
I/O System (II)

2

Roadmap for This Lecture

Windows Driver Foundation

Kernel-Mode Driver Framework

User-Mode Driver Framework

Plug-and-Play Manager

Power Manager

FileMon: troubleshooting of I/O system

Labs

Windows Driver Foundation

WDF simplifies driver development with two frameworks:

Kernel-Mode Driver Framework (KMDF)

Supports Win 2000 SP4 and later

Simple interface to WDM

Call into KMDF library to perform generic work on hardware

User-Mode Driver Framework (UMDF)

Supports Win XP and later

Enables USB-based and high-latency protocol buses drivers to

be implemented as user-mode drivers

UMDF drivers can crash and not affect the system stability

Written in C++ COM-like classes lower barrier

3

KMDF Drivers – Structure and

Operations
KMDF supports all WDM-complying drivers if they:

Perform standard I/O processing and IRP manipulation

Use Windows kernel API directly

Provide their own dispatch functions instead of relying on port or class driver

and other clients

Has following functions:

An initialization routine

Non-PnP driver creates first device object here

An add-device routine

EvtDriverDeviceAdd callback

One or more Evtlo* routines (optional)

Handles requests from device queues

KMDF drivers are event based

Events are not synchronization based but internal

Callbacks are optional default generic action can be used

4

KMDF Drivers – Data Model

Object-based --- but doesn’t use object manager

KMDF manages objects internally

Framework provides routines to perform operations on objects

WdfDeviceCreate function creates a device

Get/Set APIs (never fails)

Assign/Retrieve APIs (can fail)

Part of a hierarchy

Most objects have a parent

Root is WDFDRIVER

Next is WDFDEVICE created by WdfDeviceCreate

Objects are opaque

Hierarchy affects object’s locality and life time

Object context areas: specific data about an object outside the framework

5

KMDF Object Hierarchy

6

WDFDRIVER WDFIORESREQLIST

WDFIORESLIST

WDFDEVICE WDFQUEUE

WDFDEVICE

WDFCMRESLIST

WDFUSBINTERFACE

WDFUSBPIPE

WDFDMAENABLER

WDFCOMMONBUFFER

WDFTRANSACTION

WDFDPC

WDFTIMER

WDFWORKITEM

WDFCHILDLIST

WDFFILEOBJECT

WDFINTERRUPT

WDFIOTARGET

WDFREQUEST

WDFWMIINSTANCE

WDFWMIPROVIDER

WDFCOLLECTION

WDFKEY

WDFLOOKASIDE

WDFMEMORY

WDFOBJECT

WDFREQUEST(driver created)

WDFSPINLOCK

WDFSTRING

WDFWAITLOCK

Predefined

Default but driver can change to any obj

Either can be parent

KMDF Object Attributes

Attribute Description

ContextSizeOverride Size of the object context area

ContextTypeInfo Type of the object context area

EvtCleanupCallback Callback to notify the driver of the object’s cleanup

before deletion (references may still exist)

EvtDestroyCallback Callback to notify the driver of the object’s imminent

deletion (references will be 0)

ExecutiveLevel Describes the max IRQL at which the callbacks will

be invoked by KMDF

ParentObject Idenitfies the parent of this object

Size Size of the object

SynchronizationScope Specifies if the callbacks should be synchronized with

the parent, a queue or device or nothing

7

KMDF I/O Model

8

Nonpower-

managed

I/O queues

Power-

managed

I/O queues

I/O request

handler

PnP/Power

Request

handler

WMI request

handler

Dispatcher

I/O target
Driver

callbacks

Driver

callbacks

Driver

callbacks

IRPs

KMDF I/O Model

I/O request handler: processes standard device operations

PnP and power request handler: processes PnP and power events and

notifies other drivers of state changes

WMI handler: handles tracing and logging

IRP finished but request not fully processed:

Bus/function drivers: complete IRP with

STATUS_INVALID_DEVICE_REQUEST

Filter drivers: forward to lower driver

Queues are WDFQUEUE object containing WDFREQUEST objects, with

following options:

Register callbacks to queue

Power management state

Dispatch method

Can accept zero-length buffers or not

9

UMDF Overview

Support protocol device classes

Same standardized, generic protocol and offer specialized functionality on it

E.g. IEEE 1394 (firewire), USB, bluetooth and TCP/IP

Portable music players, PDAs, cell phones, webcams

SideShow-compatible devices (auxiliary displays)

Windows Portable Device (WPD) framework USB removable storage

Same driver programming model as KMDF, but

User-mode objects

No direct handling of interrupts, DMA, nonpaged pools and strict timing

Can’t be on kernel stack, or be the client of another driver or kernel itself

Run in a driver host process:

User-mode driver

Driver framework (DLL containing COM components for each object)

Run-time environment (for I/O dispatching, driver loading, stack management,

communication and thread pool)

 10

UMDF Architecture

11

Host Process

User-mode driver

Framework

Runtime Environment

Reflector (filter)

Kernel-mode driver

Kernel-mode driver

Device stack

Host Process

User-mode driver

Framework

Runtime Environment

Reflector (filter)

Kernel-mode driver

Device stack

Driver manager

Applications Applications

Windows kernel

(I/O manager)

User mode

Kernel mode

Win32 API A
L

P
C

A
L

P
C

12

The PnP Manager

Foundation: industry standards for enumeration and identification of devices
attached to a bus

Windows PnP supports:

Automatically recognition of installed devices, during boot, addition and
removal of devices

Hardware resource arbitration

Loading the right drivers

Application and driver mechanisms for detection hardware configuration
changes

Storage device state

Network devices

Level of PnP support:

Type of Device Type of Drivers

Plug & Play Non-Plug & Play

Plug & Play Full PnP No PnP

Non-Plug & Play Possible partial PnP No PnP

13

Resource Arbitration

Devices require system hardware resources to function (e.g. IRQs,
I/O ports)

The PnP Manager keeps track of hardware resource assignments

If a device requires a resource that’s already been assigned, the
PnP Manager tries to reassign resources in order to accommodate

Example:

1. Device 1 can use IRQ 5 or IRQ 6

2. PnP Manager assigns it IRQ 5

3. Device 2 can only use IRQ 5

4. PnP Manager reassigns Device 1 IRQ 6

5. PnP Manager assigns Device 2 IRQ 5

Driver support for PnP

Driver must implement:

PnP dispatch routine

Power management routine

Add-device routine

Bus driver supports different PnP requests

Provides descriptions of devices resource requirements

PnP manager sends start-device command to driver’s PnP dispatch routine

Once started, PnP manager can send driver more commands:

query-remove command

remove command

query-stop command (resource re-assignment)

stop command (resource re-assignment)

Commands guides the device through different states

14

15

Plug and Play (PnP) State Transitions

PnP manager recognizes hardware, allocates resources, loads
driver, notifies about config. changes

Not started

Started

Pending stop

Stopped

Pending

remove

Surprise

remove

Removed

Start-device

command

Start-device

command

Query-stop

command

Stop

command

Query-remove

command

Surprise-remove

command

Remove

command

Remove

command

Driver Loading & Initialization –

Explicit
Explicit loading

HKLM\SYSTEM\CurrentControlSet\Services

Specify start value:

boot-start(0), e.g. system bus drivers, boot file system driver

system-start(1), e.g. serial port driver

auto-start(2), e.g. non-PnP driver/file system driver

demand-start(3), e.g. network adaptor driver

Use Group and Tag values to control order of loading

Value 0 means OS loader loads the driver

Value 1 means I/O manager loads the driver

16

17

Driver Loading & Initialization –

Enumeration-based
Enumeration is recursive, and directed by bus drivers

Bus drivers identify device on a bus

PnP manager initializes drivers for the device

Driver can detect additional devices

As buses and devices are registered, a device tree is constructed, and filled

in with devices

Root

ACPI

PCI

USB
Video Disk

Key-
board

Battery

Device Tree

Devnodes Internals

18

IRP

Filter device

object

(FiDO)

Functional

device object

(FiDO)

Physical

device object

(FiDO)

Filter device

object

(FiDO)

Filter device

object

(FiDO)

Upper-level

Filter driver

Function

driver

Lower-level

Filter driver

Bus

Filter driver

Bus

driver

Devnode Driver Loading

Device enumeration produces:

vendor ID + product ID device ID

PnP Manager queries the bus driver for instance ID

device ID + instance ID = device instance ID (DIID)

Device key located in HKML\SYSTEM\CurrentControlSet\Enum

19

Devnode Driver Loading (cont’d)

Device’s key includes Service and ClassGUID

ClassGUID allows PnP manager to locate device’s class key in

HKLM\SYSTEM\CurrentControlSet\Control\Class

Device enum key + Class key load the necessary drivers

Driver loading order:

Lower level filter drivers specified in LowerFilter value of the enum key

Lower level filter drivers specified in LowerFilter value of the class key

Function driver specified by the Service value in the enum key

Upper level filter drivers specified in the UpperFilter value of the enum key

Upper level filter drivers specified in the UpperFilter value of the class key

20

Driver Installation

1. Bus driver informs PnP manager of a device it enumerates using a DIID

2. PnP manager checks registry for presence of a driver, if not found, informs

the user-mode PnP manager of the DIID

3. User-mode PnP manager launches Rundll32.exe (hardware installation

wizard)

4. H.I.W. uses Setup and CfgMgr APIs to locate the INF files of the driver

that corresponds to the device

5. Imports package into driver store

6. System installs the driver using Drvinst.exe

7. User-mode PnP manager checks the system’s driver signing policy

a) if block or warn unsigned driver locates .cat files containing signatures

b) Decrypts signature and compare the hash with the hash of the driver file to be installed.

21

22

Power Manager

System power state definitions based on the Advanced
Configuration and Power Interface (ACPI)

State Power Consumption Software Resumption HW Latency

S0 (fully on) Maximum Not applicable None

S1 (sleeping) Less than S0,

more than S2

System resumes where it left off

(returns to S0)

Less than 2

sec.

S2 (sleeping) Less than S1,

more than S3

System resumes where it left off

(returns to S0)

2 or more

sec.

S3 (sleeping) Less than S2,

processor is off

System resumes where it left off

(returns to S0)

Same as S2

S4 (hibernating) Trickle current to power

button and wake

circuitry

System restarts from hibernate

file and resumes where it left off

(returns to S0)

Long and

undefined

S5 (fully off) Trickle current to

power button

System boot Long and

undefined

23

The Power States

A system must have an Advance Configuration and Power Interface
(ACPI)-compliant BIOS for full compatibility (APM gives limited
power support)

There are different system power states:

On (S0)

Everything is fully on

Standby (S1, S2 and S3)

Intermediate states

Lower standby states must consume less power than higher ones

Hibernating (S4)

Save memory to disk in a file called hiberfil.sys in the root directory of the
system volume

Off (S5)

All devices are off

Devices have their own 4 power states: D0 through D3

D0 fully on, D3 fully off, D1 and D2 up to individual drivers and devices

24

Power Manager Operation

A number of factors guide the Power Manager’s decision to change power
state:

System activity level

System battery level

Shutdown, hibernate, or sleep requests from
applications

User actions, such as pressing the power button

Control Panel power settings

Driver and Application Control of

Device Power

The system can go into low power modes, and it notifies the driver
designated as the device power-policy owner

The policy owner decides the power state of the device

Device drivers manage their own power level

Only a driver knows the capabilities of their device

Some devices only have “on” and “off”, others have intermediate states

Drivers can control their own power independently of system power

Display can dim, disk spin down, etc.

Cannot manipulate system power state or prevent system state
transition

Applications can provide input

Register for power notification e.g. battery low, switched from DC to

AC, etc

25

26

Troubleshooting I/O Activity

Filemon can be a great help to understand and troubleshooting I/O
problems

Two basic techniques:

Go to end of log and look backwards to where problem occurred or is
evident and focused on the last things done

Compare a good log with a bad log

Often comparing the I/O activity of a failing process with one that works
may point to the problem

Have to first massage log file to remove data that differs run to run

Delete first 3 columns (they are always different: line #, time, process
id)

Easy to do with Excel by deleting columns

Then compare with FC (built in tool) or Windiff (Resource Kit)

27

Filemon

- operation number

Process: image name + process id

Request: internal I/O request code

Result: return code from I/O operation

Other: flags passed on I/O request

28

Using Filemon

Start/stop logging (Control/E)

Clear display (Control/X)

Open Explorer window to folder containing file:

Double click on a line does this

Find – finds text within window

Save to log file

Advanced mode

Network option

29

What Filemon Monitors

By default Filemon traces all file I/O to:

Local non-removable media

Network shares

Stores all output in listview

Can exhaust virtual memory in long
runs

You can limit captured data with history
depth

You can limit what is monitored:

What volumes to watch in Volumes menu

What paths and processes to watch in Filter dialog

What operations to watch in Filter dialog (reads,
writes, successes and errors)

30

Filemon Filtering and Highlighting

Include and exclude filters are substring matches against

the process and path columns

Exclude overrides include filter

Be careful that you don’t exclude potentially useful data

Capture everything and save the log

Then apply filters (you can always reload the log)

Highlight matches all columns

31

Basic vs Advanced Mode

Basic mode massages output to be sysadmin-

friendly and target common troubleshooting

Things you don’t see in Basic mode:

Raw I/O request names

Various internal file system operations

Activity in the System process

Page file I/O

Filemon file system activity

32

Understanding Disk Activity

Use Filemon to see why your hard disk is crunching

Process performance counters show I/O activity, but not to

where

System performance counters show which disks are being hit,

but not which files or which process

Filemon pinpoints which file(s) are being accessed, by whom,

and how frequently

You can also use Filemon on a server to determine which

file(s) were being accessed most frequently

Import into Excel and make a pie chart by file name or operation

type

Move heavy-access files to a different disk on a different

controller

33

Polling and File Change Notification
Many applications respond to file and directory changes

A poorly written application will “poll” for changes

A well-written application will request notification by the system of
changes

Polling for changes causes performance degradation

Context switches including TLB flush

Cache invalidation

Physical memory usage

CPU usage

Alternative: file change notification

When you run Filemon on an idle system you should only see bursty
system background activity

Polling is visible as periodic accesses to the same files and
directories

File change notification is visible as directory queries that have no
result

34

Example: Word Crash

While typing in the document Word XP would

intermittently close without any error message

To troubleshoot ran Filemon on user’s system

Set the history depth to 10,000

Asked user to send Filemon log when Word exited

35

Solution: Word Crash

Working backwards, the first “strange” or

unexplainable behavior are the constant reads

past end of file to MSSP3ES.LEX

User looked up what .LEX file was

Related to Word proofing tools

Uninstalled and reinstalled proofing tools & problem

went away

36

Example: Useless Excel Error

Message

Excel reports an error “Unable to read

file" when starting

37

Solution: Useless Excel Error Message

Filemon trace shows Excel reading file in

XLStart folder

All Office apps autoload files in their start folders

Should have reported:

Name and location of file

Reason why it didn’t like it

Labs

View installed Drivers

Msinfo32.exe

Process explorer

livekd

View Device name mapping (winobj)

View driver dispatch routines (!drvobj kbdclass 7)

Find an IRP (!irpfind, !irp)

Viewing device tree (control panel, !devnode 0 1)

View device power mapping (control panel)

View power policy and capabilities (!pocaps, !popolicy)

Driver Verifier

FileMon

38

Further Reading

Penny Orwick and Guy Smith. Developing

Drivers with Windows Driver Foundation.

Mark E. Russinovich et al. Windows Internals.

5th Edition, Microsoft Press, 2009.

39

