
Windows Processes and Threads

1

Roadmap for This Lecture

Windows Process Internals

Process data structures

Performance counters

Process APIs

Protected Processes

Process creation

Windows Thread Internals

Thread data structures

Performance counters

Thread APIs

Thread creations

Windows tools for Processes and Threads

Windows Jobs

Labs Demo

2

Windows Process Internals

Data Structures for each

process/thread:

Executive process block

(EPROCESS)

Executive thread block

(ETHREAD)

Win32 process block

Process environment block

Thread environment block

Process

environment

block

Thread

environment

block

Process block

(EPROCESS)

Thread block

(ETHREAD)

Win32 process block

 Handle table

...

Process address space

System address space

3

Process

Container for an address space and threads

Associated User-mode Process Environment Block

(PEB)

Primary Access Token

Quota, Debug port, Handle Table etc

Unique process ID

Queued to the Job, global process list and Session list

Memory management structures like the Working Set,

VAD tree, AWE etc

4

Processes & Threads

Internal Data Structures

Process

Object

Handle Table

VAD VAD VAD

object

object

Virtual Address Space Descriptors

Access Token

Thread Thread Thread . . .
Access Token

See kernel debugger

commands:

 dt

 !process

 !thread

 !token

 !handle

 !object

5

Per-Process Data

Each process has its own…

Virtual address space (including program code,

global storage, heap storage, threads’ stacks)

processes cannot corrupt each other’s address

space by mistake

Working set (physical memory “owned” by the

process)

Access token (includes security identifiers)

Handle table for Windows kernel objects

Environment strings

Command line

These are common to all threads in the process, but

separate and protected between processes

Quota Block

Exit Status

Primary Access Token

Process ID

Parent Process ID

Exception Port

Debugger Port

Handle Table

Process Environment Block

Create and Exit Time

Next Process Block

Image File Name

Process Priority Class

Memory Management Info

EPROCESS

Kernel Process Block (or PCB)

Image Base Address

Win32 Process Block

Executive Process Block Layout

Dispatcher Header

Processor Affinity

Kernel Time

User Time

Inswap/Outswap List Entry

Process Spin Lock

Resident Kernel Stack Count

Process Base Priority

Default Thread Quantum

Process State

Thread Seed

Disable Boost Flag

Process Page Directory

KTHREAD . . .

EPROCESS Block

KPROCESS Block (PCB)
Contains info needed to

schedule threads in the process

7

Process Environment Block (PEB)

Mapped in user

space

Image loader,

heap manager,

Windows system

DLLs use this

info

View with !peb or

dt nt!_peb

Image base address

Module list

Thread-local storage data

Code page data

Critical section time-out

Number of heaps

Heap size info

GDI shared handle table

OS version no info

Image version info

Image process affinity mask

Process

heap

8

Process-Related Performance

Counters

Object: Counter Function

Process:%PrivilegedTime Percentage of time that the threads in the

process have run in kernel mode

Process:%ProcessorTime Percentage of CPU time that threads have

used during specified interval

%PrivilegedTime + %UserTime

Process:%UserTime Percentage of time that the threads in the

process have run in user mode

Process: ElapsedTime Total lifetime of process in seconds

Process: ID Process PID – process IDs are re-used

Process: ThreadCount Number of threads in a process

9

Process Windows APIs

CreateProcess

OpenProcess

GetCurrentProcessId - returns a global ID

GetCurrentProcess - returns a pseudo-handle

ExitProcess – notifies attached DLL

TerminateProcess - no DLL notification

Get/SetProcessShutdownParameters

GetExitCodeProcess

GetProcessTimes

GetStartupInfo

Protected Processes

Process with debug privilege:

Read/write any process memory

Inject code

Suspend and resume thread, etc

E.g. Process explorer and task manager

Media industry requires protection when playing back advanced,

high quality digital content

Blueray, HD-DVD

Images file with Windows Media Certificate

Audiodg.exe and Windows Error Reporting (WER)

Indicated by a flag in EPROCESS block

Accessible to Windbg (kernel mode)

10

11

Flow of CreateProcess()

1. Validate parameters; convert subsystems flags and options to
their native counterparts; parse, validate and convert attribute list
to native counterparts

2. Open the image file (.EXE) to be executed inside the process

3. Create Windows NT executive process object

4. Create initial thread (stack, context, Win NT executive thread
object)

5. Notify Windows subsystem of new process so that it can set up
for new proc.& thread

6. Start execution of initial thread (unless CREATE_SUSPENDED
was specified)

7. In context of new process/thread: complete initialization of
address space (load DLLs) and begin execution of the program

12

Create a Windows Process

Open EXE and

create section

object

Create NT

process object

Create NT

thread object

Notify Windows

subsystem

Set up for new

process and

thread

Start execution

of the initial

thread

Return to caller

Final

process/image

initialization

Start execution

at entry point to

image

Creating process

Windows subsystem

New process

Convert/validate

Params & flags

13

Converting and validating params

CreationFlags: independent bits for priority class

 NT assigns lowest-priority class set

Default priority class is normal unless creator

has priority class idle

If real-time priority class is specified and creator

has insufficient privileges:

The high priority class is used

Caller’s current desktop is used if no desktop is

specified

14

Opening the image to be executed

What kind of

application is it?

Run CMD.EXE Run NTVDM.EXE Use .EXE directly

Run NTVDM.EXE Run POSIX.EXE Run OS2.EXE

Win16 (not supported

on 64-bit Windows)

Windows

OS/2 1.x MS-DOS .EXE,

.COM, or .PIF

MS-DOS .BAT

or .CMD

POSIX

Win32
(on 64-bit

Windows)

Use .EXE

directly
(via special

Wow64

support)

15

If executable has no Windows

format...

CreateProcess uses Windows “support image”

No way to create non-Windows processes directly

OS2.EXE runs only on Intel systems

Multiple MS-DOS apps may share virtual dos machine

.BAT of .CMD files are interpreted by CMD.EXE

Win16 apps may share virtual dos machine (VDM)

Flags: CREATE_SEPARATE_WOW_VDM

 CREATE_SHARED_WOW_VDM

Default: HKLM\System...\Control\WOW\DefaultSeparateVDM

Sharing of VDM only if apps run on same desktop under same security

Debugger may be specified under (run instead of app !!)

\Software\Microsoft\WindowsNT\CurrentVersion\ImageFileExecutionOptions

16

Process Creation - next Steps...

CreateProcess has opened Windows executable and created a
section object to map in process’ address space

Now: create executive process object via NtCreateProcess

Set up EPROCESS block

Create initial process address space (page directory, hyperspace
page, working set list)

Create kernel process block (set initial priority and quantum)

Conclude setup of process address space (VM, map NTDLL.DLL, map
language support tables, register process: PsActiveProcessHead)

Set up Process Environment Block

Complete setup of executive process object

17

Further Steps...(contd.)

Create Initial Thread and Its Stack and Context

NtCreateThread; new thread is suspended until CreateProcess returns

Notify Windows Subsystem about new process

KERNEL32.DLL sends message to Windows subsystem including:

Process and thread handles

Entries in creation flags

ID of process’s creator

Flag describing Windows app (CSRSS may show startup cursor)

Windows subsystem:

duplicate handles (inc usage count), set priority class, bookkeeping

allocate CSRSS proc/thread block, init exception port, init debug port

Show cursor (arrow & hourglass), wait 2 sec for GUI call, then wait 5 sec
for app to show window

18

CreateProcess: final steps

Process Initialization in context of new process:

KiThreadStartup Lowers IRQL level (DPC/Dispatch APC level)

Enable working set expansion

Queue APC to exec LdrInitializeThunk in NTDLL.DLL

Lower IRQL level to 0 – APC fires,

Init loader, heap manager, NLS tables, TLS array, crit. sect. Structures

Load DLLs, call DLL_PROCESS_ATTACH function

Debuggee: all threads are suspended

Send msg to proc’s debug port
(Windows creates CREATE_PROCESS_DEBUG_INFO event)

Image begins execution in user-mode (return from trap)

19

Process Shutdown Sequence
1. DLL notification

unless TerminateProcess used

2. All handles to executive and kernel objects are closed

3. Terminate any active threads

4. Process’s exit code changes from STILL_ACTIVE to the
specified exit code

 BOOL GetExitCodeProcess(
 HANDLE hProcess,
 LPDWORD lpdwExitCode);

5. Process object & thread objects become signaled

6. When handle and reference counts to process object == 0,
process object is deleted

20

Windows Thread Internals

Data Structures for each

process/thread:

Executive process block

(EPROCESS)

Executive thread block

(ETHREAD)

Win32 process block

Process environment block

Thread environment block

Process

environment

block

Thread

environment

block

Process block

(EPROCESS)

Thread block

(ETHREAD)

Win32 process block

 Handle table

...

Process address space

System address space

21

Thread

Fundamental schedulable entity in the system

Represented by ETHREAD that includes a KTHREAD

Queued to the process (both E and K thread)

I/O Request Packet list

Impersonation Access Token

Unique thread ID

Associated User-mode Thread Environment Block (TEB)

User-mode stack

Kernel-mode stack

22

Per-Thread Data
Each thread has its own…

User-mode stack (arguments passed to thread,

automatic storage, call frames, etc.)

Kernel-mode stack (for system calls)

Thread Local Storage (TLS) – array of pointers to

allocate unique data

Scheduling state (Wait, Ready, Running, etc.) and

priority

Hardware context (saved in CONTEXT structure if

not running)

Program counter, stack pointer, register values

Current access mode (user mode or kernel mode)

Access token (optional -- overrides process’s if

present)

23

Total User Time

Total Kernel Time

Thread Scheduling Information

Synchronization Information

List of Pending APCs

Timer Block and Wait Blocks

List of Objects Being Waiting On

System Service Table

TEB

KTHREAD

Thread Local Storage

Kernel Stack Information

Dispatcher Header

Trap Frame

Thread Block

ETHREAD

Create and Exit Time

Process ID

Thread Start Address

Impersonation Information

LPC Message Information

EPROCESS

Access Token

KTHREAD

Timer Information

Pending I/O Requests

24

Thread Environment Block

User mode data

structure

Context for

image loader

and various

Windows DLLs

View with !teb

or dt nt!_teb

Exception list

Stack base

Stack limit

Thread ID

Active RPC handle

LastError value

Count of owned crit. sect.

Current locale

User32 client info

GDI32 info

OpenGL info

TLS array

Subsyst. TIB

Fiber info

PEB

Winsock data

25

Thread-Related Performance

Counters
Object: Counter Function

Process: Priority Base Base priority of process: starting priority for

thread within process

Thread:%PrivilegedTime Percentage of time that the thread was run in

kernel mode

Thread:%ProcessorTime Percentage of CPU time that the threads has

used during specified interval

%PrivilegedTime + %UserTime

Thread:%UserTime Percentage of time that the thread has run in

user mode

Thread: ElapsedTime Total lifetime of thread in seconds

Thread: ID Process PID – process IDs are re-used

Thread: ID Thread Thread ID – re-used

26

Thread-Related Performance

Counters (contd.)

Object: Counter Function

Thread: Priority Base Base priority of thread: may differ from the

thread‘s starting priority

Thread: Priority Current The thread‘s current dynamic priority

Thread: Start Address The thread‘s starting virtual address (the

same for most threads)

Thread: Thread State Value from 0 through 7 – current state of

thread

Thread: Thread Wait

Reason

Value from 0 through 19 – reason why the

thread is in wait state

27

Windows Thread APIs

CreateThread

CreateRemoteThread

GetCurrentThreadId - returns global ID

GetCurrentThread - returns handle

SuspendThread/ResumeThread

ExitThread – notifies DLLs

TerminateThread - no DLL notification

GetExitCodeThread

GetThreadTimes

Windows 2000 adds:

OpenThread

new thread pooling APIs

28

Birth of a Thread

CreateThread Function in Kernel32.dll:

1. Coverts API params to native flags and builds native

OBJECT_ATTRIBUTES

2. Builds attribute lists of: client ID and TEB address (return after

creation)

3. Call NTCreateThreadEx to create user-mode context, which calls

PspCreateThread to create suspended ETHREAD object

1. Create and initialize ETHREAD

2. Set up the stack and context

3. Allocate TEB for new thread

4. Store start address in ETHREAD

5. KeInitThread is called to set up the KTHREAD block

29

Birth of a Thread

6. CreateThread allocates activation stack and activates it

7. Notify Windows subsystems about the new thread

8. Thread handle and ID are returned

9. Thread is resumed and calls KiThreadStartup before calling the user

specified start address

30

Thread Rundown Sequence

1. DLL notification

unless TerminateThread was used

2. All handles to Windows User and GDI objects are closed

3. Outstanding I/Os are cancelled

4. Thread stack is deallocated

5. Thread’s exit code changes from STILL_ACTIVE to the specified exit
code

 BOOL GetExitCodeThread(

 HANDLE hThread,
 LPDWORD lpdwExitCode);

6. Thread kernel object becomes signaled

7. When handle and reference counts == 0, thread object deleted

8. If last thread in process, process exits

31

Start of Thread Wrapper

All threads in all Windows processes appear to have one of just two
different start addresses, regardless of the .EXE running

One for thread 0 (start of process wrapper), the other for all other
threads (start of thread wrapper RtlUserThreadStart in Ntdll.dll)

These “wrapper” functions are what Process Viewer shows as
Thread Start Address for Windows apps

Start of process & start of thread wrappers have same behavior

 Provides default exception handling, access to debugger, etc.

 Forces thread exit when thread function returns

To find “real” Windows start address, use TLIST <processname> (or
Kernel Debugger !thread command)

32

Tools for Obtaining Process & Thread Information

Many overlapping tools (most show one item the others do not)

Built-in tools in Windows XP + :

Task Manager, Performance Tool

Tasklist (new in XP)

Support Tools

pviewer - process and thread details (GUI)

pmon - process list (character cell)

tlist - shows process tree and thread details (character cell)

Resource Kit tools:

apimon - system call and page fault monitoring (GUI)

oh – display open handles (character cell)

pviewer - processes and threads and security details (GUI)

ptree – display process tree and kill remote processes (GUI)

pulist - lists processes and usernames (character cell)

pstat - process/threads and driver addresses (character cell)

qslice - can show process-relative thread activity (GUI)

Tools from www.sysinternals.com

Process Explorer – super Task Manager – shows open files, loaded DLLs, security info, etc.

Pslist – list processes on local or remote systems

Ntpmon - shows process/thread create/deletes (and context
switches on MP systems only)

Listdlls - displays full path of EXE & DLLs loaded in each process

33

Jobs

Jobs are collections of processes

Can be used to specify limits on CPU, memory, and security

Enables control over some unique process & thread settings
not available through any process or thread system call

E.g. length of thread time slice

Job object is a nameable, secure and shareable kernel
object

Allows a group of processes to be managed and
manipulated as a unit

Job

Processes

Creation of Jobs

How do processes become part of a job?

Job object has to be created (CreateJobObject)

Then processes are explicitly added (AssignProcessToJob)

Processes created by processes in a job automatically are part
of the job

Unless restricted, processes can “break away” from a job

Then quotas and limits are defined (SetInformationJobObject)

Examples on next slide…

34

35

Job Settings

Quotas and restrictions:

Quotas: total CPU time, # active processes, per-process CPU

time, memory usage

Run-time restrictions: priority of all the processes in job;

processors threads in job can run on

Security restrictions: limits what processes can do

Not acquire administrative privileges

Not accessing windows outside the job, no reading/writing the

clipboard

Scheduling class: number from 0-9 (5 is default) - affects

length of thread timeslice (or quantum)

E.g. can be used to achieve “class scheduling” (partition CPU)

36

Examples of Jobs

Examples where Windows OS uses jobs:

Add/Remove Programs (“ARP Job”)

WMI provider

RUNAS service (SecLogon) uses jobs to terminate processes

at log out

Process Explorer highlights processes that are members

of jobs

Color can be configured with Options->Configure Highlighting

For processes in a job, click on Job tab in process properties to

see details

37

Further Reading

Mark E. Russinovich, et al. Windows Internals, 5th

Edition, Microsoft Press, 2005.

Chapter 5 - Processes, Thread, and Jobs

(from pp. 335)

Process Internals (from pp. 335)

Flow of Create Process (from pp. 348)

Thread Internals (from pp. 370)

Lab: EPROCESS, KPROCESS and

PEB blocks

lkd> !dt _eprocess

lkd> !dt _kprocess

lkd> !process

38

Lab: Show Windows API

2013-9-30

Windows API

#include <Windows.h>

http://msdn.microsoft.com/en-US/

Hungarian notation (Wikipedia)

http://msdn.microsoft.com/en-US/
http://msdn.microsoft.com/en-US/
http://msdn.microsoft.com/en-US/
http://msdn.microsoft.com/en-US/

CreateProcess()

BOOL WINAPI CreateProcess(

 _In_opt_ LPCTSTR lpApplicationName,

 _Inout_opt_ LPTSTR lpCommandLine,

 _In_opt_ LPSECURITY_ATTRIBUTES lpProcessAttributes,

 _In_opt_ LPSECURITY_ATTRIBUTES lpThreadAttributes,

 In BOOL bInheritHandles,

 In DWORD dwCreationFlags,

 _In_opt_ LPVOID lpEnvironment,

 _In_opt_ LPCTSTR lpCurrentDirectory,

 In LPSTARTUPINFO lpStartupInfo,

 Out LPPROCESS_INFORMATION lpProcessInformation

);

TerminateProcess()

BOOL WINAPI TerminateProcess(

 In HANDLE hProcess,

 In UINT uExitCode

);

Lab: Start a process image

Install a debugger to run instead of notepad.exe. We chose Solitaire

(sol.exe – a standard tool on every Windows system).

• start regedit.exe

• create (insert) key at

 HKLM\Software\Microsoft\WindowsNT\CurrentVersion\Image File

Execution Options\notepad.exe

• insert value:

 Debugger (REG_SZ) C:\winnt\system32\sol.exe

• start notepad (!)

43

Lab: Trace Process Startup

44

Lab: ETHREAD, KTHREAD and

TEB

lkd> dt nt!_ethread

lkd> dt nt!_kthread

45

