
Windows Memory Management (II)

Virtual Address Translation and Paging

2

Roadmap for This Lecture

From virtual to physical addresses

Address space layout

Address translation

Page directories, page tables

Page faults, invalid page table entries

Page frame number database

3

Virtual Memory - Concepts

Application always references “virtual
addresses”

Hardware and software translates, or maps,
virtual addresses to physical addresses

Not all of an application’s virtual address space
is in physical memory at one time...

...But hardware and software fool the application
into thinking that it is

The rest is kept on disk, and is brought into physical
memory automatically as needed

Virtual Address Space

Process private address space

Can’t access outside virtual addresses unless map to shared memory

sections or use cross-process memory functions

Page table stored in system space

Session space

All session-wide data structures

Session-specific paged pool

Copy of subsystem process (Csrss.exe) and logon process (Winlogon.exe)

System space

Global OS code and data structures:

System code

System mapped views

Hyperspace

System working set list

System cache

Paged pools/non-paged pools

Page table

 4

5

Virtual address descriptors (VADs)

Memory manager uses demand paging algorithm

Lazy evaluation is also used to construct page tables

Reserved vs. committed memory

Even for committed memory, page table are constructed on demand

Memory manager maintains VAD structures to keep track of reserved
virtual addresses

Self-balancing binary tree (AVL-tree)

VAD stores:

range of addresses being reserved;

whether range will be shared or private;

Whether child process can inherit contents of the range

Page protection applied to pages within the address range

6

2 GB

User

process

space

2 GB

System

Space

32-bit x86 Address Space

3 GB

User

process

space

1 GB

System Space

Default 3 GB user space

32-bits = 4 GB

7

8192 GB

(8 TB)

User

process

space

6657 GB

System

Space

64-bit Address Spaces

7152 GB

(7 TB)

User

process

space

6144 GB

System

Space

x64 Itanium

64-bits = 17,179,869,184 GB

x64 today supports 48 bits virtual = 262,144 GB

IA-64 today support 50 bits virtual = 1,048,576 GB

8

Code: EXE/DLLs

Data: EXE/DLL

static storage, per-

thread user mode

stacks, process

heaps, etc.

00000000

7FFFFFFF

Code:

NTOSKRNL, HAL,

drivers

Data: kernel stacks,

File system cache

Non-paged pool,

Paged pool

FFFFFFFF

80000000

Process page tables,

hyperspace

C0000000

32-bit x86 Virtual

Address Space

2 GB per-process

Address space of one process is not

directly reachable from other processes

2 GB system-wide

The operating system is loaded here, and

appears in every process’s address

space

The operating system is not a process

(though there are processes that do

things for the OS, more or less in

“background”)

Unique per

process,

accessible in

user or kernel

mode

System wide,

accessible

only in kernel

mode

Per process,

accessible only

in kernel

mode

9

User mode space

per process

00000000 00000000

E0000000 00000000

FFFFFF00 00000000
FFFFFFFF FFFFFFFF

System space page

tables

64-bit ia64 (Itanium) Virtual Address

Space

64 bits = 2^64 = 17 billion GB

(16 exabytes) total

Diagram NOT to scale!

7152 GB default per-process

Pages are 8 Kbytes

All pointers are now 64 bits

wide (and not the same size

as a ULONG)

6FC 00000000

 Kernel mode

per process

1FFFFF00 00000000

 Process

page tables

20000000 00000000

 Session space

 Session space

page tables

System space

3FFFFF00 00000000

E0000600 00000000

10

Address Translation - Mapping

virtual addresses to physical

memory
Mapping via page table entries

Indirect relationship between virtual

pages and physical memory

12 bit = 4096 bytes

Virtual

pages

Physical memory

Page table

entries

10 10 12

22 31 21 11 0 12

Page directory

index

Page table

index
Byte index

x86:

user

system

user

system

11

Shared and Private Pages

00000000

7FFFFFFF

C0000000

C1000000

80000000

FFFFFFFF

For shared pages, multiple
processes’ PTEs point to
same physical pages

Process A Process B

Physical

Memory

12

Interpreting a Virtual Address

 31 22 21 12 11 0

10 bits 10 bits 12 bits

Page directory

index

Page table

index
Byte index in page

47 39 38 30 29 21 20 12 11 0

9 bits 9 bits 12 bits

Page table

selector

Page table

entry selector
Byte index

x86 32-bit

x64 64-bit (48-bit in today’s processors)

Page directory

pointer selector

Page map level

4 selector

9 bits 9 bits

13

x86 Virtual Address Translation

Page directory

index

Page table

index

Byte

index

index

Page Directory

(one per process, 1024 x 4 bytes entries)

index

Page Tables

(up to 512 per process,

plus up to 512 system-wide)

physical

page number

(“page frame

number” or

“PFN”)

Physical Pages

(up to 2^20)

1

CR3

physical

address

2

3

4

5

6

7

8

9

10

11

12

PFN 0

31 21 11 0

14

Translating a virtual address:

1. Memory management HW locates page directory for current
process (CR3 register on Intel)

2. Page directory index directs to requested page table

3. Page table index directs to requested virtual page

4. If page is valid, PTE contains physical page number
(PFN – page frame number) of the virtual page

• Memory manager fault handler locates invalid pages and tries to
make them valid

• Access violation/bug check if page cannot be brought in (protection
fault)

5. When PTE points to valid page, byte index is used to locate
address of desired data

15

Page directories & Page tables

Each process has a single page directory (phys. addr. in
KPROCESS block, at 0xC0300000, in cr3 (x86))

CR3 is re-loaded on inter-process context switches

Page directory is composed of page directory entries (PDEs)
which describe state/location of page tables for this process

Page tables are created on demand

x86: 1024 page tables describe 4GB

Each process has a private set of page tables

System has one set of page tables

System PTEs are a finite resource: computed at boot time

HKLM\System...\Control\SessionManager\SystemPages

16

Page Table Entries

Page tables are array of Page Table Entries (PTEs)

Valid PTEs have two fields:

Page Frame Number (PFN)

Flags describing state and protection of the page

Page frame number V U P Cw Gl L D A Cd Wt O W

Res (writable on MP Systems)

Software field (prototype PTE)

Software field (copy-on-write)

Global

Res (large page if PDE)

Dirty

Accessed

Cache disabled

Write through

Owner

Write (writable on MP Systems)

valid

Reserved bits

are used only

when PTE is

valid

31 12 0

17

X86 PTE Status and Protection Bits

Name of Bit Meaning on x86

Accessed Page has been read

Cache disabled Disables caching for that page

Copy-on-write Page is using copy-on-write

Dirty Page has been written to

Global Translation applies to all processes

(a translation buffer flush won‘t affect this PTE)

Large page Indicates that PDE maps a 4MB page (used to map kernel)

Owner Indicates whether user-mode code can access the page of

whether the page is limited to kernel mode access

Prototype The PTE is a prototype PTE, used as a template to describe

shared memory associated with section objects

Valid Indicates whether translation maps to page in phys. Mem.

Write through Disables caching of writes; immediate flush to disk

Write Uniproc: Indicates whether page is read/write or read-only;

Multiproc: ind. whether page is writeable/write bit in res. bit

18

Page Directory and Page Table

Entries

Screen snapshot from:

Kernel debugger !pte command on

randomly-selected virtual addresses

KDx86> !pte fea80000
FEA80000 - PDE at C0300FE8 PTE at C03FAA00
 contains 0040C063 contains 0002D063
 pfn 0040C DA--KWV pfn 0002D DA--KWV

KDx86> !pte 10000
00010000 - PDE at C0300000 PTE at C0000040
 contains 002AF067 contains FFFFF480
 pfn 002AF DA--UWV not valid
 Proto: VAD
 Protect: 4

KDx86> !pte 50000
00050000 - PDE at C0300000 PTE at C0000140
 contains 002AF067 contains 0011A080
 pfn 002AF DA--UWV not valid
 PageFile 0
 Offset 11a
 Protect: 4

1

3
2

9 8 7 6 4 5

A

A

virtual address of PD
Entry or PT Entry

contents of PDE or PTE

interpreted contents

Page Frame Number
(== physical page
number) of Page
Table

Page Frame Number
(== physical page
number) for valid
page

D = Dirty (modified
since made valid)

A = Accessed (recently)

KW = Kernel mode
writable

V = Valid bit

Where pager can find
contents of an invalid
page

1

3

2

4

5

6

7

8

9

A

19

Translation Look-Aside Buffer

(TLB)

Address translation requires two lookups:

Find right table in page directory

Find right entry in page table

Most CPU cache address translations

Array of associative memory: translation look-aside buffer (TLB)

TLB: virtual-to-physical page mappings of most recently used pages

Virtual page #: 5 Virtual page #: 17

Virtual page #: 64

Virtual page #: 17

Virtual page #: 7

Virtual page #: 65

Page frame 290

Invalid

Page frame 1004

Invalid

Page frame 801

Simultaneous

read and compare

20

x64 Virtual Address Translation

Page table

selector

Page table

entry selector

Page Map

Level 4
Page

Tables

Physical Pages

(up to 2^40)

1

2

3

4

5

6

7

8

9

10

11

12

PFN 0

Byte within page
Page dir

pointer

Page map

Level 4

Page

Directories

Page

Directory

Pointers
CR3

47 38 29 20 11 0

21

Byte within page Virtual page number

Virtual Address Translation

(Alternative view)

The hardware converts each valid virtual

address to a physical address

Physical page number Byte within page

Page

Directory

Page

Tables

virtual address

physical address

Translation

Lookaside

Buffer

a cache of recently-

used page table entries

Address translation (hardware)

if page

not valid...
page fault

(exception,

handled by

software)

22

Page Fault Handling

Reference to invalid page is called a page fault

Kernel trap handler dispatches:

Memory manager fault handler (MmAccessFault) called

Runs in context of thread that incurred the fault

Attempts to resolve the fault or

raises exception

Page faults can be caused by variety of conditions

23

Reasons for access faults

Accessing a page that’s not in memory but on disk in a page file or
a mapped file

Allocate a physical page, and read the desired page from disk to the
relevant working set

Accessing page that is on standby or modified list

Transfer the page to process or system working set

Accessing page that has no committed storage

Access violation

Accessing kernel page from user-mode

Access violation

Writing to a read-only page

Access violation

Accessing a demand-zero page

Add a zero-filled page to the relevant working set

24

Reasons for access faults (contd.)

Writing to a guard page

Guard page violation (if a reference to a user-mode stack,
perform automatic stack expansion)

Writing to a copy-on-write page

Make process-private copy of page and replace original in process or
system working set

Referencing a page in system space that is valid but not in the
process page directory
 (if paged pool expanded after process directory was created)

Copy page directory entry from master system page directory structure
and dismiss exception

Writing to valid page that has not yet been written to

Set dirty bit in PTE

25

In-Paging I/O due to Access Faults

Occurs when read operation must be issued to a file to satisfy page fault

Page tables are pageable additional page faults possible

In-page I/O is synchronous

Thread waits until I/O completes

Not interruptible by asynchronous procedure calls

During in-page I/O: faulting thread does not own critical memory
management synchronization objects

Other threads in process may issue VM functions, but:

Another thread could have faulted same page: collided page fault

Page could have been deleted (remapped) from virtual address space

Protection on page may have changed

Fault could have been for prototype PTE and page that maps prototype PTE
could have been out of working set

26

Invalid PTEs and their structure

Page file: desired page resides in paging file
 in-page operation is initiated

Page file offset Protection
Page

File No 0

Transition

Prototype

Valid 31 12 11 10 9 5 4 1 0

Demand Zero: pager looks at zero page list;
if list is empty, pager takes list from standby list and zeros it;

 PTE format as shown above, but page file number and offset are

zeros

27

Invalid PTEs and their structure

(contd.)

Transition: the desired page is in memory on either the standby,
modified, or modified-no-write list

Page is removed from the list and added to working set

Page Frame Number Protection 1

Transition

Prototype

Protection

Cache disable

Write through

Owner

Write

Valid

31 12 11 10 9 5 4 1 0

1 0

2 3

Unknown: the PTE is zero, or the page table does not yet exist

- examine virtual address space descriptors (VADs) to see

whether this virtual address has been reserved

- Build page tables to represent newly committed space

28

Prototype PTEs

Software structure to manage potentially shared pages

Array of prototype PTEs is created as part of section object

(part of segment structure)

First access of a page mapped to a view of a section object:

memory manager uses prototype PTE to fill in real PTE used for

address translation;

Reference count for shared pages in PFN database

Shared page valid:

process & prototype PTE point to physical page

Page invalidated:

process PTE points to prototype PTE

Prototype PTE describes 5 states for shared page:

Active/valid, Transition, Demand zero, Page file, Mapped file

Layer between page table and page frame database

29

Prototype PTEs for shared pages –

 the bigger picture

Two virtual pages in a mapped view

First page is valid; 2nd page is invalid and in page file

Prototype PTE contains exact location

Process PTE points to prototype PTE

PFN Valid PFN n

Invalid - points

to prototype

PTE
Valid PFN n

Invalid – in

page file

Segment

structure

PFN n

PFN n

PTE address

Share

count=1

PFN entry
Physical

memory
Prototype page

table

Page table

Page directory

30

Managing Physical Memory

System keeps unassigned physical pages on one of several lists

Free page list

Modified page list

Standby page list

Zero page list

Bad page list - pages that failed memory test at system startup

Lists are implemented by entries in the “PFN database”

Maintained as FIFO lists or queues

31

Paging Dynamics

New pages are allocated to working sets from the top of the free or

zero page list

Pages released from the working set due to working set

replacement go to the bottom of:

The modified page list (if they were modified while in the working set)

The standby page list (if not modified)

Decision made based on “D” (dirty = modified) bit in page table entry

Association between the process and the physical page is still

maintained while the page is on either of these lists

32

Standby and Modified Page Lists

Modified pages go to modified (dirty) list

Avoids writing pages back to disk too soon

Unmodified pages go to standby (clean) list

They form a system-wide cache of “pages likely to be
needed again”

Pages can be faulted back into a process from the standby and
modified page list

These are counted as page faults, but not page reads

33

Modified Page Writer

When modified list reaches certain size, modified page writer

system thread is awoken to write pages out

See MmModifiedPageMaximum

Also triggered when memory is overcomitted (too few free pages)

Does not flush entire modified page list

Two system threads

One for mapped files, one for the paging file

At the same time, pages move from the modified list to the standby

list

E.g. they can still be soft faulted into a working set

34

Free and Zero Page Lists

Free Page List

Used for page reads

Private modified pages go here on process exit

Pages contain junk in them (e.g. not zeroed)

On most busy systems, this list is empty

Zero Page List

Used to satisfy demand zero page faults

References to private pages that have not been created yet

When free page list has 8 or more pages, a priority zero thread is
awoken to zero them

On most busy systems, this list is empty too

35

Paging Dynamics

Standby

Page

List

Zero

Page

List

Free

Page

List

Process

Working

Sets

page read from

disk or kernel

allocations

demand zero

page faults

working set

replacement

Modified

Page

List

modified

page

writer

zero

page

thread

“soft”

page

faults

Bad

Page

List

Private pages

at process exit

36

Process 3

Process 2

Process 1

Working Sets in

Memory
00000000

7FFFFFFF

80000000

FFFFFFFF

Pages in Physical Memory

F

F

F F

M

M

M

M

M

S S
S

S

As processes incur page faults,
pages are removed from the free,
modified, or standby lists and made
part of the process working set

A shared page may be resident in
several processes’ working sets at
one time (this case not illustrated
here)

F

F
F

F

F

F F

F

3

3

3

1

2

1
2

2

1

37

Page Frame Number Database

One entry (24 bytes) for each physical page

Describes state of each page in physical memory

Entries for active/valid and transition pages contain:

Original PTE value (to restore when paged out)

Original PTE virtual address and container PFN

Working set index hint (for the first process...)

Entries for other pages are linked in:

Free, standby, modified, zeroed, bad lists (parity error will kill kernel)

Share count (active/valid pages):

Number of PTEs which refer to that page; count 0: candidate for free list

Reference count:

INC when first added to working set or locked in memory for I/O; DEC when
share count 0 or unlocked

Share count = 0 & reference count = 1 is possible

Reference count 0: page is inserted in free, standby or modified lists

38

Page Frame Database –

states of pages in physical memory

Status Description

Active/valid Page is part of working set (sys/proc), valid PTE points to it

Transition Page not owned by a working set, not on any paging list

I/O is in progress on this page

Standby Page belonged to a working set but was removed; not modified

Modified Removed from working set, modified, not yet written to disk

Modified

no write

Modified page, except modified page writer won’t write to disk;

e.g. used by NTFS for protected pages (explicit flushing)

Free Page is free but has dirty data in it – cannot be given to user

process without “zeroing” -- security requirement

Zeroed Page is free and has been initialized by zero page thread

Bad Page has generated parity or other hardware errors

39

Page tables and page frame

database

valid

Invalid:

disk address

Invalid:

transition

valid

Invalid:

disk address

Valid

valid

Invalid:

transition

Invalid:

disk address

Prototype PTE

Process 1

page table

Process 2

page table

Process 3

page table

Active

Standby

Active

Active

Modified

Zeroed

Free

Standby

Modified

Bad

Modified

no write

PFN database

40

Page Files

What gets sent to the paging file?

Not code – only modified data (code can be re-read from image file anytime)

When do pages get paged out?

Only when necessary

Page file space is only reserved at the time pages are written out

Once a page is written to the paging file, the space is occupied until the memory is

deleted (e.g. at process exit), even if the page is read back from disk

Page file maximums:

16 page files per system

32-bit x86: 4095MB

32-bit PAE mode, 64-bit systems: 16 TB

41

Why Use Page File on Systems with

Ample Free Memory?

Because memory manager doesn’t let process working sets grow arbitrarily

Processes are not allowed to expand to fill available memory (previously

described)

Bias is to keep free pages for new or expanding processes

This will cause page file usage early in the system life even with ample

memory free

We talked about the standby list, but there is another list of modified pages

recently removed from working sets

Modified private pages are held in memory in case the process asks for it

back

When the list of modified pages reaches a certain threshold, the memory

manager writes them to the paging file (or mapped file)

Pages are moved to the standby list, since they are still “valid” and could be

requested again

42

Sizing the Page File

Given understanding of page file usage, how big should the total paging file
space be?

(Windows supports multiple paging files)

Size should depend on total private virtual memory used by
applications and drivers

Therefore, not related to RAM size (except for taking a full memory dump)

Worst case: system has to page all private data out to make room for code
pages

To handle, minimum size should be the maximum of VM usage
(“Commit Charge Peak”)

Hard disk space is cheap, so why not double this

Page file too large: doesn’t change system performance

Page file too small: “system run low on virtual memory!”

43

When Page Files are Full

When page file space runs low

1. “System running low on virtual memory”

First time: Before pagefile expansion

Second time: When committed bytes reaching commit limit

2. “System out of virtual memory”

Page files are full

Look for who is consuming pagefile space:

Process memory leak: Check Task Manager, Processes tab, VM Size column

or Perfmon “private bytes”, same counter

Paged pool leak: Check paged pool size

Run poolmon to see what object(s) are filling pool

Could be a result of processes not closing handles - check process “handle

count” in Task Manager

44

Nonpageable components:

Nonpageable parts of NtosKrnl.Exe,

drivers

Nonpaged pool (see PerfMon, Memory

object: Pool nonpaged bytes)

non-paged code

non-paged data

pageable code+data (virtual size)

output of “drivers.exe” is similar

Win32K.Sys is paged, even though it

shows up as nonpaged

Other drivers might do this too, so total

nonpaged size is not really visible

System Nonpaged Memory

8

A

9

8 A 9

45

Optimizing Applications
Minimizing Page Faults

Some page faults are unavoidable

code is brought into physical memory (from .EXEs and .DLLs) via page faults

the file system cache reads data from cached files in response to page faults

First concern is to minimize number of “hard” page faults

i.e. page faults to disk (page reads)

see Performance Monitor, “Memory” object, “page faults” vs. “page reads”
(this is system-wide, not per process)

for an individual app, see Page Fault Monitor:

note that these results are highly dependent on system load (physical memory
usage by other apps)

c:\> pfmon /?

c:\> pfmon program-to-be-monitored

Lab Demos

View memory mapped files

Determining the maximum pool sizes

Viewing the system look-aside lists

Checking large address aware

Analyzing user virtual address space

Translating addresses

Viewing VADs, section objects, PFN databases/entries,

working sets

Modified page writer: Perfmon shows available bytes

goes up once per second after apps are closed

46

47

Lab: Accounting for Physical

Memory Usage
Process working sets

Perfmon: Process / Working set

Note, shared resident pages are counted in
the process working set of every process
that’s faulted them in

Hence, the total of all of these may be
greater than physical memory

Resident system code (NTOSKRNL + drivers,
including win32k.sys & graphics drivers)

see total displayed by !drivers 1 command
in kernel debugger

Nonpageable pool

Perfmon: Memory / Pool nonpaged bytes

Free, zero, and standby page lists

Perfmon: Memory / Available bytes

Pageable, but currently-resident, system-

space memory

Perfmon: Memory / Pool paged

resident bytes

Perfmon: Memory / System cache

resident bytes

Memory | Cache bytes counter is really

total of these four “resident”

(physical) counters

Modified, Bad page lists

can only see size of these with

!memusage command in Kernel

Debugger

48

Further Reading

Mark E. Russinovich et al. Windows Internals,

5th Edition, Microsoft Press, 2009.

Chapter 9 - Memory Management

Virtual address layout)from pp. 736)

Address Translation (from pp. 761)

Page fault handing (from pp. 774)

Page frame number database (from pp. 803)

49

Source Code References

Windows Research Kernel sources

\base\ntos\mm – Memory manager

\base\ntos\inc\mm.h – additional structure

definitions

