
Windows Memory Management (I)

Memory Manager Concepts and Services

2

Roadmap for This Lecture

Memory Manager Fundamentals

Memory Management Services

Virtual Address Space Layout

Working Sets

Kernel Mode Heaps

Heap Manager

Physical Memory Limits

Memory management APIs

Introduction

Main Tasks:

Translating (mapping) a process’s virtual address space into

physical memory, so running threads correctly reference

physical address

Paging in and out contents between memory and disk when

threads try to use more memory than currently available

Additional Services:

Memory-mapped files (section object)

Copy-on-write memory

Large, sparse address space

Use of larger physical memory than max address space for a

process (AWE)

3

4

Key Features

Fully reentrant and provides synchronization to

Page frame number (PFN) database

Section objects and working sets

Page file creation

Lazy evaluation

Sharing – usage of prototype PTEs (page table entries)

Extensive usage of copy-on-write

...whenever possible

Shares memory

Copy-on-write

Mapped files

5

Main Components

System services for allocating, deallocating, and managing virtual
memory

An access fault trap handler for resolving hardware-detected memory
management exceptions and making virtual pages resident on behalf of a
process

Six system threads

Working set manager (priority 16) – drives overall memory management
policies, such as working set trimming, aging, and modified page writing

Process/stack swapper (priority 23) -- performs both process and kernel
thread stack inswapping and outswapping

Modified page writer (priority 17) – writes dirty pages on the modified list
back to the appropriate paging files

Mapped page writer (priority 17) – writes dirty pages from mapped files
to disk

Dereference segment thread (priority 18) is responsible for cache and
page file growth and shrinkage

Zero page thread (priority 0) – zeros out pages on the free list

6

Services

Caller can manipulate own/remote memory

Parent process can allocate/deallocate, read/write memory of

child process

Subsystems manage memory of their client processes this

way

Most services are exposed through Windows API

Page granularity virtual memory functions (Virtualxxx...)

Memory-mapped file functions (CreateFileMapping,

MapViewofFile)

Heap functions (Heapxxx, Localxxx (old), Globalxxx (old))

Services for device drivers/kernel code (Mm...)

7

Large Pages

Virtual memory divided into pages – smallest unit of
protection

Two page sizes: small and large.

Advantage of large page:

Faster address translation of references to other data in the same page

Single Translation Lookaside Buffer (TLB) entry used to map larger area

Large pages are used to map NTOSKRNL, HAL, non-
paged pool, and the PFN database of a “large memory
system”

Architecture Small Page Size Large Page Size

X86 4 KB 4 MB (2MB on PAE)

X64 4 KB 2 MB

IA64 8 KB 16 MB

8

Large Pages

Can specify other drivers to map with large pages:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlS

et\Control\Session Manager\Memory

Management\LargePageDrivers (multi-string)

Applications can use large pages for process

memory

VirtualAlloc with MEM_LARGE_PAGE flag

Can query if system supports large pages with

GetLargePageMinimum

Large Pages

Disadvantage of large pages:

disables kernel write protection

With small pages, OS/driver code pages are mapped as read
only; with large pages, entire area must be mapped read/write

Drivers can then modify/corrupt system & driver code without
immediately crashing system

Driver Verifier turns large pages off

Can also override by changing
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\
Control\Session Manager\Memory
Management\LargePageMinimum to FFFFFFFF

9

10

Protecting Memory
Attribute Description

PAGE_NOACCESS Read/write/execute causes access violation

PAGE_READONLY Write/execute causes access violation; read permitted

PAGE_READWRITE Read/write accesses permitted

PAGE_EXECUTE Any read/write causes access violation; execution of code is

permitted (relies on special processor support)

PAGE_EXECUTE_

READ

Read/execute access permitted (relies on special processor

support)

PAGE_EXECUTE_

READWRITE

All accesses permitted (relies on special processor support)

PAGE_WRITECOPY Write access causes the system to give process a private copy

of this page; attempts to execute code cause access violation

PAGE_EXECUTE_

WRITECOPY

Write access causes creation of private copy of page.

PAGE_GUARD Any read/write attempt raises EXCEPTION_GUARD_PAGE

and turns off guard page status

11

Reserving & Committing Memory

Optional 2-phase approach to memory allocation:

1. Reserve address space (in multiples of page size)

2. Commit storage in that address space

Can be combined in one call (VirtualAlloc, VirtualAllocEx)

Reserved memory:

Range of virtual addresses reserved for future use (contiguous buffer)

Accessing reserved memory results in access violation

Fast, inexpensive

Committed memory:

Has backing store (pagefile.sys, memory-mapped file)

Either private or mapped into a view of a section

Decommit via VirtualFree, VirtualFreeEx

A thread‘s user-mode stack is constructed using

this 2-phase approach: initial reserved size is 1MB,

only 2 pages are committed: stack & guard page

Allocation Granularity

Each region of reserved process address space

begin on multiple of allocation granularity

GetSystemInfo or GetNativeSystemInfo function

Value is 64 KB

Size and base of each reserved memory region

is multiple of the system page size (e.g. 4 KB on

x86 systems)

12

13

Shared Memory

Like most modern OS’s, Windows provides a

way for processes to share memory

High speed IPC (used by ALPC, which is

used by RPC)

Threads share address space, but

applications may be divided into multiple

processes for stability reasons

It does this automatically for shareable pages

E.g. code pages in an EXE or DLL

Processes can also create shared memory

sections

Underlying primitives for sharing is “section

objects”, or “file mapping objects” in Windows

API

Section object connected to open file 

mapped file (or file backed section)

Section object connected to committed

memory  page file backed section

compiler

image

Physical memory

Process 1 virtual memory

Process 2 virtual memory

14

Mapped Files

A way to take part of a file and map it to a range of virtual addresses

 (address space is 2 GB, but files can be much larger)

Bytes in the file then correspond one-for-one with bytes in the region of
virtual address space

Read from the “memory” fetches data from the file

Pages are kept in physical memory as needed

Changes to the memory are eventually written back to the file (can request
explicit flush)

Initial mapped files in a process include:

The executable image (EXE)

One or more Dynamically Linked Libraries (DLLs)

Processes can map additional files as desired (data files or additional
DLLs)

15

Viewing DLLs & Memory Mapped

Files
Process Explorer lists memory mapped files

16

Data Execution Prevention

Purposes

Prevents code from executing in a memory page not specifically marked as
executable

Stops exploits that rely on getting code executed in data areas

Relies on hardware ability to mark pages as non executable

Setting BCD nx

Attempts to execute code in a page marked no execute result in:

User mode: access violation exception

Kernel mode: ATTEMPTED_EXECUTE_OF_NOEXECUTE_MEMORY

bugcheck (blue screen)

Memory that needs to be executable must be marked as such using page

protection bits on VirtualAlloc and VirtualProtect APIs:

PAGE_EXECUTE, PAGE_EXECUTE_READ,

PAGE_EXECUTE_READWRITE, PAGE_EXECUTE_WRITECOPY

17

Controlling DEP

BCD nx values:

OptIn: Turn on DEP for necessary Windows programs and services

only

OptOut: Turn on DEP for all programs and services except the ones

selected

AlwaysOn: Enables DEP for all components with no ability to exclude

certain applications

AlwaysOff: Disables DEP (not recommended)

18

DEP on 64-bit Windows

Always applied to all

64-bit processes and

device drivers

Protects user and

kernel stacks, paged

pool, session pool

32-bit processes

depend on configuration

settings

19

DEP on 32-bit Windows

Hardware DEP used when running 32-
bit Windows on systems that support
it

When enabled, system boots PAE
kernel (Ntkrnlpa.exe)

Kernel mode: applied to kernel stacks,
but not paged/session pool

User mode: depends on system
configuration

Even on processors without hardware
DEP, some limited protection
implemented for exception handlers

Software DEP
Older processors which don’t support hardware “no

execution” protection

Exception handling mechanism

image built with safe structure exception handling  verify that

exception is registered in the function table

Not built with safe structure exception handling  exception

handler is located in the memory region marked as executable

Stack cookies

Special code at the beginning and end of function

Compare cookie values

Pointer encoding

Encoding with cookie value

Corrupt decoded pointer crashes program

 20

21

Copy-On-Write Pages

Used for sharing between process address spaces

Pages are originally set up as shared, read-only, faulted

from the common file

Access violation on write attempt alerts pager

pager makes a copy of the page and allocates it privately to the

process doing the write, backed to the paging file

So, only need unique copies for the pages in the shared region

that are actually written (example of “lazy evaluation”)

Original values of data are still shared

e.g. writeable data initialized with C initializers

22

Physical

memory

Page 3

Page 1

How Copy-On-Write Works

Before

Process

Address

Space

Orig. Data

Process

Address

Space

Orig. Data

Page 2

23

Process

Address

Space

Physical

memory

How Copy-On-Write Works

After

Process

Address

Space

Orig. Data

Page 3

Page 1

Page 2

Mod’d. Data

Copy of page 2

24

Shared Memory = File Mapped by

Multiple Processes

Note, the shared region
may be mapped at
different addresses in the
different processes

00000000

7FFFFFFF

User

accessible

v.a.s.

User

accessible

v.a.s.

Process A Process B

Physical

Memory

25

Virtual Address Space (V.A.S.)

Process space contains:

The application

you’re running

(.EXE and .DLLs)

A user-mode stack for each

thread (automatic storage)

All static storage defined by

the application

User

accessible

Kernel-mode

accessible

}

}

Unique per

process

System-

wide

00000000

7FFFFFFF

80000000

FFFFFFFF

26

Virtual Address Space (V.A.S.)

User

accessible

Kernel-mode

accessible

}

}

Unique per

process

System-

wide

System space contains:

Executive, kernel, and HAL

Statically-allocated system-
wide data cells

Page tables (remapped for
each process)

Executive heaps (pools)

Kernel-mode device drivers
(in nonpaged pool)

File system cache

A kernel-mode stack for
every thread in every
process

00000000

7FFFFFFF

80000000

FFFFFFFF

27

Windows User Process

Address Space Layout

Range Size Function

0x0 – 0xFFFF 64 KB No-access region to catch incorrect pointer ref.

0x10000 -

07FFEFFFF

2 GB minus at

least 192kb

The private process address space

0x7FFDE000 -

0x7FFDEFFF

4 KB Thread Environment Block (TEB) for first thread, more TEBs

are created at the page prior to that page

0x7FFDF000 -

0x7FFDFFFF

4 KB Process Environment Block (PEB)

0x7FFE0000 -

0x7FFE0FFF

4 KB Shared user data page – read-only, mapped to system space,

contains system time, clock tick count, version number

(avoid kernel-mode transition)

0x7FFE1000 –

0x7FFEFFFF

60 KB No-access region

0x7FFF0000 –

0x7FFFFFFF

64 KB No-access region to prevent threads from passing buffers

that straddle user/system space boundary

28

Unique per

process

(= per appl.),

user mode

.EXE code

Globals

Per-thread user

mode stacks

.DLL code

Process heaps

Exec, kernel,

HAL,

drivers, etc.

00000000

BFFFFFFF

FFFFFFFF

C0000000

Unique per

process,

accessible in

user or kernel

mode

3GB Process Space Option

Only available on:

Windows 2003 Server, Enterprise Edition

& Windows 2000 Advanced Server, XP

SP2

Limits phys memory to 16 GB

/3GB option in BOOT.INI

Windows Server 2003 and XP SP2

supports variations from 2GB to 3GB

(/USERVA=)

Provides 3 GB per-process address

space

Commonly used by database servers (for

file mapping)

.EXE must have “large address space

aware” flag in image header, or they’re

limited to 2 GB (specify at link time or with

imagecfg.exe from ResKit)

Chief “loser” in system space is file system

cache

Better solution: address windowing

extensions

Even better: 64-bit Windows

System wide,

accessible

only in kernel

mode

Per process,

accessible only

in kernel

mode

Process page tables,

hyperspace

29

Large Address Space Aware

Images

Images marked as “large address space aware”:

Lsass.exe – Security Server

Inetinfo.exe—Internet Information Server

Chkdsk.exe – Check Disk utility

Dllhst3g.exe – special version of Dllhost.exe (for COM+ applications)

Esentutl.exe - jet database repair tool

To see this, type:

Imagecfg \windows\system32*.exe > large_images.txt

Then search for “large” in large_images.txt

30

Large Address Space Aware on

64-bits

Images marked large address space aware get

a full 4 GB process virtual address space

OS isn’t mapped there, so space is available for

process

31

Address Windowing Extensions

32-bit user process by default has
2 GB virtual address space

AWE functions allow Windows
processes to allocate large
amounts of physical memory and
then map “windows” into that
memory

Applications: database servers can
cache large databases

Up to programmer to control

AWE memory never paged out 
a security feature

AWE memory

Physical memory

Process virtual memory

AWE memory

AWE memory

Steps:

1. Allocate physical mem to be used

2. Create a region of v.a.s. to act as a window to map views of physical

mem

3. Map views of the physical mem into window

32

Working Sets

Working Set:

The set of pages in memory at any time for a given process, or

All the pages the process can reference without incurring a page
fault

Per process, private address space

WS limit: maximum amount of pages a process can own

Implemented as array of working set list entries (WSLE)

Soft vs. Hard Page Faults:

Soft page faults resolved from memory (standby/modified page lists)

Hard page faults require disk access

Working Set Dynamics:

Page replacement when physical memory limit reached and page
fault happens

Replacement policies:

First-in-first (FIFO)

Least Recently Used (LRU)

33

Working Set Management

Default working set size: min 50 pages, max 345 pages

Memory manager examines working set limits and amount of free memory

when page fault occurs

Working set manager initiates automatic working set trimming when

physical memory runs low

Balance Set Manager thread

Created at system initialization

Wakes up every second

Executes MmWorkingSetManager

Trimming process WS when required: from current down to minimal WS for

processes with lowest page fault rate

Aware of the system cache working set

Process can be out-swapped if all threads have pageable kernel stack

Kernel-Mode Heaps

(System Memory Pools)
Nonpaged pool

Reside in physical memory at all times

No page faults

Page faults can’t be satisfied at DPC or above

Paged pool

Can page in and out of the physical memory

Device drivers that don’t need to access memory from DPC and

above

34

Pool type Max on 32-bit Max on 64-bit

Non-paged 75% of physical mem or 2 GB

(whichever smaller)

75% of physical memory or

128 GB (whichever smaller)

Paged 2 GB 128 GB

Look-Aside Lists

Another fast memory allocation mechanism

Contains only fixed-size blocks

Faster  no spinlocks

Executive components and device drivers use

ExInitializeNPagedLookasideList to create look-

aside lists that match frequently allocated data

structures

Size adjusted by balance set manager once a

second

35

Heap Manager

Most apps allocates smaller blocks than 64KB

Heap manager manages allocations inside the larger

memory areas reserved by VirtualAlloc function

 Allocation granularity:

32-bit: 8 bytes

64-bit: 16 bytes

Designed to optimize memory usage and performance

with these smaller allocations

Exists in Ntdll.dll and Ntoskrnl.exe

Each process has a default process heap:

1 MB but expandable

36

Heap Manager Structure
Two layers:

Core heap

Optional front-end layer

Core heap

Common across user-mode and kernel

mode

Manages blocks inside segments,

segments, policies for extending heap,

committing and decommitting memory

and large blocks

Front-end (for user mode only)

Low fragmentation heap (LFH)

Avoids fragmentation by allocating

blocks according to bucket sizes

More popular allocation classes

performed by LFH

Can be disabled by HeapSetInformation

API
37

Application

Windows heap

APIs

Front-end heap

layer

Core heap layer

Memory

Manager

Heap

manager

38

Physical Memory

Amount of physical memory affects performance

Limit other resources e.g. nonpaged pools, OS buffers backed by
physical memory

System virtual memory limit  sum of roughly the size of physical
memory and configured size of paged files

32-bit limit is 64GB:

Data structure that keeps track of physical memory (e.g. PFN database)
grows with the physical memory

Large system would consume too much of virtual address

Mapping pieces of PFN database into the system address as needed  too
much complexity and overhead with mapping, unmapping and locking

2 TB limit on 64-bit windows not hardware/implementation limit:

largest test Itanium system was 2TB

39

Physical Memory Limits

32-Bit 64-Bit Limiting Factor

Windows Server 2008 Data

center and enterprise

64 GB 2 TB on IA64

1 TB on x64

PFN database size on 32-bit,

hardware platform on 64-bit

Windows Server 2008

Standard and Web server

4 GB 32 GB Licensing

Windows Server 2008

HPC Edition

N/A 128 GB Licensing

Windows Vista

Ultimate, Enterprise, Business

4 GB 128 GB Licensing on 64-bit,

hardware support and driver

compatibility on 32-bit

Windows Vista

Home Premium

4 GB 16 GB Licensing on 64-bit,

hardware support and driver

compatibility on 32-bit

Windows Vista

Home Basic

4 GB 8 GB Licensing on 64-bit,

hardware support and driver

compatibility on 32-bit

40

I/O Support

I/O Support operations:

Locking/Unlocking pages in memory

Mapping/Unmapping Locked Pages into current address
space

Mapping/Unmapping I/O space

Get physical address of a locked page

Probe page for access

Memory Descriptor List

Starting VAD

Size in Bytes

Array of elements to be filled with physical page numbers

Physically contiguous vs. Virtually contiguous

41

Cache Support

System wide cache memory

Region of system paged area reserved at initialization time

Initial default: 512 MB (min. 64MB if /3GB, max 960 MB)

Managed as system wide working set

A valid cache page is valid in all address spaces

Lock the page in the cache to prevent WS removal

WS Manager trimming thread is aware of this special WS

Not accessible from user mode

Only views of mapped files may reside in the cache

File Systems and Server interaction support

Map/Unmap view of section in system cache

Lock/Unlock pages in system cache

Read section file in system cache

Purge section

42

Windows Memory Allocation APIs

HeapCreate, Alloc, etc. (process heap APIs)

Windows equivalent of malloc(), free(), etc.

VirtualAlloc(MEM_RESERVE)

VirtualAlloc(MEM_COMMIT)

VirtualFree

VirtualQuery

43

Windows API Memory

Management Architecture

Windows Program

C library: malloc, free

Heap API:

• HeapCreate,HeapDestroy,

• HeapAlloc, HeapFree

Virtual Memory API

Memory-Mapped Files API:

• CreateFileMapping,

• CreateViewOfFile

Windows Kernel with

Virtual Memory Manager

Physical Memory

Disc &

File System

44

Further Reading

Mark E. Russinovich et al. Windows Internals, 5th Edition, Microsoft

Press, 2009.

Chapter 9 - Memory Management

Introduction to memory manager (from pp.699)

Working sets (from pp. 822)

Services the Memory Manager Provides (from pp. 704)

Kernel-mode Heaps (from pp. 721)

Heap manager (from pp. 729)

Physical memory limits (from pp. 818)

45

Source Code References

Windows Research Kernel sources

\base\ntos\mm – Memory manager

\base\ntos\inc\mm.h – additional structure

definitions

\base\ntos\cache – Cache manager

Lab Demo: View & Create & Use

DLL

2013-10-12

Content

View DLLs using “listdll.exe” from sysinternals

Create your own DLL

Using your own DLL

