  critical section 

 number[i] = 0; 

  remainder section 

} while (1); 
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Mutual Exclusion - Hardware Support 

Interrupt Disabling 

Concurrent threads cannot overlap on a uniprocessor 

Thread will run until performing a system call or interrupt 
happens 

Special Atomic Machine Instructions 

Test and Set Instruction - read & write a memory location 

Exchange Instruction - swap register and memory location 

Problems with Machine-Instruction Approach 

Busy waiting 

Starvation is possible 

Deadlock is possible 
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Synchronization Hardware 

Test and modify the content of a word atomically 

  boolean TestAndSet(boolean &target) { 

   boolean rv = target; 

   target = true; 

 

   return rv; 

  } 
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Mutual Exclusion with Test-and-Set 

Shared data:  
 boolean lock = false; 

 

Thread Ti 

  do { 

   while (TestAndSet(lock)) ; 

    critical section 

   lock = false; 

    remainder section 

  } 
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Synchronization Hardware  

Atomically swap two variables. 

 

  void Swap(boolean &a, boolean &b) { 

   boolean temp = a; 

   a = b; 

   b = temp; 

  } 
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Mutual Exclusion with Swap 

Shared data (initialized to 0):  

  int lock = 0; 
 

Thread Ti 

  int key; 

  do { 

    key = 1; 

    while (key == 1) Swap(lock, key); 

     critical section 

    lock = 0; 

     remainder section 

  } 
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Semaphores 

Semaphore S – integer variable 

can only be accessed via two atomic operations 

  wait (S):   

   while (S <= 0); 

  S--; 

 

  signal (S):  

   S++; 
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Critical Section of n Threads 

Shared data: 

     semaphore mutex; //initially mutex = 1 

 

Thread Ti:  

  do { 

     wait(mutex); 

          critical section 

       signal(mutex); 

          remainder section 

 } while (1); 
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Semaphore Implementation 

Semaphores may suspend/resume threads 

Avoid busy waiting 

Define a semaphore as a record 

  typedef struct { 

     int value; 

    struct thread *L; 

 } semaphore; 

 

Assume two simple operations: 

suspend() suspends the thread that invokes it. 

resume(T) resumes the execution of a blocked thread T. 
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Implementation 

Semaphore operations now defined as  

 wait(S):  
 S.value--; 

  if (S.value < 0) {  

   add this thread to S.L; 

  suspend(); 

  } 

 signal(S):  
 S.value++; 

  if (S.value <= 0) { 

   remove a thread T from S.L; 

  resume(T); 

  } 
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Semaphore as a General 

Synchronization Tool 

Execute B in Tj only after A executed in Ti 

Use semaphore flag initialized to 0 

Code: 

  Ti Tj 

   …   … 

  A wait(flag) 

  signal(flag) B 
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Two Types of Semaphores 

Counting semaphore  

integer value can range over an unrestricted 

domain. 

Binary semaphore  

integer value can range only between 0 and 1; 

 can be simpler to implement. 

Counting semaphore S can be implemented 

as a binary semaphore. 
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Deadlock and Starvation 

Deadlock – two or more threads are waiting indefinitely for an event 
that can be caused by only one of the waiting threads. 

Let S and Q be two semaphores initialized to 1 

  T0 T1 

  wait(S); wait(Q); 

  wait(Q); wait(S); 

  …  … 

  signal(S); signal(Q); 

  signal(Q) signal(S); 

Starvation  – indefinite blocking.  A thread may never be removed 
from the semaphore queue in which it is suspended. 

Solution - all code should acquire/release semaphores in same order 
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Getting Into Kernel Mode 
Code is run in kernel mode for one of three reasons: 

1. Requests from user mode 

Via the system service dispatch mechanism 

Kernel-mode code runs in the context of the requesting thread 

2. Interrupts from external devices 

Windows interrupt dispatcher invokes the interrupt service routine 

ISR runs in the context of the interrupted thread  
(so-called “arbitrary thread context”) 

ISR often requests the execution of a “DPC routine,”  
which also runs in kernel mode 

Time not charged to interrupted thread 

3. Dedicated kernel-mode system threads 

Some threads in the system stay in kernel mode at all times  
(mostly in the “System” process) 

Scheduled, preempted, etc., like any other threads 
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Trap Dispatching 

Trap: processor’s mechanism to capture executing thread 

Switch from user to kernel mode 

Interrupts – asynchronous 

Exceptions - synchronous 

Interrupt 

dispatcher 

System 

service 

dispatcher 

Interrupt 

service 

routines 

Interrupt 

service 

routines 

Interrupt 

service 

routines 

System  

services 
System  

services 
System  

services 

Exception 

dispatcher 

Exception 

handlers 
Exception 

handlers 
Exception 

handlers 

Virtual memory 

manager‘s pager 

Interrupt 

System service call 

HW exceptions 

SW exceptions 

Virtual address 

exceptions 

Trap handlers 
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Interrupt Dispatching 

Interrupt dispatch routine 

Disable interrupts 

 

Record machine state (trap  
frame) to allow resume 

 

Mask equal- and lower-IRQL 
interrupts 

 

Find and call appropriate 
ISR 

 

Dismiss interrupt 

 

Restore machine state 
(including mode and 
enabled interrupts) 

Tell the device to stop 
interrupting 

Interrogate device state, 
start next operation on 
device, etc.  

Request a DPC 

Return to caller 

Interrupt service routine 

interrupt ! 

user or 

kernel mode 

code 

kernel mode 

Note, no thread or 
process context 
switch! 
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Hardware interrupt processing 

Interrupt dispatch table (IDT) 

Links to interrupt service routines 

 

x86: 

I/O interrupts come into one of the lines of interrupt controller 

Interrupt controller interrupts processor (single line) 

Processor queries for interrupt vector; uses vector as index to IDT  

 

After ISR execution, IRQL is lowered to initial level 
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Interrupt Precedence via IRQLs (x86) 
IRQL = Interrupt Request Level 

the “precedence” of the interrupt with 

respect to other interrupts 

Different interrupt sources have 

different IRQLs 

not the same as IRQ (interrupt 

requests) 

Passive/Low 

APC 

Dispatch/DPC 

Device 1 

. 

. 

. 

Profile & Synch 

Clock 

Interprocessor Interrupt 

Power fail 

High 

normal thread execution 

Hardware interrupts 

Deferrable software interrupts 

0 

1 

2 

30 

29 

28 

31 

IRQL is also a state of the processor 

Servicing an interrupt raises processor 

IRQL to that interrupt’s IRQL 

this masks subsequent interrupts at equal 

and lower IRQLs 

User mode is limited to IRQL 0 

No waits or page faults at IRQL >= 

DISPATCH_LEVEL 
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Predefined IRQLs 

High  

used when halting the system (via KeBugCheck()) 

Power fail  

originated in the NT design document, but has never been 
used 

Inter-processor interrupt 

used to request action from other processor (dispatching a 
thread, updating a processors TLB (translation lookaside 
buffer), system shutdown, system crash) 

Clock 

Used to update system‘s clock, allocation of CPU time to 
threads 
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Predefined IRQLs (contd.) 

Profile 

Used for kernel profiling (see Kernel profiler – Kernprof.exe, 
Res Kit) 

Device 

Used to prioritize device interrupts 

DPC/dispatch and APC 

Software interrupts that kernel and device drivers generate 

Passive 

No interrupt level at all, normal thread execution 

Restriction: code running at DPC+ levels must not wait 

for an object which results in a thread re-scheduling 
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IRQLs on 64-bit Systems 

Passive/Low 

APC 

Dispatch/DPC 

Device 1 

. 

. 

Device n 

Synch (Srv 2003) 

Clock 

Interprocessor Interrupt/Power 

High/Profile 

0 

1 

2 

14 

13 

15 

3 

4 

Passive/Low 

APC 

Dispatch/DPC & Synch (UP only) 

Correctable Machine Check 

Device 1 

. 

Device n 

Synch (MP only) 

Clock 

Interprocessor Interrupt 

High/Profile/Power 

x64 IA64 

12 
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Interrupt Prioritization & Delivery 

IRQLs are determined as follows: 

On x86, x64 & IA64 systems: IRQL = IDT vector number / 16 

On MP systems, which processor is chosen to deliver an 
interrupt? 

By default, any processor can receive an interrupt from any 
device 

Can be configured with IntFilter utility in Resource Kit 

On x86 and x64 systems, the IOAPIC (I/O advanced 
programmable interrupt controller) is programmed to interrupt 
the processor running at the lowest IRQL 

On IA64 systems, the SAPIC (streamlined advanced 
programmable interrupt controller) is configured to interrupt one 
processor for each interrupt source 

Processors are assigned round robin for each interrupt vector 
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Interrupt object 

Allows device drivers to register ISRs for their devices 

Contains dispatch code (initial handler) 

Dispatch code calls ISR with interrupt object as parameter 
(HW cannot pass parameters to ISR) 

Connecting/disconnecting interrupt objects: 

Dynamic association between ISR and IDT entry 

Loadable device drivers (kernel modules) 

Turn on/off ISR 

Interrupt objects can synchronize access to ISR data 

Multiple instances of ISR may be active simultaneously (MP machine) 

Multiple ISR may be connected with IRQL 
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Flow of Interrupts 

Peripheral Device 

Controller 

CPU Interrupt 

Controller 

CPU Interrupt 
Dispatch Table 

0 

2 

3 

n 

ISR Address 

Spin Lock 

 

Dispatch 

Code 

Interrupt 

Object 

Read from device 

Acknowledge-

Interrupt 

Request DPC 

Driver ISR 

Raise IRQL 

Lower IRQL 

KiInterruptDispatch 

(interrupt dispatcher) 

Grab Spinlock 

Drop Spinlock 
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Software interrupts 

Initiating thread dispatching 

DPC allow for scheduling actions when kernel is 

deep within many layers of code 

Delayed scheduling decision, one DPC queue per 

processor 

Handling timer expiration 

Asynchronous execution of a procedure in 

context of a particular thread 

Support for asynchronous I/O operations 
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Deferred Procedure Calls (DPCs) 
Used to defer processing from higher (device) interrupt level to a 

lower (dispatch) level 

Also used for quantum end and timer expiration 

Driver (usually ISR) queues request 

One queue per CPU.  DPCs are normally queued to the current 

processor, but can be targeted to other CPUs 

Executes specified procedure at dispatch IRQL (or “dispatch level”, 

also “DPC level”) when all higher-IRQL work (interrupts) completed 

Maximum times recommended: ISR: 25 usec, DPC: 100 usec 

See http://msdn.microsoft.com/en-us/windows/hardware/gg487462.aspx 

queue head DPC object DPC object DPC object 



39 

DPC 

Delivering a DPC 

DPC routines can call kernel functions 

but can‘t call system services, generate 

page faults, or create or wait on objects 

DPC routines can‘t 

assume what 

process address 

space is currently 

mapped 

Interrupt 

dispatch table 

high 

Power failure 

Dispatch/DPC 

APC 

Low 

DPC 

1. Timer expires, kernel 

queues DPC that will 

release all waiting threads 

Kernel requests SW int. 

DPC DPC 

DPC queue 

2. DPC interrupt occurs 

when IRQL drops below 

dispatch/DPC level 

dispatcher 

3. After DPC interrupt, 

control transfers to 

thread dispatcher 

4. Dispatcher executes each DPC 

routine in DPC queue 
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Asynchronous Procedure Calls 

(APCs) 

Execute code in context of a particular user thread 

APC routines can acquire resources (objects), incur page faults, 
call system services 

APC queue is thread-specific 

User mode & kernel mode APCs 

Permission required for user mode APCs 

Executive uses APCs to complete work in thread space 

Wait for asynchronous I/O operation 

Emulate delivery of POSIX signals 

Make threads suspend/terminate itself (env. subsystems) 

APCs are delivered when thread is in alertable wait state 

WaitForMultipleObjectsEx(), SleepEx() 
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Asynchronous Procedure Calls 
(APCs) 

Special kernel APCs 

Run in kernel mode, at IRQL 1 

Always deliverable unless thread is already at IRQL 1 or above 

Used for I/O completion reporting from “arbitrary thread context” 

Kernel-mode interface is linkable, but not documented 

“Ordinary” kernel APCs 

Always deliverable if at IRQL 0, unless explicitly disabled  

(disable with KeEnterCriticalRegion) 

User mode APCs 

Used for I/O completion callback routines (see ReadFileEx, WriteFileEx); also, 
QueueUserApc 

Only deliverable when thread is in “alertable wait” 

Thread 

Object 

K 

U 

APC objects 
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IRQLs and CPU Time Accounting 

Interval clock timer ISR keeps track of time 

Clock ISR time accounting: 

If IRQL<2, charge to thread’s user or kernel time 

If IRQL=2 and processing a DPC, charge to DPC time 

If IRQL=2 and not processing a DPC, charge to thread kernel time 

If IRQL>2, charge to interrupt time 

Since the time servicing interrupts are NOT charged to interrupted 
thread, if system is busy but no process appears to be running, must 
be due to interrupt-related activity 

Note: time at IRQL 2 or more is charged to the current thread’s 
quantum (to be described) 
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Interrupt Time Accounting 
Task Manager includes interrupt and DPC time with the Idle 

process time 

Since interrupt activity is not charged to any thread or process, 

Process Explorer shows these as separate processes (not really 

processes) 

Context switches for these are really number of interrupts and DPCs 
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Time Accounting Quirks 

Looking at total CPU time for each process may not reveal where 

system has spent its time 

CPU time accounting is driven by programmable interrupt timer 

Normally 10 msec (15 msec on some MP Pentiums) 

Thread execution and context switches between clock intervals NOT 

accounted 

E.g., one or more threads run and enter a wait state before clock fires 

Thus threads may run but never get charged 

View context switch activity with Process Explorer 

Add Context Switch Delta column 
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Exception Dispatching 

Exceptions are conditions that result  directly from the 
execution of the program that is running 

Windows introduced a facility  known as structured 
exception handling, which allows applications to gain 
control when exceptions occur 

The application can then fix the condition and return to 
the place the exception occurred,  

unwind the stack (thus terminating execution of the subroutine 
that raised the  exception), or  

declare back to the system that the exception isn’t recognized 
and the system should continue searching for an exception 
handler that might process the exception. 



46 

Exception Dispatching (contd.) 

Structured exception handling;  

Accessible from MS VC++ language: __try, __except, __finally 

See Jeffrey Richter, “Advanced Windows”, MS Press 

See Johnson M.Hart, „Win32 System Programming“, Addison-Wesley 

Trap  

handler 
Exception 

dispatcher) 

Debugger 

(first chance) 

Frame-based 

handlers 

Debugger 

(second chance) 

Environment 

subsystem 

Kernel default 

handler 

(Trap frame, 

Exception 

record) 

exception 

Unhandled exceptions are passed to 

next handler 

 

Exception dispatcher sends debug message to 

Debugger via ALPC/excepion port & session manager process 

ALPC to  

debugger port 

Function call 

ALPC 
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Internal Windows API exception 

handler 
Processes unhandled exceptions 

At top of stack, declared in StartOfProcess()/StartOfThread() 

 

void Win32StartOfProcess(LPTHREAD_START_ROUTINE lpStartAddr, 

           LPVOID lpvThreadParm) { 

 __try { 

        DWORD dwThreadExitCode = lpStartAddr(lpvThreadParm); 

        ExitThread(dwThreadExitCode); 

 } __except(UnhandledExceptionFilter( 

        GetExceptionInformation())) { 

        ExitProcess(GetExceptionCode()); 

 } 

} 



System Service Dispatching 

Triggered when executing an instruction assigned to system service 

dispatching 

Instruction depends on type of systems: 

32-bit system 

Stores address to system service dispatch routine at machine specific 

register (MSR) 

sysenter (syscall on AMD) 

sysexit (sysret on AMD) 

64-bit system 

Pass system call number in EAX register 

syscall 

Sysret 

Kernel-mode system service dispatching 

Drivers uses zwxxx system calls 

Build fake interrupt stack , call KiSystemService directly  

Set previous mode to kernel  

48 



System Service Dispatching 
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Call WriteFille(…) 

Call NTWriteFile 

Return to caller 

Call Windows 

Routine 

Dismiss interrupt 

SYENTER 

Return to caller 

Call USR or 

GDI service(…) 

SYSENTER 

Return to caller 

Do operation 

Return to caller 

Call NTWriteFile 

Dismiss interrupt 

Do operation 

Return to caller 

User Mode 

Kernel Mode Software interrupt Software interrupt 

Windows- 

speciific 

Application 

Gdi32.dll 

Or User32.dll 

Windows- 

speciific 

Used by all  

subsystems 

Windows 

Application 

WriteFile in 

Kernel32.dll 

NTWriteFile in 

ntdll.dll 

KiSystemService 

In Ntoskrnl.exe 

NTWriteFile in 

Ntoskrl.exe 

KiSystemService 

In Ntoskrnl.exe 

Service entry point in 

Win32k.sys 



Lab: Interrupt Dispatching 

View IDT 

View the IRQL 

Use Kernel Profiler to Profile Execution 

Examine interrupt internals 

Monitor Interrupt and DPC activity 
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Lab: DPC 

Use Perfmon to check the following:  

Interrupts/sec,  

%Interrupt time,  

%DPC time,  

other DPC counters 
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Further Reading 

Mark E. Russinovich, et al. Windows Internals, 

5th Edition, Microsoft Press, 2005.  

Chapter 3 - System Mechanisms 

Trap Dispatching (from pp. 85) 
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Source Code References 

Windows Research Kernel sources 

\base\ntos\ke\i386 (similar files for amd64) 

Trap.asm, Trapc.c – Trap dispatcher 

Spinlock.asm – Spinlocks 

Clockint.asm – Clock Interrupt Handler 

Int.asm, Intobj.c, Intsup.asm – Interrupt Processing 

\base\ntos\ke 

eventobj.c - Event object 

mutntobj.c – Mutex object 

semphobj.c – Semaphore object 

timerobj.c, timersup.c – Timers 

wait.c, waitsup.c – Wait support 

\base\ntos\inc\ke.h – structure/type definitions 

 

 

 


