
I/O System (I)

2

Roadmap for This Lecture

Principles of I/O Systems

Windows I/O Components

Windows I/O Processing

3

Principles of I/O Hardware

Major components of a computer system:
CPU, memories (primary/secondary), I/O system

I/O devices:

Block devices – store information in fixed-sized blocks;
typical sizes: 128-1024 bytes

Character devices – delivers/accepts stream of characters

Device controllers:

Connects physical device to system bus (Minicomputers, PCs)

Mainframes use a more complex model:
Multiple buses and specialized I/O computers (I/O channels)

Communication:

Memory-mapped I/O, controller registers

Direct Memory Access - DMA

4

I/O Hardware - Single Bus

CPU Memory
Video

Controller

Keyboard

Controller

Floppy

Controller

Disk

Controller

System bus

Monitor Keyboard Floppy

 drive

Disk

 drive

5

I/O Hardware - Multiple Buses

Video

controller

Network

controller

IDE disk

controller

USB

interface

keyboard mouse

CPU PCI bridge/

memory

controller

Memory

Cache

SCSI

controller

SCSI disk

SCSI disk

SCSI disk

PCI bus

USB bus

SCSI bus

Memory bus

6

Diversity among I/O Devices

The I/O subsystem has to consider device characteristics:

Data rate:

may vary by several orders of magnitude

Complexity of control:

exclusive vs. shared devices

Unit of transfer:

stream of bytes vs. block-I/O

Data representations:

character encoding, error codes, parity conventions

Error conditions:

consequences, range of responses

Applications:

impact on resource scheduling, buffering schemes

7

Principles of I/O Software

Layered organization

Device independence

Error handling

Error should be handled as close to the
hardware as possible

Transparent error recovery at low level

Synchronous vs. Asynchronous transfers

Most physical I/O is asynchronous

Kernel may provide synchronous I/O system
calls

Sharable vs. dedicated devices

Disk vs. printer

Structuring of

I/O software

1. User-level software

2. Device-independent

OS software

3. Device drivers

4. Interrupt handlers

8

Layers of the I/O System

User-Space I/O Software

System call libraries
(read, write,...)

Spooling

Managing dedicated I/O
devices in a
multiprogramming
system

Daemon process,
spooling directory

lpd – line printer
daemon, sendmail –
simple mail transfer
protocol

Layer

User process

Device-independent

software

Device drivers

Interrupt handlers

Hardware

I/O

request
I/O

reply

I/O functions

I/O calls, spooling

format I/O

Naming, protection

buffering, blocking

Setup registers,

Check status

Setup registers,

Check status

Wakeup driver

Perform I/O op.

9

Application I/O Interfaces

The OS system call interface distinguishes device classes:

Character-stream or block

Sequential or random-access

Synchronous or asynchronous

Sharable or dedicated

Speed of operation

Read/write, read only, write only

10

Device-independent I/O Software

Functions of device-independent I/O software:

Uniform interfacing for the device drivers

Device naming

Device protection

Providing a device-independent block size

Buffering

Storage allocation on block devices

Allocating and releasing dedicated devices

Error reporting

11

Device Driver

Contains all device-dependent code

Handles one device

Translates abstract requests into device commands

Writes controller registers

Accesses mapped memory

Queues requests

Driver may block after issuing a request:

Interrupt will un-block driver (returning status information)

12

Interrupt Handlers

Should be hidden by the operating system

Every thread starting an I/O operation should block until

I/O has completed and interrupt occurs

Interrupt handler transfers data from device (controller)

and un-blocks process

13

Windows I/O System Design Goals

Fast I/O processing on single / multiprocessor systems

Protection for shareable resources

Using Windows security mechanisms

Meet requirements dictated by different subsystems

Provide common services for device drivers

Ease device driver development

Allow drivers to be written in high-level language

Dynamic addition/removal of device drivers

Support multiple file systems (FAT, CDFS, UDF, NTFS)

Provide mapped file I/O capabilities

Windows Management Instrumentation support and diagnosability

Drivers can be managed through WMI applications and scripts.

14

I/O System Components

Applications
Windows

Services

WMI Service
User-Mode

PnP Manager

Setup

Components
Setup

Components
Setup

Components

WDM WMI

Routines
PnP Manager

Power

Manager
I/O Manager

Driver 1 Driver 2

HAL

.inf files

.cat files

Registry

User

Mode

Kernel

Mode

I/O System

Drivers
…

15

I/O System Components

The I/O manager

Connects applications and system components to virtual, logical, and
physical devices

Windows APIs: ReadFile, WriteFile, CreateFile, CloseFile,
DeviceIoControl

Defines the infrastructure that supports device drivers

Device driver

Provides an I/O interface for a particular type of device

Device drivers receive commands routed to them by the I/O manager
that are directed at devices they manage, and they inform the I/O
manager when those commands complete

Device drivers often use the I/O manager to forward I/O commands to
other device drivers that share in the implementation of a device's
interface or control.

Several types:

“ordinary”, file system, network, bus drivers, etc.

More information in I/O subsystem section

I/O System Components

The PnP manager works closely with the I/O manager
and bus driver

To guide the allocation of hardware resources

To detect and respond to the arrival and removal of hardware
devices.

User-mode PnP manager: called when installing a PnP device
for the first time

The power manager

To guide the system and individual device drivers, through
power-state transitions.

Windows Driver Model (WDM) WMI support routines

An intermediary to communicate with the WMI service in user
mode

16

17

I/O Manager

Framework for delivery of I/O request packets (IRPs)

IRPs control processing of all I/O operations
(exception: fast I/O does not use IRPs)

I/O manager:

creates an IRP for each I/O operation;

passes IRP to correct drivers;

deletes IRP when I/O operation is complete

Driver:

Receives IRP

Performs operations specified by IRP

Passes IRP back to I/O manager or to another driver (via I/O
manager) for further processing

18

I/O Manager (contd.)

Supplies common code for different drivers:

Drivers become simpler, more compact

I/O manager:

Allows driver to call other drivers

Manages buffers for I/O requests

Provides time-out support for drivers

Records which installable file systems are loaded

Provides flexible I/O services to environment subsystems
(Windows/POSIX asynchronous I/O)

Layered processing of I/O requests possible:

Drivers can call each other (via I/O manager)

19

I/O Functions

Advanced features beyond open, close, read, write:

Asynchronous I/O:

May improve throughput/performance:
continue program execution while I/O is in progress

Must specify FILE_FLAG_OVERLAPPED on CreateFile()

Programmer is responsible for synchronization of I/O requests

Internally, all I/O is performed asynchronously

I/O system returns to caller only if file was opened for asynch. I/O

For synchronous I/O, wait is done in kernel mode depending on
overlapped flag in file object

Status of pending I/O can be tested:

via Windows-API function: HasOverlappedIoCompleted()

when using I/O completion ports: GetQueuedCompletionStatus()

20

Control flow for an I/O operation

Call Nt ReadFile()

Dismiss interrupt

Call Invoke driver()

Wait or return

to caller

Initiate I/O operation

Return to caller

Call ReadFile()

Call NtReadFile()

Return to caller

Int 2E

Return to caller
User mode

Kernel mode

Application

KERNEL32.DLL

NTDLL.DLL

NTOSKRNL.EXE

NTOSKRNL.EXE

DRIVER.SYS

ReadFile

NtReadFile

KiSystemService

NtReadFile

Whether to wait depends

on overlapped flag

21

Advanced I/O Functions

Fast I/O

Bypass generation of IRPs

Go directly to file system driver or cache manager to complete I/O

Mapped File I/O and File Caching

Available through Windows-API CreateFileMapping() / MapViewOfFile()

Used by OS for file caching and image activation

Used by file systems via cache manager to improve performance

Scatter/Gather I/O

Windows-API functions ReadFileScatter()/WriteFileGather()

Read/write multiple buffers with a single system call

File must be opened for non-cached, asynchronous I/O;
buffers must be page-aligned

22

HAL

The hardware abstraction layer (HAL) insulates

drivers from the specifics of the processor and

interrupt controller by providing APIs that hide

differences between platforms

in essence, the HAL is the bus driver for all the

devices on the computer's motherboard that aren't

controlled by other drivers

By programming to the HAL, drivers are source-

level compatible across CPU architectures

23

PnP and Power

The PnP manager

Handles driver loading and starting

Performs resource arbitration

It relies on the I/O Manager to load drivers and send
them PnP-related commands

The power manager controls the power state of
the system

It relies on the I/O Manager to ask drivers if they
can change power state and to inform them when
they should

24

User-Mode Drivers

Virtual device drivers (VDDs) are used to emulate 16-bit
MS-DOS applications.

User-mode can't access hardware directly and thus must go
through a real kernel-mode device driver.

They trap what an MS-DOS application thinks are references
to I/O ports and translates them into native Windows I/O
functions

Windows subsystem printer drivers translate device-
independent graphics requests to printer-specific
commands.

Commands are forwarded to a kernel-mode port driver such
as the parallel port driver (Parport.sys) or the universal serial
bus (USB) printer port driver (Usbprint.sys)

25

WDM Drivers

Windows Driver Model

Unified architecture for drivers

Originally intended to be Win9x/NT cross platform

Most PnP Drivers are WDM drivers

There are three types of WDM drivers:

Bus drivers manage a logical or physical bus e.g. PCMCIA,
PCI, …

Function drivers manage a particular type of device. Bus
drivers present devices to function drivers via the PnP
manager.

Filter drivers logically layer above or below function drivers,
augmenting or changing the behavior of a device or another
driver.

26

WDM Drivers

In WDM, no one driver is responsible for controlling all
aspects of a particular device.

Bus driver: reports the devices on its bus to the PnP manager

Function driver: manipulates the device

Filter driver: optional

Bus Driver

Bus Filter

Function Driver

Function Lower Filter

Function Upper Filter

27

Layered Drivers

Hardware support might be split between different modules that

implement support for different levels of abstraction

Microsoft typically provides the drivers for the higher levels of

abstraction

Hardware vendors provide the lowest level, which understands a

particular device

The conventional division is three levels:

Class drivers implement the I/O processing for a particular class of

devices, such as disk, tape, or CD-ROM.

Port drivers implement the processing of an I/O request specific to a

type of I/O port, such as SCSI, and are also implemented as kernel-

mode libraries of functions rather than actual device drivers.

Miniport drivers map a generic I/O request to a type of port into an

adapter type, such as a specific SCSI adapter. Miniport drivers are

actual device drivers that import the functions supplied by a port

driver.

28

Layered Drivers

Miniport Driver

Port Driver

Class Driver

29

Layered Driver Structure

Relationships among

various types of

kernel-mode device

drivers

Windows I/O system interface

FAT file

system
NTFS

CD-ROM

file system

CD-ROM

class driver

Tape class

 driver

FTDisk

driver

(striping,

mirroring) Disk class

 driver

port

driver Miniport

drivers
Miniport

drivers

30

Dynamically Layering a File System

Driver and a Disk Driver
Environment

subsystem

or DLL
User mode

Kernel mode
NtWriteFile(file_handle, char_buffer)

System services

I/O

manager

Write data at specified

byte offset within a file File system

driver
Translate file-relative byte offset

into disk-relative byte offset, and

call next driver (via I/O manager)

File system

driver

Disk driver Call driver to write data at

disk-relative byte offset

Translate disk-relative byte offset into

physical location, and transfer data

Call next driver

to write data to

Disk 3 at disk-

relative byte offset

Multi-

volume

disk

 driver

Adding a

layered driver

Disk 2 Disk 3 Disk 1

31

Primary Device Driver Routines

I/O manager executes initialization routine when loading a driver

PnP manager calls add-device routine on device detection

Dispatch routines are the main functions: open(), close(), read(), write()

Start I/O routine initiates transfer from/to a device

ISR runs in response to interrupt; schedules DPC

DPC routine performs actual work of handling interrupt after ISR;
starts next queued I/O operation on device

Start I/O routine

Interrupt service

routine (ISR)

Dispatch routines

Initialization

routine DPC routine

I/O

system

Dispatch routines Dispatch routines

Add-device routine

32

Other components of device drivers

I/O Completion routines

A layered driver may have completion routines that will notify it when a lower-
level driver finishes processing an IRP
(I/O Request Packet)

Cancel I/O routine

Assigns a cancel routine to the IRP if the I/O request can be canceled; it will be
executed when the operation is canceled

Fast dispatch routines

Drivers that use cache manager

To allow the kernel to bypass certain typical I/O processing when accessing the
driver

E.g. reading and writing can access cache

Unload routine

Releases system resources

System shutdown notification routine

Error-logging routines

Notify I/O manager to write record to error log file (e.g., bad disk block)

33

Driver Object

A driver object represents a loaded driver

Names are visible in the Object Manager

namespace under \Drivers

A driver fills in its driver object with pointers to its I/O

functions e.g. open, read, write

When you get the “One or More Drivers Failed to

Start” message its because the Service Control

Manager didn‟t find one or more driver objects in the

\Drivers directory for drivers that should have

started

34

Device Objects

A device object represents an instance of a

device

Device objects are linked in a list off the driver

object

A driver creates device objects to represent the

interface to the logical device, so each generally

has a unique name visible under \Devices

Device objects point back at the Driver object

35

Driver and Device Objects

\TCPIP

Driver Object \Device\TCP \Device\UDP \Device\IP

Dispatch Table

Open

Write

Read

Loaded Driver Image

Open(…)

Read(…)

Write(…)

TCP/IP Drivers Driver and Device Objects

36

File Objects

Represents open instance of a device (files on a volume are virtual
devices)

Applications and drivers “open” devices by name

The name is parsed by the Object Manager

When an open succeeds, the object manager creates a file object to
represent the open instance of the device and a file handle in the
process handle table

A file object links to the device object of the “device” which is
opened

File objects store additional information

File offset for sequential access

File open characteristics (e.g. delete-on-close)

File name

Accesses granted for convenience

37

I/O Request Packets

System services and drivers allocate I/O request packets to

describe I/O

A request packet contains:

File object at which I/O is directed

I/O characteristics (e.g. synchronous, non-buffered)

Byte offset

Length

Buffer location

The I/O Manager locates the driver to which to hand the IRP by

following the links:

File Object Device Object Driver Object

38

I/O Request Packet

(same I/O request)

Environment

subsystem or

DLL

Services

I/O manager

IRP header

WRITE

parameters
File

object

Device

object

Driver

object

IRP stack

location

Dispatch

routine(s)
Start I/O ISR

DPC

routine

Device Driver

1)An application writes

a file to the printer,

passing a handle to

the file object

2)The I/O manager

creates an IRP and

initializes first stack

location

3)The I/O manager uses

the driver object to locate

the WRITE dispatch

routine and calls it,

passing the IRP

User mode

Kernel mode

39

IRP data

IRP consists of two parts:

Fixed portion (header):

Type and size of the request

Whether request is synchronous or asynchronous

Pointer to buffer for buffered I/O

State information (changes with progress of the request)

One or more stack locations:

Function code

Function-specific parameters

Pointer to caller„s file object

While active, IRPs are stored in a thread-specific queue

I/O system may free any outstanding IRPs if thread terminates

40

I/O Processing –

synch. I/O to a single-layered driver

1. The I/O request passes through a subsystem DLL

2. The subsystem DLL calls the I/O manager„s

NtWriteFile() service

3. I/O manager sends the request in form of an IRP to the

driver (a device driver)

4. The driver starts the I/O operation

5. When the device completes the operation and interrupts

the CPU, the device driver services the interrupt

6. The I/O manager completes the I/O request

41

Completing an I/O request

Servicing an interrupt:

ISR schedules Deferred Procedure Call (DPC); dismisses int.

DPC routine starts next I/O request and completes interrupt
servicing

May call completion routine of higher-level driver

I/O completion:

Record the outcome of the operation in an I/O status block

Return data to the calling thread – by queuing a kernel-mode
Asynchronous Procedure Call (APC)

APC executes in context of calling thread; copies data; frees
IRP; sets calling thread to signaled state

I/O is now considered complete; waiting threads are released

I/O Cancellation

Example scenarios:

Device removal while IRPs active

User cancels long-running operation to a device

Thread/process termination

Register an I/O cancel routine for cancellable I/O

operations

User-initiated Cancellation

Cancello to cancel async. I/Os

CancelSynchronouslo to cancel sync. I/Os

Thread termination

Cancel all cancellable IRPs before terminating thread

42

I/O Completion Port

loCompletion Object

Completion of I/O associated with multiple file handles

Async. I/O that completes queues a completion packet to the

completion port

Thread waiting on the completion of multiple files can wait for

a completion packet on the queue

Similar to WaitForMultipleObjects API, but advantage is

“concurrency” is controlled with the help of the system.

Concurrency value: max number of threads associated with

the port that should be running at any time

Using Completion Ports

Call CreateloCompletionPort

Thread blocks on completion port are associated with the port

and are woken up in LIFO order
43

I/O Completion Port Operation

I/O completion port minimizes dispatcher lock contention

Doesn‟t acquire lock when:

Completion queued to a port and no threads are waiting

Thread calls GetQueuedCompletionStatus and there are items in the queue

Thread calls GetQueuedCompletionStatus with zero timeout

44

Completion

port

Perform CPU processing

(active)

Perform CPU processing

(active)

Perform file I/O block

(inactive)

Incoming client request

Threads blocked on the completion port

45

The Driver Verifier

Driver Verifier is a tool introduced in Windows 2000 that

helps developers test their drivers and systems

administrators identify faulty drivers

Must be run from \windows\system32\verifier.exe (no shortcut)

This is the

Windows

XP GUI

to driver

verifier

46

Verification Options
Special Pool

The memory returned for driver memory
allocations is bounded with invalid regions
 to catch buffer overrun and underrun

To be described in Crash Analysis section

Force IRQL checking

Detects drivers that access paged memory
when the system is in a state that can‟t
tolerate page faults

Low Resource Simulation

Randomly fails driver memory allocations

Pool Tracking

Associates memory with the driver that allocated it to help identify leaks

I/O verification

Ensures that I/O commands are properly formatted and handled

47

Driver Verifier

Simpler wizard-style UI

Default is verify unsigned drivers

Four verification options:

DMA verification – detects improper use
of DMA buffers, adapters, and map
registers

Deadlock detection – detects lock
hierarchy violations with spinlocks,
mutexes, fast mutexes

SCSI verification - monitors the
interaction between a SCSI miniport
driver and the port driver

Enhanced I/O Verification tests drivers'
support for power management, WMI,
and filters

One new on in Server 2003:

Disk integrity checking - monitors a hard
disk and detects whether the disk is
preserving its data correctly

Windows XP GUI

48

Further Reading

Mark E. Russinovich et al. Windows Internals,
5th Edition, Microsoft Press, 2009.

I/O system components (from pp. 537)

Device drivers (from pp. 541)

I/O Processing (from pp. 562)

49

Source Code References

Windows Research Kernel sources

\base\ntos\io – I/O Manager

\base\ntos\inc\io.h – additional structure/type

definitions

\base\ntos\verifer – Driver Verifier

\base\ntos\inc\verifier.h – additional structure/type

definitions

