
Concurrency (I)

--- Windows Traps

2

Roadmap for This Lecture

Concurrency Review

Critical-section Problem

Software solution

Hardware solution

Semaphores

Deadlocks and Starvation

Windows Traps

Interrupts

Deferred Procedure Calls (DPCs)

Asynchronous Procedure Calls (APCs)

Exception Dispatching

System Service Dispatching

3

The Critical-Section Problem

n threads all competing to use a shared

resource (i.e.; shared data)

Each thread has a code segment, called

critical section, in which the shared data is

accessed

Problem:

Ensure that when one thread is executing in

its critical section, no other thread is allowed to

execute in its critical section

4

Three Requirements

1. Mutual Exclusion

Only one thread at a time is allowed into its critical section, among all
threads that have critical sections for the same resource or shared
data.

2. Progress

If no thread is in the critical section and some threads want to enter,
then only those threads not in the remainder section can participate
in the decision of which thread gets to enter next.

The selection process cannot be postponed indefinitely.

3. Bounded Waiting

There must be a bound on the number of times that other processes
are allowed to enter their critical section after a process has
requested to enter its critical section and before the request is
granted.

5

Initial Attempts to Solve Problem

Only 2 threads, T0 and T1

General structure of thread Ti (other thread Tj)

 do {

 enter section

 critical section

 exit section

 reminder section

 } while (1);

Threads may share some common variables to
synchronize their actions.

6

First Attempt: Algorithm 1

Shared variables - initialization

 int turn = 0;

turn == i Ti can enter its critical section

Thread Ti

 do {

 while (turn != i) ;

 critical section

 turn = j;

 reminder section

 } while (1);

Strict alternation between i and j

Satisfies mutual exclusion, but not progress

7

Second Attempt: Algorithm 2

Shared variables - initialization

 int flag[2]; flag[0] = flag[1] = 0;

flag[i] == 1 Ti can enter its critical section

Thread Ti

 do {

 flag[i] = 1;

 while (flag[j] == 1) ;

 critical section

 flag[i] = 0;

 remainder section

 } while(1);

Satisfies mutual exclusion, but not progress requirement.

Very sensitive to timing of the two threads

8

Third Attempt: Algorithm 3
(Peterson’s Algorithm - 1981)

Shared variables of algorithms 1 and 2 - initialization:

 int flag[2]; flag[0] = flag[1] = 0;

int turn = 0;

Thread Ti

 do {

 flag[i] = 1;

 turn = j;

 while ((flag[j] == 1) && turn == j) ;

 critical section

 flag[i] = 0;

 remainder section

 } while (1);

Solves the critical-section problem for two threads.

9

Dekker’s Algorithm (1965)

This is the first correct solution proposed for the
two-thread (two-process) case.

Originally developed by Dekker in a different
context, it was applied to the critical section
problem by Dijkstra.

Dekker adds the idea of a favored thread and allows
access to either thread when the request is
uncontested.

When there is a conflict, one thread is favored, and
the priority reverses after successful execution of
the critical section.

10

Dekker’s Algorithm (contd.)

Shared variables - initialization:

 int flag[2]; flag[0] = flag[1] = 0;

int turn = 0;

Thread Ti

 do {

 flag[i] = 1;

 while (flag[j])

 if (turn == j) {

 flag[i] = 0;

 while (turn == j);

 flag[i] = 1;

 }

 critical section

 turn = j;

 flag[i] = 0;

 remainder section

 } while (1);

11

Bakery Algorithm
(Lamport 1979)

A Solution to the Critical Section problem for n threads

Before entering its critical section, a thread receives a

number. Holder of the smallest number enters the critical

section.

If threads Ti and Tj receive the same number,

if i < j, then Ti is served first; else Tj is served first.

The numbering scheme generates numbers in

monotonically non-decreasing order;

 i.e., 1,1,1,2,3,3,3,4,4,5...

12

Bakery Algorithm

Notation “<“ establishes lexicographical order

among 2-tuples (ticket #, thread id #)

 (a,b) < (c,d) if a < c or if a == c and b < d

 max (a0,…, an-1) = { k | k ai for i = 0,…, n – 1 }

Shared data

 int choosing[n];

 int number[n]; - the ticket

 Data structures are initialized to 0

13

Bakery Algorithm

do {

 choosing[i] = 1;

 number[i] = max(number[0],number[1] ...,number[n-1]) + 1;

 choosing[i] = 0;

 for (j = 0; j < n; j++) {

 while (choosing[j] == 1) ;

 while ((number[j] != 0) &&

 ((number[j],j) ‘’<‘’ (number[i],i)));

 }

 critical section

 number[i] = 0;

 remainder section

} while (1);

14

Mutual Exclusion - Hardware Support

Interrupt Disabling

Concurrent threads cannot overlap on a uniprocessor

Thread will run until performing a system call or interrupt
happens

Special Atomic Machine Instructions

Test and Set Instruction - read & write a memory location

Exchange Instruction - swap register and memory location

Problems with Machine-Instruction Approach

Busy waiting

Starvation is possible

Deadlock is possible

15

Synchronization Hardware

Test and modify the content of a word atomically

 boolean TestAndSet(boolean &target) {

 boolean rv = target;

 target = true;

 return rv;

 }

16

Mutual Exclusion with Test-and-Set

Shared data:
 boolean lock = false;

Thread Ti

 do {

 while (TestAndSet(lock)) ;

 critical section

 lock = false;

 remainder section

 }

17

Synchronization Hardware

Atomically swap two variables.

 void Swap(boolean &a, boolean &b) {

 boolean temp = a;

 a = b;

 b = temp;

 }

18

Mutual Exclusion with Swap

Shared data (initialized to 0):

 int lock = 0;

Thread Ti

 int key;

 do {

 key = 1;

 while (key == 1) Swap(lock, key);

 critical section

 lock = 0;

 remainder section

 }

19

Semaphores

Semaphore S – integer variable

can only be accessed via two atomic operations

 wait (S):

 while (S <= 0);

 S--;

 signal (S):

 S++;

20

Critical Section of n Threads

Shared data:

 semaphore mutex; //initially mutex = 1

Thread Ti:

 do {

 wait(mutex);

 critical section

 signal(mutex);

 remainder section

 } while (1);

21

Semaphore Implementation

Semaphores may suspend/resume threads

Avoid busy waiting

Define a semaphore as a record

 typedef struct {

 int value;

 struct thread *L;

 } semaphore;

Assume two simple operations:

suspend() suspends the thread that invokes it.

resume(T) resumes the execution of a blocked thread T.

22

Implementation

Semaphore operations now defined as

 wait(S):
 S.value--;

 if (S.value < 0) {

 add this thread to S.L;

 suspend();

 }

 signal(S):
 S.value++;

 if (S.value <= 0) {

 remove a thread T from S.L;

 resume(T);

 }

23

Semaphore as a General

Synchronization Tool

Execute B in Tj only after A executed in Ti

Use semaphore flag initialized to 0

Code:

 Ti Tj

 … …

 A wait(flag)

 signal(flag) B

24

Two Types of Semaphores

Counting semaphore

integer value can range over an unrestricted

domain.

Binary semaphore

integer value can range only between 0 and 1;

 can be simpler to implement.

Counting semaphore S can be implemented

as a binary semaphore.

25

Deadlock and Starvation

Deadlock – two or more threads are waiting indefinitely for an event
that can be caused by only one of the waiting threads.

Let S and Q be two semaphores initialized to 1

 T0 T1

 wait(S); wait(Q);

 wait(Q); wait(S);

 … …

 signal(S); signal(Q);

 signal(Q) signal(S);

Starvation – indefinite blocking. A thread may never be removed
from the semaphore queue in which it is suspended.

Solution - all code should acquire/release semaphores in same order

26

Getting Into Kernel Mode
Code is run in kernel mode for one of three reasons:

1. Requests from user mode

Via the system service dispatch mechanism

Kernel-mode code runs in the context of the requesting thread

2. Interrupts from external devices

Windows interrupt dispatcher invokes the interrupt service routine

ISR runs in the context of the interrupted thread
(so-called “arbitrary thread context”)

ISR often requests the execution of a “DPC routine,”
which also runs in kernel mode

Time not charged to interrupted thread

3. Dedicated kernel-mode system threads

Some threads in the system stay in kernel mode at all times
(mostly in the “System” process)

Scheduled, preempted, etc., like any other threads

27

Trap Dispatching

Trap: processor’s mechanism to capture executing thread

Switch from user to kernel mode

Interrupts – asynchronous

Exceptions - synchronous

Interrupt

dispatcher

System

service

dispatcher

Interrupt

service

routines

Interrupt

service

routines

Interrupt

service

routines

System

services
System

services
System

services

Exception

dispatcher

Exception

handlers
Exception

handlers
Exception

handlers

Virtual memory

manager‘s pager

Interrupt

System service call

HW exceptions

SW exceptions

Virtual address

exceptions

Trap handlers

28

Interrupt Dispatching

Interrupt dispatch routine

Disable interrupts

Record machine state (trap
frame) to allow resume

Mask equal- and lower-IRQL
interrupts

Find and call appropriate
ISR

Dismiss interrupt

Restore machine state
(including mode and
enabled interrupts)

Tell the device to stop
interrupting

Interrogate device state,
start next operation on
device, etc.

Request a DPC

Return to caller

Interrupt service routine

interrupt !

user or

kernel mode

code

kernel mode

Note, no thread or
process context
switch!

29

Hardware interrupt processing

Interrupt dispatch table (IDT)

Links to interrupt service routines

x86:

I/O interrupts come into one of the lines of interrupt controller

Interrupt controller interrupts processor (single line)

Processor queries for interrupt vector; uses vector as index to IDT

After ISR execution, IRQL is lowered to initial level

30

Interrupt Precedence via IRQLs (x86)
IRQL = Interrupt Request Level

the “precedence” of the interrupt with

respect to other interrupts

Different interrupt sources have

different IRQLs

not the same as IRQ (interrupt

requests)

Passive/Low

APC

Dispatch/DPC

Device 1

.

.

.

Profile & Synch

Clock

Interprocessor Interrupt

Power fail

High

normal thread execution

Hardware interrupts

Deferrable software interrupts

0

1

2

30

29

28

31

IRQL is also a state of the processor

Servicing an interrupt raises processor

IRQL to that interrupt’s IRQL

this masks subsequent interrupts at equal

and lower IRQLs

User mode is limited to IRQL 0

No waits or page faults at IRQL >=

DISPATCH_LEVEL

31

Predefined IRQLs

High

used when halting the system (via KeBugCheck())

Power fail

originated in the NT design document, but has never been
used

Inter-processor interrupt

used to request action from other processor (dispatching a
thread, updating a processors TLB (translation lookaside
buffer), system shutdown, system crash)

Clock

Used to update system‘s clock, allocation of CPU time to
threads

32

Predefined IRQLs (contd.)

Profile

Used for kernel profiling (see Kernel profiler – Kernprof.exe,
Res Kit)

Device

Used to prioritize device interrupts

DPC/dispatch and APC

Software interrupts that kernel and device drivers generate

Passive

No interrupt level at all, normal thread execution

Restriction: code running at DPC+ levels must not wait

for an object which results in a thread re-scheduling

33

IRQLs on 64-bit Systems

Passive/Low

APC

Dispatch/DPC

Device 1

.

.

Device n

Synch (Srv 2003)

Clock

Interprocessor Interrupt/Power

High/Profile

0

1

2

14

13

15

3

4

Passive/Low

APC

Dispatch/DPC & Synch (UP only)

Correctable Machine Check

Device 1

.

Device n

Synch (MP only)

Clock

Interprocessor Interrupt

High/Profile/Power

x64 IA64

12

34

Interrupt Prioritization & Delivery

IRQLs are determined as follows:

On x86, x64 & IA64 systems: IRQL = IDT vector number / 16

On MP systems, which processor is chosen to deliver an
interrupt?

By default, any processor can receive an interrupt from any
device

Can be configured with IntFilter utility in Resource Kit

On x86 and x64 systems, the IOAPIC (I/O advanced
programmable interrupt controller) is programmed to interrupt
the processor running at the lowest IRQL

On IA64 systems, the SAPIC (streamlined advanced
programmable interrupt controller) is configured to interrupt one
processor for each interrupt source

Processors are assigned round robin for each interrupt vector

35

Interrupt object

Allows device drivers to register ISRs for their devices

Contains dispatch code (initial handler)

Dispatch code calls ISR with interrupt object as parameter
(HW cannot pass parameters to ISR)

Connecting/disconnecting interrupt objects:

Dynamic association between ISR and IDT entry

Loadable device drivers (kernel modules)

Turn on/off ISR

Interrupt objects can synchronize access to ISR data

Multiple instances of ISR may be active simultaneously (MP machine)

Multiple ISR may be connected with IRQL

36

Flow of Interrupts

Peripheral Device

Controller

CPU Interrupt

Controller

CPU Interrupt
Dispatch Table

0

2

3

n

ISR Address

Spin Lock

Dispatch

Code

Interrupt

Object

Read from device

Acknowledge-

Interrupt

Request DPC

Driver ISR

Raise IRQL

Lower IRQL

KiInterruptDispatch

(interrupt dispatcher)

Grab Spinlock

Drop Spinlock

37

Software interrupts

Initiating thread dispatching

DPC allow for scheduling actions when kernel is

deep within many layers of code

Delayed scheduling decision, one DPC queue per

processor

Handling timer expiration

Asynchronous execution of a procedure in

context of a particular thread

Support for asynchronous I/O operations

38

Deferred Procedure Calls (DPCs)
Used to defer processing from higher (device) interrupt level to a

lower (dispatch) level

Also used for quantum end and timer expiration

Driver (usually ISR) queues request

One queue per CPU. DPCs are normally queued to the current

processor, but can be targeted to other CPUs

Executes specified procedure at dispatch IRQL (or “dispatch level”,

also “DPC level”) when all higher-IRQL work (interrupts) completed

Maximum times recommended: ISR: 25 usec, DPC: 100 usec

See http://msdn.microsoft.com/en-us/windows/hardware/gg487462.aspx

queue head DPC object DPC object DPC object

39

DPC

Delivering a DPC

DPC routines can call kernel functions

but can‘t call system services, generate

page faults, or create or wait on objects

DPC routines can‘t

assume what

process address

space is currently

mapped

Interrupt

dispatch table

high

Power failure

Dispatch/DPC

APC

Low

DPC

1. Timer expires, kernel

queues DPC that will

release all waiting threads

Kernel requests SW int.

DPC DPC

DPC queue

2. DPC interrupt occurs

when IRQL drops below

dispatch/DPC level

dispatcher

3. After DPC interrupt,

control transfers to

thread dispatcher

4. Dispatcher executes each DPC

routine in DPC queue

40

Asynchronous Procedure Calls

(APCs)

Execute code in context of a particular user thread

APC routines can acquire resources (objects), incur page faults,
call system services

APC queue is thread-specific

User mode & kernel mode APCs

Permission required for user mode APCs

Executive uses APCs to complete work in thread space

Wait for asynchronous I/O operation

Emulate delivery of POSIX signals

Make threads suspend/terminate itself (env. subsystems)

APCs are delivered when thread is in alertable wait state

WaitForMultipleObjectsEx(), SleepEx()

41

Asynchronous Procedure Calls
(APCs)

Special kernel APCs

Run in kernel mode, at IRQL 1

Always deliverable unless thread is already at IRQL 1 or above

Used for I/O completion reporting from “arbitrary thread context”

Kernel-mode interface is linkable, but not documented

“Ordinary” kernel APCs

Always deliverable if at IRQL 0, unless explicitly disabled

(disable with KeEnterCriticalRegion)

User mode APCs

Used for I/O completion callback routines (see ReadFileEx, WriteFileEx); also,
QueueUserApc

Only deliverable when thread is in “alertable wait”

Thread

Object

K

U

APC objects

42

IRQLs and CPU Time Accounting

Interval clock timer ISR keeps track of time

Clock ISR time accounting:

If IRQL<2, charge to thread’s user or kernel time

If IRQL=2 and processing a DPC, charge to DPC time

If IRQL=2 and not processing a DPC, charge to thread kernel time

If IRQL>2, charge to interrupt time

Since the time servicing interrupts are NOT charged to interrupted
thread, if system is busy but no process appears to be running, must
be due to interrupt-related activity

Note: time at IRQL 2 or more is charged to the current thread’s
quantum (to be described)

43

Interrupt Time Accounting
Task Manager includes interrupt and DPC time with the Idle

process time

Since interrupt activity is not charged to any thread or process,

Process Explorer shows these as separate processes (not really

processes)

Context switches for these are really number of interrupts and DPCs

44

Time Accounting Quirks

Looking at total CPU time for each process may not reveal where

system has spent its time

CPU time accounting is driven by programmable interrupt timer

Normally 10 msec (15 msec on some MP Pentiums)

Thread execution and context switches between clock intervals NOT

accounted

E.g., one or more threads run and enter a wait state before clock fires

Thus threads may run but never get charged

View context switch activity with Process Explorer

Add Context Switch Delta column

45

Exception Dispatching

Exceptions are conditions that result directly from the
execution of the program that is running

Windows introduced a facility known as structured
exception handling, which allows applications to gain
control when exceptions occur

The application can then fix the condition and return to
the place the exception occurred,

unwind the stack (thus terminating execution of the subroutine
that raised the exception), or

declare back to the system that the exception isn’t recognized
and the system should continue searching for an exception
handler that might process the exception.

46

Exception Dispatching (contd.)

Structured exception handling;

Accessible from MS VC++ language: __try, __except, __finally

See Jeffrey Richter, “Advanced Windows”, MS Press

See Johnson M.Hart, „Win32 System Programming“, Addison-Wesley

Trap

handler
Exception

dispatcher)

Debugger

(first chance)

Frame-based

handlers

Debugger

(second chance)

Environment

subsystem

Kernel default

handler

(Trap frame,

Exception

record)

exception

Unhandled exceptions are passed to

next handler

Exception dispatcher sends debug message to

Debugger via ALPC/excepion port & session manager process

ALPC to

debugger port

Function call

ALPC

47

Internal Windows API exception

handler
Processes unhandled exceptions

At top of stack, declared in StartOfProcess()/StartOfThread()

void Win32StartOfProcess(LPTHREAD_START_ROUTINE lpStartAddr,

 LPVOID lpvThreadParm) {

 __try {

 DWORD dwThreadExitCode = lpStartAddr(lpvThreadParm);

 ExitThread(dwThreadExitCode);

 } __except(UnhandledExceptionFilter(

 GetExceptionInformation())) {

 ExitProcess(GetExceptionCode());

 }

}

System Service Dispatching

Triggered when executing an instruction assigned to system service

dispatching

Instruction depends on type of systems:

32-bit system

Stores address to system service dispatch routine at machine specific

register (MSR)

sysenter (syscall on AMD)

sysexit (sysret on AMD)

64-bit system

Pass system call number in EAX register

syscall

Sysret

Kernel-mode system service dispatching

Drivers uses zwxxx system calls

Build fake interrupt stack , call KiSystemService directly

Set previous mode to kernel

48

System Service Dispatching

49

Call WriteFille(…)

Call NTWriteFile

Return to caller

Call Windows

Routine

Dismiss interrupt

SYENTER

Return to caller

Call USR or

GDI service(…)

SYSENTER

Return to caller

Do operation

Return to caller

Call NTWriteFile

Dismiss interrupt

Do operation

Return to caller

User Mode

Kernel Mode Software interrupt Software interrupt

Windows-

speciific

Application

Gdi32.dll

Or User32.dll

Windows-

speciific

Used by all

subsystems

Windows

Application

WriteFile in

Kernel32.dll

NTWriteFile in

ntdll.dll

KiSystemService

In Ntoskrnl.exe

NTWriteFile in

Ntoskrl.exe

KiSystemService

In Ntoskrnl.exe

Service entry point in

Win32k.sys

Lab: Interrupt Dispatching

View IDT

View the IRQL

Use Kernel Profiler to Profile Execution

Examine interrupt internals

Monitor Interrupt and DPC activity

50

Lab: DPC

Use Perfmon to check the following:

Interrupts/sec,

%Interrupt time,

%DPC time,

other DPC counters

51

52

Further Reading

Mark E. Russinovich, et al. Windows Internals,

5th Edition, Microsoft Press, 2005.

Chapter 3 - System Mechanisms

Trap Dispatching (from pp. 85)

53

Source Code References

Windows Research Kernel sources

\base\ntos\ke\i386 (similar files for amd64)

Trap.asm, Trapc.c – Trap dispatcher

Spinlock.asm – Spinlocks

Clockint.asm – Clock Interrupt Handler

Int.asm, Intobj.c, Intsup.asm – Interrupt Processing

\base\ntos\ke

eventobj.c - Event object

mutntobj.c – Mutex object

semphobj.c – Semaphore object

timerobj.c, timersup.c – Timers

wait.c, waitsup.c – Wait support

\base\ntos\inc\ke.h – structure/type definitions

