
Concurrency (II)

--- Synchronization

1

Road Map For This Lecture

Synchronization in Windows & Linux

High-IRQL Synchronization (spin locks)

Low-IRQL Synchronization (dispatcher objects)

Windows APIs for synchronization

2

3

Windows Synchronization

Uses interrupt masks to protect access to global

resources on uniprocessor systems (by raising or

lowering IRQLs).

Uses spinlocks on multiprocessor systems.

Provides dispatcher objects which may act as mutexes

and semaphores.

Dispatcher objects may also provide events. An event

acts much like a condition variable.

4

Linux Synchronization

Kernel disables interrupts for synchronizing access to
global data on uniprocessor systems.

Uses spinlocks for multiprocessor synchronization.

Uses semaphores and readers-writers locks when
longer sections of code need access to data.

Implements POSIX synchronization primitives to support
multitasking, multithreading (including real-time threads),
and multiprocessing.

5

0 31

High-IRQL Synchronization

Synchronization on MP systems use spinlocks to coordinate among the
processors

Spinlock acquisition and release routines implement a one-owner-at-a-time
algorithm

A spinlock is either free, or is considered to be owned by a CPU

Analogous to using Windows API mutexes from user mode

A spinlock is just a data cell in memory

Accessed with a test-and-set operation that is atomic across all processors

KSPIN_LOCK is an opaque data type, typedef’d as a ULONG

To implement synchronization, a single bit is sufficient

6

Using a spinlock

Processor B Processor A

do

 acquire_spinlock(DPC)

until (SUCCESS)

begin

 remove DPC from queue

end

release_spinlock(DPC)

do

 acquire_spinlock(DPC)

until (SUCCESS)

begin

 remove DPC from queue

end

release_spinlock(DPC)

.

.

.

.

.

.

Critical section

spinlock

DPC DPC

A spinlock is a locking primitive associated

with a global data structure, such as the DPC queue

7

Try to acquire spinlock:

Test, set, was set, loop

Test, set, was set, loop

Test, set, was set, loop

Test, set, was set, loop

Test, set, WAS CLEAR

(got the spinlock!)

Begin updating data

Try to acquire spinlock:

Test, set, WAS CLEAR

(got the spinlock!)

Begin updating data

 that’s protected by the

 spinlock

(done with update)

Release the spinlock:

Clear the spinlock bit

Spinlocks in Action

CPU 1 CPU 2

8

Queued Spinlocks

Problem: Checking status of spinlock via test-and-set

operation creates bus contention

Queued spinlocks maintain queue of waiting processors

First processor acquires lock; other processors wait on

processor-local flag

Thus, busy-wait loop requires no access to the memory bus

When releasing lock, the first processor’s flag is modified

Exactly one processor is being signaled

Pre-determined wait order

9

SMP Scalability Improvements

Windows 2000: queued spinlocks

!qlocks in Kernel Debugger

XP/2003:

Minimized lock contention for hot locks (PFN or Page Frame Database) lock

Some locks completely eliminated

Charging nonpaged/paged pool quotas, allocating and mapping system page table
entries, charging commitment of pages, allocating/mapping physical memory
through AWE functions

New, more efficient locking mechanism (pushlocks)

Doesn’t use spinlocks when no contention

Smaller size than mutex or semaphore (4 bytes on 32-bit systems)

Used for object manager and address windowing extensions (AWE) related locks

Server 2003:

More spinlocks eliminated (context swap, system space, commit)

Further reduction of use of spinlocks & length they are held

Scheduling database now per-CPU

Allows thread state transitions in parallel

Low-IRQL Synchronization

Kernel mode:

Kernel dispatcher objects

Fast mutexes and guarded mutexes

Executive resources

Pushlocks

User mode:

Condition variables

Slim read-write locks

Run once initialization

Critical sections

10

11

Waiting

Flexible wait calls

Wait for one or multiple objects in one call

Wait for multiple can wait for “any” one or “all” at once

“All”: all objects must be in the signalled state concurrently to resolve the wait

All wait calls include optional timeout argument

Waiting threads consume no CPU time

Waitable objects include:

Events (may be auto-reset or manual reset; may be set or “pulsed”)

Mutexes (“mutual exclusion”, one-at-a-time)

Semaphores (n-at-a-time)

Timers

Processes and Threads (signaled upon exit or terminate)

Directories (change notification)

No guaranteed ordering of wait resolution

If multiple threads are waiting for an object, and only one thread is released (e.g. it’s a
mutex or auto-reset event), which thread gets released is unpredictable

Typical order of wait resolution is FIFO; however APC delivery may change this order

12

Executive Synchronization

Waiting on Dispatcher Objects – outside the kernel

Thread waits

on an object

handle

Create and initialize thread object

Initialized

Ready

Transition

Waiting

Running

Terminated

Standby

Wait is complete;

Set object to

signaled state

Interaction with thread scheduling

13

Interactions between

Synchronization and Thread

Dispatching
1. User mode thread waits on an event object‘s handle

2. Kernel changes thread‘s scheduling state from ready to waiting and

adds thread to wait-list

3. Another thread sets the event

4. Kernel wakes up waiting threads; variable priority threads get priority

boost

5. Dispatcher re-schedules new thread – it may preempt running thread

if it has lower priority and issues software interrupt to initiate context

switch

6. If no processor can be preempted, the dispatcher places the ready

thread in the dispatcher ready queue to be scheduled later

14

What signals an object?

Dispatcher

object

System events

and resulting

state change

Effect of signaled state

on waiting threads

nonsignaled signaled

Owning thread releases mutex

Resumed thread acquires mutex

Kernel resumes one

waiting thread
Mutex (kernel mode)

nonsignaled signaled

Owning thread or other

thread releases mutex

Resumed thread acquires mutex

Kernel resumes one

waiting thread
Mutex

(exported to user mode)

nonsignaled signaled

One thread releases the

semaphore, freeing a resource

A thread acquires the semaphore.

More resources are not available

Kernel resumes one

or more waiting threads
Semaphore

15

What signals an object? (contd.)

Dispatcher object System events and resulting

state change

Effect of signaled state

on waiting threads

nonsignaled signaled

A thread sets the event

Kernel resumes one

or more threads

Kernel resumes one

or more waiting threads
Event

nonsignaled signaled

Dedicated thread sets one

event in the event pair

Kernel resumes the

other dedicated thread

Kernel resumes waiting

dedicated thread
Event pair

nonsignaled signaled

Timer expires

A thread (re) initializes the timer

Kernel resumes all

waiting threads
Timer

16

A thread reinitializes

the thread object

What signals an object? (contd.)

Dispatcher object System events and resulting

state change

Effect of signaled state

on waiting threads

nonsignaled signaled

IO operation completes

Thread initiates wait

on an IO port

Kernel resumes waiting

dedicated thread
File

nonsignaled signaled

Process terminates

A process reinitializes

the process object

Kernel resumes all

waiting threads
Process

nonsignaled signaled

Thread terminates

Kernel resumes all

waiting threads
Thread

Any kernel object you can wait for is a “dispatcher object”

some exclusively for synchronization

e.g. events, mutexes (“mutants”), semaphores, queues, timers

others can be waited for as a side effect of their prime function

e.g. processes, threads, file objects

non-waitable kernel objects are called “control objects”

All dispatcher objects have a common header

All dispatcher objects are in one of two states

“signaled” vs. “nonsignaled”

when signalled, a wait on the object is satisfied

different object types differ in terms of what changes
their state

wait and unwait implementation is
common to all types of dispatcher objects

17

Wait Internals 1:

Dispatcher Objects

Size Type

State

Wait list head

Object-type-

specific data

Dispatcher

Object

(see \ntddk\inc\ddk\ntddk.h)

18

Object-type-

specific data

Wait Internals 2:

Wait Blocks

Size Type

State

Wait listhead

Size Type

State

Wait listhead

Represent a thread’s reference to
something it’s waiting for (one per handle
passed to WaitFor…)

All wait blocks from a given wait call are
chained to the waiting thread

Type indicates wait for “any” or “all”

Key denotes argument list position for
WaitForMultipleObjects

Object-type-

specific data

Dispatcher

Objects

WaitBlockList WaitBlockList

Wait blocks

Key Type

Next link

List entry

Object

Thread

Key Type

Next link

List entry

Object

Thread

Key Type

Next link

List entry

Object

Thread

Thread 2 Thread 1

Thread objects

Windows APIs for Synchronization

Windows API constructs for synchronization and
interprocess communication

Synchronization

Critical sections

Mutexes

Semaphores

Event objects

Synchronization through inter-process communication

Anonymous pipes

Named pipes

Mailslots

19

20

Critical Sections

Only usable from within the same process

Critical sections are initialized and deleted but do not have handles

Only one thread at a time can be in a critical section

A thread can enter a critical section multiple times - however, the

number of Enter- and Leave-operations must match

Leaving a critical section before entering it may cause deadlocks

No way to test whether another thread is in a critical section

VOID InitializeCriticalSection(LPCRITICAL_SECTION sec);

VOID DeleteCriticalSection(LPCRITICAL_SECTION sec);

VOID EnterCriticalSection(LPCRITICAL_SECTION sec);

VOID LeaveCriticalSection(LPCRITICAL_SECTION sec);

BOOL TryEnterCriticalSection (LPCRITICAL_SECTION sec);

21

Critical Section Example

/* counter is global, shared by all threads */

volatile int counter = 0;

CRITICAL_SECTION crit;

InitializeCriticalSection (&crit);

/* … main loop in any of the threads */

while (!done) {

 _try {

 EnterCriticalSection (&crit);

 counter += local_value;

 LeaveCriticalSection (&crit);

 }

 _finally { LeaveCriticalSection (&crit); }

}

DeleteCriticalSection(&crit);

22

Synchronizing Threads with

Kernel Objects

 The following kernel objects can be used

to synchronize threads:

Processes

Threads

Jobs

Files

Console input

File change notifications

Mutexes

Semaphors

Events (auto-reset + manual-reset)

Waitable timers

DWORD WaitForSingleObject(HANDLE hObject, DWORD dwTimeout);

DWORD WaitForMultipleObjects(DWORD cObjects,

 LPHANDLE lpHandles, BOOL bWaitAll,

 DWORD dwTimeout);

23

Wait Functions - Details

WaitForSingleObject():

hObject specifies kernel object

dwTimeout specifies wait time in msec

dwTimeout == 0 - no wait, check whether object is signaled

dwTimeout == INFINITE - wait forever

WaitForMultipleObjects():

cObjects <= MAXIMUM_WAIT_OBJECTS (64)

lpHandles - pointer to array identifying these objects

bWaitAll - whether to wait for first signaled object or all objects

Function returns index of first signaled object

Side effects:

Mutexes, auto-reset events and waitable timers will be reset to
non-signaled state after completing wait functions

24

Mutexes

Mutexes work across processes

First thread has to call CreateMutex()

When sharing a mutex, second thread (process) calls CreateMutex()
or OpenMutex()

fInitialOwner == TRUE gives creator immediate ownership

Threads acquire mutex ownership using WaitForSingleObject() or
WaitForMultipleObjects()

ReleaseMutex() gives up ownership

CloseHandle() will free mutex object

HANDLE CreateMutex(LPSECURITY_ATTRIBUTE lpsa,

 BOOL fInitialOwner, LPTSTR lpszMutexName);

HANDLE OpenMutex(LPSECURITY_ATTRIBUTE lpsa,

 BOOL fInitialOwner, LPTSTR lpszMutexName);

BOOL ReleaseMutex(HANDLE hMutex);

25

Mutex Example

/* counter is global, shared by all threads */

volatile int done, counter = 0;

HANDLE mutex = CreateMutex(NULL, FALSE, NULL);

/* main loop in any of the threads, ret is local */

DWORD ret;

while (!done) {

 ret = WaitForSingleObject(mutex, INFINITE);

 if (ret == WAIT_OBJECT_0)

 counter += local_value;

 else /* mutex was abandoned */

 break; /* exit the loop */

 ReleaseMutex(mutex);

}

CloseHandle(mutex);

26

Comparison - POSIX mutexes

POSIX pthreads specification supports mutexes

Synchronization among threads in same process

Five basic functions:

pthread_mutex_init()

pthread_mutex_destroy()

pthread_mutex_lock()

pthread_mutex_unlock()

pthread_mutex_trylock()

Comparison:

pthread_mutex_lock() will block - equivalent to
WaitForSingleObject(hMutex);

pthread_mutex_trylock() is nonblocking (polling) - equivalent to
WaitForSingleObject() with timeout == 0

27

Semaphores

Semaphore objects are used for resource counting

A semaphore is signaled when count > 0

Threads/processes use wait functions

Each wait function decreases semaphore count by 1

ReleaseSemaphore() may increment count by any value

ReleaseSemaphore() returns old semaphore count

HANDLE CreateSemaphore(LPSECURITY_ATTRIBUTE lpsa,

 LONG cSemInit, LONG cSemMax,

 LPTSTR lpszSemName);

HANDLE OpenSemaphore(LPSECURITY_ATTRIBUTE lpsa,

 LONG cSemInit, LONG cSemMax,

 LPTSTR lpszSemName);

HANDLE ReleaseSemaphore(HANDLE hSemaphore,

 LONG cReleaseCount, LPLONG lpPreviousCount);

28

Events

Multiple threads can be released when a single event is signaled
(barrier synchronization)

Manual-reset event can signal several thread simultaneously; must
be reset manually

SetEvent sets the event object to be signaled

ResetEvent sets of the event object to be unsignaled

PulseEvent() will release all threads waiting on a manual-reset event
and automatically reset the event

Auto-reset event signals a single thread; event is reset automatically

fInitialState == TRUE - create event in signaled state

HANDLE CreateEvent(LPSECURITY_ATTRIBUTE lpsa,

 BOOL fManualReset, BOOL fInititalState

 LPTSTR lpszEventName);

BOOL SetEvent(HANDLE hEvent);

BOOL ResetEvent(HANDLE hEvent);

BOOL PulseEvent(HANDLE hEvent);

29

Comparison -

POSIX condition variables

pthread’s condition variables are comparable to events

pthread_cond_init()

pthread_cond_destroy()

Wait functions:

pthread_cond_wait()

pthread_cond_timedwait()

Signaling:

pthread_cond_signal() - one thread

pthread_cond_broadcast() - all waiting threads

No exact equivalent to manual-reset events

30

Anonymous pipes

Half-duplex character-based IPC

cbPipe: pipe byte size; zero == default

Read on pipe handle will block if pipe is empty

Write operation to a full pipe will block

Anonymous pipes are one-way (half-duplex)

BOOL CreatePipe(PHANDLE phRead,

 PHANDLE phWrite,

 LPSECURITY_ATTRIBUTES lpsa,

 DWORD cbPipe)

main

prog1 prog2
pipe

31

I/O Redirection using

an Anonymous Pipe

 /* Create default size anonymous pipe, handles are inheritable. */

 if (!CreatePipe (&hReadPipe, &hWritePipe, &PipeSA, 0)) {

 fprintf(stderr, “Anon pipe create failed\n”); exit(1);

 }

 /* Set output handle to pipe handle, create first processes. */

 StartInfoCh1.hStdInput = GetStdHandle (STD_INPUT_HANDLE);

 StartInfoCh1.hStdError = GetStdHandle (STD_ERROR_HANDLE);

 StartInfoCh1.hStdOutput = hWritePipe;

 StartInfoCh1.dwFlags = STARTF_USESTDHANDLES;

 if (!CreateProcess (NULL, (LPTSTR)Command1, NULL, NULL, TRUE,

 0, NULL, NULL, &StartInfoCh1, &ProcInfo1)) {

 fprintf(stderr, “CreateProc1 failed\n”); exit(2);

 }

 CloseHandle (hWritePipe);

32

Pipe example (contd.)

 /* Repeat (symmetrically) for the second process. */

 StartInfoCh2.hStdInput = hReadPipe;

 StartInfoCh2.hStdError = GetStdHandle (STD_ERROR_HANDLE);

 StartInfoCh2.hStdOutput = GetStdHandle (STD_OUTPUT_HANDLE);

 StartInfoCh2.dwFlags = STARTF_USESTDHANDLES;

 if (!CreateProcess (NULL, (LPTSTR)targv, NULL, NULL,TRUE,/* Inherit

handles. */

 0, NULL, NULL, &StartInfoCh2, &ProcInfo2)) {

 fprintf(stderr, “CreateProc2 failed\n”); exit(3);

 }

 CloseHandle (hReadPipe);

 /* Wait for both processes to complete. */

 WaitForSingleObject (ProcInfo1.hProcess, INFINITE);

 WaitForSingleObject (ProcInfo2.hProcess, INFINITE);

 CloseHandle (ProcInfo1.hThread); CloseHandle (ProcInfo1.hProcess);

 CloseHandle (ProcInfo2.hThread); CloseHandle (ProcInfo2.hProcess);

 return 0;

33

Named Pipes

Message oriented:

Reading process can read varying-length messages precisely as
sent by the writing process

Bi-directional

Two processes can exchange messages over the same pipe

Multiple, independent instances of a named pipe:

Several clients can communicate with a single server
using the same instance

Server can respond to client using the same instance

Pipe can be accessed over the network

location transparency

Convenience and connection functions

34

Using Named Pipes

lpszPipeName: \\.\pipe\[path]pipename

Not possible to create a pipe on remote machine (. – local machine)

fdwOpenMode:

PIPE_ACCESS_DUPLEX, PIPE_ACCESS_INBOUND,
PIPE_ACCESS_OUTBOUND

fdwPipeMode:

PIPE_TYPE_BYTE or PIPE_TYPE_MESSAGE

PIPE_READMODE_BYTE or PIPE_READMODE_MESSAGE

PIPE_WAIT or PIPE_NOWAIT (will ReadFile block?)

HANDLE CreateNamedPipe (LPCTSTR lpszPipeName,

 DWORD fdwOpenMode, DWORD fdwPipMode

 DWORD nMaxInstances, DWORD cbOutBuf,

 DWORD cbInBuf, DWORD dwTimeOut,

 LPSECURITY_ATTRIBUTES lpsa);

Use same flag settings for

all instances of a named pipe

//./pipe/[path]pipename
//./pipe/[path]pipename
//./pipe/[path]pipename
//./pipe/[path]pipename
//./pipe/[path]pipename
//./pipe/[path]pipename
//./pipe/[path]pipename

35

Named Pipes (contd.)

nMaxInstances:

Number of instances,

PIPE_UNLIMITED_INSTANCES: OS choice based on resources

dwTimeOut

Default time-out period (in msec) for WaitNamedPipe()

First CreateNamedPipe creates named pipe

Closing handle to last instance deletes named pipe

Polling a pipe:

Nondestructive – is there a message waiting for ReadFile

BOOL PeekNamedPipe (HANDLE hPipe,

 LPVOID lpvBuffer, DWORD cbBuffer,

 LPDWORD lpcbRead, LPDWORD lpcbAvail,

 LPDWORD lpcbMessage);

36

Named Pipe Client Connections

CreateFile with named pipe name:

\\.\pipe\[path]pipename

\\servername\pipe\[path]pipename

First method gives better performance (local server)

Status Functions:

GetNamedPipeHandleState

SetNamedPipeHandleState

GetNamedPipeInfo

//./pipe/[path]pipename
//./pipe/[path]pipename
//./pipe/[path]pipename
//./pipe/[path]pipename
//./pipe/[path]pipename
//./pipe/[path]pipename
//./pipe/[path]pipename
//servername/pipe/[path]pipename
//servername/pipe/[path]pipename
//servername/pipe/[path]pipename
//servername/pipe/[path]pipename
//servername/pipe/[path]pipename
//servername/pipe/[path]pipename
//servername/pipe/[path]pipename

37

Convenience Functions

WriteFile / ReadFile sequence:

BOOL TransactNamedPipe(HANDLE hNamedPipe,

 LPVOID lpvWriteBuf, DWORD cbWriteBuf,

 LPVOID lpvReadBuf, DWORD cbReadBuf,

 LPDOWRD lpcbRead, LPOVERLAPPED lpa);

• CreateFile / WriteFile / ReadFile / CloseHandle:
- dwTimeOut: NMPWAIT_NOWAIT, NMPWAIT_WIAT_FOREVER,

 NMPWAIT_USE_DEFAULT_WAIT

BOOL CallNamedPipe(LPCTSTR lpszPipeName,

 LPVOID lpvWriteBuf, DWORD cbWriteBuf,

 LPVOID lpvReadBuf, DWORD cbReadBuf,

 LPDWORD lpcbRead, DWORD dwTimeOut);

38

Server: eliminate the polling loop

lpo == NULL:

Call will return as soon as there is a client connection

Returns false if client connected between CreateNamed Pipe call
and ConnectNamedPipe()

Use DisconnectNamedPipe to free the handle for connection from
another client

WaitNamedPipe():

Client may wait for server’s named pipe name (string)

Security rights for named pipes:

GENERIC_READ, GENERIC_WRITE, SYNCHRONIZE

BOOL ConnectNamedPipe (HANDLE hNamedPipe,

 LPOVERLAPPED lpo);

39

Comparison with UNIX

UNIX FIFOs are similar to a named pipe

FIFOs are half-duplex

FIFOs are limited to a single machine

FIFOs are still byte-oriented, so its easiest to use fixed-size records
in client/server applications

Individual read/writes are atomic

A server using FIFOs must use a separate FIFO for each client’s
response, although all clients can send requests via a single, well
known FIFO

Mkfifo() is the UNIX counterpart to CreateNamedPipe()

Use sockets for networked client/server scenarios

40

Client Example using Named Pipe

 WaitNamedPipe (ServerPipeName, NMPWAIT_WAIT_FOREVER);

 hNamedPipe = CreateFile (ServerPipeName, GENERIC_READ | GENERIC_WRITE,

 0, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);

 if (hNamedPipe == INVALID_HANDLE_VALUE) {

 fptinf(stderr, Failure to locate server.\n"); exit(3);

 }

 /* Write the request. */

 WriteFile (hNamedPipe, &Request, MAX_RQRS_LEN, &nWrite, NULL);

 /* Read each response and send it to std out. */

 while (ReadFile (hNamedPipe, Response.Record, MAX_RQRS_LEN, &nRead, NULL))

 printf ("%s", Response.Record);

 CloseHandle (hNamedPipe);

 return 0;

41

Server Example Using a Named

Pipe

hNamedPipe = CreateNamedPipe (SERVER_PIPE_NAME, PIPE_ACCESS_DUPLEX,

 PIPE_READMODE_MESSAGE | PIPE_TYPE_MESSAGE | PIPE_WAIT,

 1, 0, 0, CS_TIMEOUT, pNPSA);

while (!Done) {

 printf ("Server is awaiting next request.\n");

 if (!ConnectNamedPipe (hNamedPipe, NULL)

 || !ReadFile (hNamedPipe, &Request, RQ_SIZE, &nXfer, NULL)) {

 fprintf(stderr, “Connect or Read Named Pipe error\n”); exit(4);

 }

 printf(“Request is: %s\n", Request.Record);

 /* Send the file, one line at a time, to the client. */

 fp = fopen (File, "r");

 while ((fgets (Response.Record, MAX_RQRS_LEN, fp) != NULL))

 WriteFile (hNamedPipe, &Response.Record,

 (strlen(Response.Record) + 1) * TSIZE, &nXfer, NULL);

 fclose (fp);

 DisconnectNamedPipe (hNamedPipe);

} /* End of server operation. */

42

Windows IPC - Mailslots

Broadcast mechanism:

One-directional

Multiple writers/multiple readers (frequently: one-to-many comm.)

Message delivery is unreliable

Can be located over a network domain

Message lengths are limited (< 424 bytes)

Operations on the mailslot:

Each reader (server) creates mailslot with CreateMailslot()

Write-only client opens mailslot with CreateFile() and
uses WriteFile() – open will fail if there are no waiting readers

Client‘s message can be read by all servers (readers)

Client lookup: *\mailslot\mailslotname

Client will connect to every server in network domain

Mailslots bear some nasty

implementation details;

they are almost never used

43

Locate a server via mailslot

hMS = CreateMailslot(

 “\\.\mailslot\status“);

ReadFile(hMS, &ServStat);

/* connect to server */

hMS = CreateMailslot(

 “\\.\mailslot\status“);

ReadFile(hMS, &ServStat);

/* connect to server */

App client 0

App client n

Mailslot Servers

While (...) {

 Sleep(...);

 hMS = CreateFile(

 “\\.\mailslot\status“);

 ...

 WriteFile(hMS, &StatInfo

}

App Server

Mailslot Client

Message is

sent periodically

44

Creating a mailslot

lpszName points to a name of the form

\\.\mailslot\[path]name

Name must be unique; mailslot is created locally

cbMaxMsg is msg size in byte

dwReadTimeout

Read operation will wait for so many msec

0 – immediate return

MAILSLOT_WAIT_FOREVER – infinite wait

HANDLE CreateMailslot(LPCTSTR lpszName,

 DWORD cbMaxMsg,

 DWORD dwReadTimeout,

 LPSECURITY_ATTRIBUTES lpsa);

45

Opening a mailslot

CreateFile with the following names:

\\.\mailslot\[path]name - retrieve handle for local mailslot

\\host\mailslot\[path]name - retrieve handle
for mailslot on specified host

\\domain\mailslot\[path]name - returns handle representing all
mailslots on machines in the domain

*\mailslot\[path]name - returns handle representing mailslots
on machines in the system‘s primary domain: max mesg. len:
400 bytes

Client must specifiy FILE_SHARE_READ flag

GetMailslotInfo() and SetMailslotInfo() are similar to their
named pipe counterparts

Lab: Viewing Global Queued

Spinlocks
kd> !qlocks Key: O = Owner,1-n = Waitorder, blank = notowned/waiting, C

= Corrupt

 Processor Number

 LockName 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

KE-Dispatcher O

KE-ContextSwap

MM-PFN

MM-SystemSpace

CC-Vacb

CC– Master

46

47

Lab: Looking at Waiting Threads

For waiting threads, user-mode utilities only display the wait reason

Example: pstat

To find out what a thread is waiting on, must use kernel debugger

48

Further Reading

Mark E. Russinovich, et al. Windows Internals, 5th Edition, Microsoft Press, 2009.

Synchronization (from pp.170-198)

Named Pipes and Mailslots (from pp. 1021)

Ben-Ari, M., Principles of Concurrent Programming, Prentice Hall, 1982

Lamport, L., The Mutual Exclusion Problem, Journal of the ACM, April 1986

Abraham Silberschatz, Peter B. Galvin, Operating System Concepts, John Wiley &

Sons, 6th Ed., 2003;

Chapter 7 - Process Synchronization

Chapter 8 - Deadlocks

Jeffrey Richter, Programming Applications for Microsoft Windows, 4th Edition,

Microsoft Press, September 1999.

Chapter 10 - Thread Synchronization

Critical Sections, Mutexes, Semaphores, Events (from pp. 315)

Johnson M. Hart, Win32 System Programming: A Windows® 2000 Application

Developer's Guide, 2nd Edition, Addison-Wesley, 2000.

49

Source Code References

Windows Research Kernel sources

\base\ntos\ke – primitive kernel support

eventobj.c - Event object

mutntobj.c – Mutex object

semphobj.c – Semaphore object

timerobj.c, timersup.c – Timers

wait.c, waitsup.c – Wait support

\base\ntos\ex – executive object (layered on kernel support)

Event.c – Event object

Mutant.c – Mutex object

Semphore.c – Semaphore object

Timer.c – Timer object

\base\ntos\inc\ke.h, ex.h – structure/type definitions

