
File Systems (I)

2

Roadmap for This Lecture

File Systems supported by Windows

NTFS Design Goals

File System Driver Architecture

NTFS Operation

Windows File System On-Disk Structure

3

Windows File System -

Terminology

Sectors:

hardware-addressable blocks on a storage medium

Typical sector size on hard disks for x86-based systems is 512 bytes

File system formats:

Define the way data is stored on storage media

Impact a file system features: permissions & security, limitations on file size, support for
small/large files/disks

Clusters:

Addressable blocks that many file system formats use

Cluster size is always a multiple of the sector size

Cluster size tradeoff: space efficiency vs. access speed

Metadata:

Data stored on a volume in support of file system format management

Metadata includes the data that defines the placement of files and directories on a volume,
for example

Typically not accessible to applications

4

Formats Supported by Windows

CD-ROM File System (CDFS)

Universal Disk Format (UDF)

File Allocation Table (FAT12, FAT16, and

FAT32)

New Technology File System (NTFS)

5

CDFS

CDFS, is a relatively simple format that was defined in 1988 as the

read-only formatting standard for CD-ROM media.

Windows 2000 implements ISO 9660-compliant CDFS in

\Winnt\System32\Drivers\Cdfs.sys, with long filename support

defined by Level 2 of the ISO 9660 standard

Because of its simplicity, the CDFS format has a number of

restrictions

Directory and file names must be fewer than 32 characters long

Directory trees can be no more than eight levels deep

CDFS is considered a legacy format because the industry has

adopted the Universal Disk Format (UDF) as the standard for read-

only media

6

UDF

OSTA (Optical Storage Technology Association) defined

UDF in 1995 as a format to replace CDFS for magneto-

optical storage media, mainly DVD-ROM

The Windows 2000 UDF file system implementation is ISO

13346-compliant and supports UDF versions 1.02 and 1.5

UDF file systems have the following traits:

Filenames can be 255 characters long

The maximum path length is 1023 characters

Although the UDF format was designed with rewritable

media in mind, the Windows 2000 UDF driver

(\Winnt\System32\Drivers\Udfs.sys) provides read-only

support

7

FAT

FAT (File Allocation Table) file systems are a legacy format that

originated in DOS and Windows 9x

Reasons why Windows supports FAT file systems:

to enable upgrades from other versions of Windows

compatibility with other operating systems in multiboot systems

as a floppy disk format

Windows FAT file system driver is implemented in

\Winnt\System32\Drivers\Fastfat.sys

Each FAT format includes a number that indicates the number of

bits the format uses to identify clusters on a disk

Boot sector
File allocation

table 2 (duplicate)

File allocation

table 1
Root directory Other directories and all files

FAT format organization

8

FAT12

FAT12's 12-bit cluster identifier limits a partition

to storing a maximum of 212 (4096) clusters

Windows uses cluster sizes from 512 bytes to 8 KB

in size, which limits a FAT12 volume size to 32 MB

 Windows uses FAT12 as the format for all 5-inch

floppy disks and 3.5-inch floppy disks, which store

up to 1.44 MB of data

9

FAT16

FAT16, with a 16-bit cluster identifier, can

address 216 (65,536) clusters

On Windows, FAT16 cluster sizes range from 512

bytes (the sector size) to 64 KB, which limits FAT16

volume sizes to 4 GB

The cluster size Windows uses depends on the size

of a volume

10

FAT32

FAT32 is the most recently defined FAT-based file system format

it's included with Windows 95 OSR2, Windows 98, and Windows

Millennium Edition

FAT32 uses 32-bit cluster identifiers but reserves the high 4 bits, so

in effect it has 28-bit cluster identifiers

Because FAT32 cluster sizes can be as large as 32 KB, FAT32 has a

theoretical ability to address 8 TB volumes

Although Windows works with existing FAT32 volumes of larger sizes

(created in other operating systems), it limits new FAT32 volumes to a

maximum of 32 GB

FAT32's higher potential cluster numbers let it more efficiently manage

disks than FAT16; it can handle up to 128-GB volumes with 512-byte

clusters

Unlike FAT12 and FAT16, root directory is not fixed size or location

Largest file size on Windows is 4GB (same as FAT16)

exFAT (FAT64)

Designed for flash drives

File size limit is 264, or 16 exa-bytes

Max cluster size is 2255 sectors, in practice 32 MB

Bitmap tracks free clusters  improves performance

Allows 1000+ files in a single directory  scalability

Win CE version of exFAT includes ACLs and

transactions

11

12

NTFS

NTFS is the native file system format of Windows

NTFS uses 64-bit cluster indexes

Theoretical ability to address volumes of up to 16 exabytes (16 billion

GB)

Windows limits the size of an NTFS volume to that addressable with

32-bit clusters, which is 256 TB (using 64-KB clusters)

Supports 232-1 files per volume

Max file size is 16TB

Why use NTFS instead of FAT? FAT is simpler, making it faster for

some operations, but NTFS supports:

Larger file sizes and disks

Better performance on large disks, large directories, and small files

Reliability

Security

13

File System Driver Architecture

Local File System Drivers (Local FSDs):

Ntfs.sys, Fastfat.sys, Exfat.sys, Udfs.sys, Cdfs.sys and raw FSD

Responsible for registering with the I/O manager and volume
recognition/integrity checks

FSD creates device objects for each mounted file system format

I/O manager makes connection between volume‘s device objects
(Created by storage device) and the FSD‘s device object

Local FSDs use cache manager to improve file access performance

Dismount operation permits the system to disconnect FSD from
volume object

When media is changed or when application requires raw
device access

I/O manager reinitiated volume mount operation on next access
to media

14

Layered Drivers -

I/O System Architecture
Environment

subsystem or

DLL

Services

I/O manager

1)Call I/O service

2)The I/O manager creates an IRP,

initializes first stack location and

calls file system driver

3)File system driver fills in a 2nd

IRP stack location and calls

the disk driver

User mode

Kernel mode

IRP

File system

driver

Disk

driver

IRP

4)Send IRP data to device

(or queue IRP), and return

6)Return I/O pending status

5)Return I/O pending status

7)Return I/O pending status

Optimization: associated IRPs

may work in parallel on a single

I/O request

Logical

volume

15

File System Driver Architecture

(contd.)

Remote File System Drivers (Remote FSDs):

Client-side FSD translates I/O requests from
applications into network file system protocol commands

Server-side FSD listens for network commands and
issues I/O requests to local FSD

Windows client-side remote FSD: LANMan Redirector

Implemented as port/miniport driver

Includes Windows service Workstation

Server-side FSD server: LANMan Server

Includes Windows service Server

CIFS – common internet file system (enhancement
of Server Message Block protocol)

Application

I/O manager

Remote FSD

(redirector)

Local FSD

Remote FSD

(server)

Storage device

driver
volume

user mode

kernel mode

client server

16

NTFS Design Goals

Overcome limitations inherent in FAT

FAT (File Allocation Table) does not support large disks very
well

FAT16 (MS-DOS file system) supports only up to 216 clusters
and 2 GB disks (with 64 Kb clusters!!)

FAT / root directory represents single point of failure

Number of entries in root directory is limited

17

NTFS Recoverability

PC disk I/O in the old days: Speed was most important

NTFS changes this view – Reliability counts most:

I/O operations that alter NTFS structure are implemented as atomic
transactions

Change directory structure,

extend files, allocate space for new files

Transactions are either completed or rolled back

NTFS uses redundant storage for vital FS information

Contrasts with FAT on-disk structures, which have single sectors
containing critical file system data

Read error in these sectors  volume lost

18

NTFS Security and Redundancy

NTFS security is derived from Windows object model

Open file is implemented as file object;
security descriptor is stored on disk as part of the file

NT security system verifies access rights when a process tries to open a
handle to any object

Administrator or file owner may set permissions

NTFS recoverability ensures integrity of FS structure

No guarantees for complete recovery of user files

Layered driver model + FTDISK driver

Mirroring of data – RAID level 1

Striping of data - RAID level 5 (one disk with parity info)

19

Other NTFS Features

Multiple data streams

Unicode-based names

Hard links

Symbolic links and Junctions

Compression and sparse files

Change logging

Per-user volume quotas

Link tracking

Encryption

POSIX support

Defragmentation

Read-only support and dynamic partitioning

20

Multiple Data Streams

In NTFS, each unit of information associated with a file,

including its name, its owner, its time stamps, its

contents, and so on, is implemented as a file attribute

(NTFS object attribute)

Each attribute consists of a single stream, that is, a

simple sequence of bytes

This generic implementation makes it easy to add more

attributes (and therefore more streams) to a file

 Because a file's data is "just another attribute" of the file and

because new attributes can be added, NTFS files (and file

directories) can contain multiple data streams

21

Multiple Data Streams

An NTFS file has one default data stream, which has no

name

An application can create additional, named data streams and

access them by referring to their names.

To avoid altering the Microsoft Windows I/O APIs, which take

a string as a filename argument, the name of the data stream

is specified by appending a colon (:) to the filename e.g.

myfile:stream2

22

Unicode Names

Like Windows as a whole, NTFS is fully Unicode

enabled, using Unicode characters to store

names of files, directories, and volumes

Directory and file names can be up to 255 chars

long and contain Unicode chars, embedded

spaces and multiple periods

23

Hard Links

A hard link allows multiple paths to refer to the same file

(doesn’t support directories)

If you create a hard link named C:\Users\Documents\Spec.doc

that refers to the existing file C:\My Documents\Spec.doc, the

two paths link to the same on-disk file and you can make

changes to the file using either path

can create hard links

with the Windows API

CreateHardLink function

or the ln POSIX function

Tools: fsutil hardlink create

 or mklink /H

On-disk local refs 

 can’t span Disks or volumes

24

Symbolic Links

Symbolic links (soft links), allow a directory to

redirect file or directory pathname translation to

an alternate directory

If the path C:\Drivers is a symbolic link that redirects

to C:\Winnt\System32\Drivers, an application

reading C:\Drivers\Ntfs.sys actually reads

C:\Winnt\System\Drivers\Ntfs.sys

Symbolic links are a useful way to lift directories that

are deep in a directory tree to a more convenient

depth without disturbing the original tree's structure

or contents

25

Symbolic Links

You can create symlinks with mklink command:

Symlink doesn’t have file size

Has its own modified time

26

Change Logging

Many types of applications, such as incremental

backup utilities, need to monitor a volume for

changes

An obvious way to watch for changes is to

perform a full scan

Very performance inefficient

There is a way for an application to “wait” on a

directory and be told of notifications

An application can miss changes since it must

specify a buffer to hold them

27

Change Logging

 NTFS provides the change journal,

which is a sparse metadata file that

records file system events

As the file exceeds its maximum on-disk

size, NTFS frees the disk space for the

oldest portions marking them empty

An application uses Win32 API

FSCTL_QUERY_USN_JOURNAL to

read events

The journal file is shared, and generally

large enough that an application won’t

miss changes even during heavy file

system activity

28

Per-User Volume Quotas

NTFS quota-management support allows for per-user

specification of quota enforcement

Can be configured to log an event indicating the occurrence to

the system Event Log if a user surpasses his warning limit

If a user attempts to use more volume storage than her quota

limit permits, NTFS can log an event to the system Event Log

and fail the application file I/O that would have caused the

quota violation with a "disk full" error code

User disk space is tracked on a per-volume basis by

summing the logical sizes of all the files and directories

that have the user as the owner in their security

descriptors

29

Link Tracking

Several types of symbolic file links are used by layered applications

Shell shortcuts allow users to place files in their shell namespace (on

their desktop, for example) that link to files located in the file system

namespace

Object linking and embedding (OLE) links allow documents from one

application to be transparently embedded in the documents of other

applications

In the past, these links were difficult to manage

If someone moved a link source (what a link points to), the link broke

Windows now has a link-tracking service, TrkWks (it runs in

services.exe), tags link sources with a unique object ID

NTFS can return the name of a file given a link, so if the link moves

the service can query each of a system’s volume for the object ID

A distributed link-tracking service, TrkSvr, works to track link source

movement across systems

30

Encryption

While NTFS implements security for files and directories, the

security is ineffective if the physical security of the computer is

compromised

Can install a parallel copy of Windows

NTFSDOS – read only access to NTFS from DOS environment

Encrypting File System (EFS)

Like compression, its operation is transparent

Also like compression, encryption is a file and directory attribute

Files that are encrypted can be accessed only by using the private

key of an account's EFS private/public key pair, and private keys are

locked using an account's password

While you might think that it’s implemented as a file system filter

driver, it’s a driver that’s tightly connected to NTFS

31

POSIX Support

POSIX support requires two file system features:

Primary group in security descriptor

Case-sensitive names

32

Defragmentation

Fragmentation: A file is fragmented if its data

occupies discontiguous clusters

33

Defragmentation

A common myth is that NTFS doesn’t fragment, but it

does

Defragmentation APIs have been present since NT 4

Windows 2000 introduced a non-schedulable graphical

defragmenter

A command line interface was added in Windows XP

34

Compression and Sparse Files

NTFS supports transparent compression of files

When a directories is marked compressed it means any files

or subdirectories are marked compressed

Compression is performed on 16-cluster blocks of a file

Use Explorer or the compact tool to compress files (compact

shows compression ratios for compressed files)

Sparse files are an application-controlled form of

compression that define parts of a file as empty – those

areas don’t occupy any disk space

Applications use Windows APIs to define empty areas

35

NTFS File System Driver

Cache

manager

Memory

manager

I/O manager

NTFS driver

Volume

manager

Disk driver

Access the mapped

file or flush the cache

Flush the

log file

Write the

cache

Log file

service
Log the transaction

Read/write the file

Load data

from disk

into

memory

Read/write

a mirrored

or striped

volume

Read/write

the disk

Layered drivers

36

Components related to NTFS

Cache Manager

System wide caching

for NTFS and other file systems drivers

Including network file system drivers (server and redirectors)

Cached files are mapped into virtual memory

Specialized file system interface from Cache Manager to Windows
memory manager

Memory manager calls NTFS to access disk driver and obtain file

Log File Service

Maintain a log of disk writes

Log file used to recover NTFS volume in case of system failures

Transaction log is flushed to disk before write-data is sent to disk

Cache manager performs actual flush operation

37

NTFS & File Objects

File object

Handle table

Process

File object
Data

attribute

User-

defined

attribute

Stream

control

blocks

File

control

block

Master file

table

NTFS data

structures
(used to manage

the on-disk

structure) NTFS

database
(on disk)

Object

manager

data

structures

App accesses files as

Windows objects by handles.

Object Manager and security

subsystem verify access rights

38

NTFS On-Disk Structure

Volumes correspond to logical partitions on disk

Fault tolerant volumes may span multiple disks

Windows 2000 Disk Administrator utility

Volume consists of series of files + unallocated space

FAT volume: some areas specially formatted for file system

NTFS volume: all data are stored as ordinary files

NTFS refers internally to clusters

Cluster factor: #sectors/cluster; varies with volume size;
(integral number of physical sectors; always a power of 2)

Logical Cluster Numbers (LCNs):

refer to physical location

LCNs are contiguous enumeration of all clusters on a volume

39

NTFS Cluster Size

Default cluster size is disk-size dependent

512 bytes for small disks (up to 512 MB)

1 KB for disks up to 1 GB

2 KB for disks between 1 and 2 GB

4 KB for disks larger than 2 GB

Tradeoff: disk fragmentation versus wasted space

NTFS refers to physical locations via LCNs

Physical disk address = LCN * cluster-factor

Virtual Cluster Numbers (VCNs):

Enumerates clusters belonging to a file; mapped to LCNs

VCNs are not necessarily physically contiguous

40

Master File Table

 All data stored on a volume is contained
in a file

MFT: Heart of NTFS volume structure

Implemented as array of file records

One row for each file on the volume
(including one row for MFT itself)

Metadata files store file system structure
information
(hidden files; $MFT; $Volume...)

More than one MFT record for highly
fragmented files

Nfi.exe Utility from OEM Support Tools
allows to dump MFT content
(see support.microsoft.com/support/
kb/articles/Q253/0/66.asp)

MFT

MFT copy (partial)

Log file

Volume file

Attribute def. table

Root directory

Bitmap file

Boot file

Bad cluster file

User files and dirs.

...

NTFS

metadata

files

41

NTFS operation

Mounting a volume

1. NTFS looks in boot file for physical address of MFT ($MFT)

2. 2nd entry in MFT points to copy of MFT ($MFTMirr)

used to locate metadata files in case MFT is corrupted

3. MFT entry in MFT contains VCN-to-LCN mapping info

4. NTFS obtains from MFT addresses of metadata files

NTFS opens these files

5. NTFS performs recovery operations

6. File system is now ready for user access

42

NTFS metadata

NTFS writes to log file ($LogFile)

Record all commands that change volume structure

Root directory:

When NTFS tries to open a file, it starts search in the root directory

Once the file is found, NTFS stores the file‘s MFT file reference

Subsequent read/write ops. may access file‘s MFT record directly

Bitmap file ($Bitmap):

 stores allocation state volume; each bit represents one cluster

Boot file ($Boot):

Stores bootstrap code

Has to be located at special disk address

Represented as file by NTFS  file ops. possible (!) (no editing)

43

NTFS metadata (contd.)

Bad-cluster file ($BadClus)

Records bad spots on the disk

Volume file ($Volume)

Contains: volume name, NTFS version

Bit, which indicates whether volume is corrupted

Attribute Definition Table ($AttrDef)

Defines attribute types supported on the volume

Indicates whether they can be indexed, recovered,
etc.

44

File Records &

File Reference Numbers

File on NTFS volume is identified by file reference

File number == index in MFT

Sequence number – used by NTFS for consistency checking;
incremented each time a reference is re-used

File Records:

File is collection of attribute/value pairs (one of which is data)

Unnamed data attribute

Other attributes: filename, time stamp, security descriptor,...

Each file attribute is stored as separate stream of bytes within a file

Sequence

number
File number

0 63 47

45

File Records (contd.)

NTFS doesn‘t read/write files:

It reads/writes attribute streams

Operations: create, delete, read (byte range), write (byte range)

Read/write normally operate on unnamed data attribute

Filename
Standard

information

Security

descriptor Data

Master File Table

MFT record for a small file

Windows optimization: Security descriptors

are stored in a central file and referenced

by each file record (saves disk space)

46

Standard Attributes for NTFS Files

Attribute Description

Standard

information

File attributes: read-only, archive, etc; time stamps;

creation/modification time; hard link count

Filename Name in Unicode characters; multiple filename

attributes possible (POSIX links!!); short names for

access by MS-DOS and 16-bin Win applications

Security descriptor Specifies who owns the file and who can access it

data Contents of the file; a file has one default unnamed data

attribute; directory has no default data attrib.

Index root, index Three attributes used to implement filename allocation,

bitmap index for large directories (dirs. only)

Attribute list List of attributes that make up the file and first reference

of the MFT record in which the attribute is located (for

files which require multiple MFT file records)

47

Attributes (contd.)

Each attribute in a file record has a name and a value

NTFS identifies attributes:

Uppercase name starting with $: $FILENAME, $DATA

Attribute‘s value: Byte stream

The filename for $FILENAME

The data bytes for $DATA

Attribute names correspond to numeric typecodes

File attributes in an MFT record are ordered by typecodes

Some attribute types may appear more than once (e.g. Filename)

48

Filenames
POSIX:

Case-sensitive, trailing periods & spaces

NTFS namespace equiv. to POSIX space

Win32:

Long filenames, unicode names

Multiple dots, embedded spaces, beginning
dots

MS-DOS:

8.3 names, case does not matter

NTFS generates MS-DOS names for Win32
files automatically

Fully functional aliases for NTFS names

Stored in same directory as long names; dir /x

POSIX

subsystem

Win32

subsystem

MS-DOS

Win16 clients

Namespaces

49

MS-DOS filenames in NTFS

NTFS name and MS-DOS name are stored in same file record and refer to same
file

Renaming changes both filenames

Open, read, write, delete work with both names equally

POSIX hardlinks are implemented in similar way

Deleting a file with multiple names only decreases link count

Generation of MS-DOS names:

1. Remove all illegal chars; remove all but one period; truncate to 6 chars

2. Append ~1 to name; truncate extension to 3 chars; all uppercase

3. Increment ~1 if filename duplicates an existing name in directory

NTFS filename Standard info MS-DOS filename Security desc. Data

MFT file record with MS-DOS filename attribute

50

Resident & Nonresident Attributes

Small files:

All attributes and values fit into MFT

Attribute with value in MFT is called “resident”

All attributes start with header (always resident)

Header contains offset to attr. value and length of value

NTFS filename Standard info Security desc. Data

MYFILE.DAT

„RESIDENT“

Offset: 8h

Length: 14h

header

value

51

Attributes (cont’d.)

Small directory:

index root attribute contains index of file references
for files and subdirectories

NTFS filename Standard info Index root Security desc. Empty

Index of files

file1, file2, file3,...

MFT file record for a small directory

• If file attribute does not fit into MFT:
• NTFS allocates separate cluster (run, extent) to store the values

• NTFS allocates additional runs if an attribute‘s value later grows

• Those attributes are called “non-resident“

• Header of non-resident attribute contains location info

52

Large files & directories

Only attributes that can grow can be non-resident

Filename & standard info are always resident

Index of files for directories forms B+ tree

NTFS filename Standard info NTFS extended attr. Security desc. Data

MFT record for large file with 2 data runs

NTFS filename Standard info Index root Security desc. Bitmap

file4, file8

MFT file record for a large directory

with nonresident filename index

Index allocation

file1, file2, file3 file5, file6

Index of files

VCN-to-LCN

mappings

53

Large files (contd.)

NTFS keeps track of runs by means of VCN
(Virtual Cluster Numbers)

Logical Cluster Numbers represent an entire volume

Virtual Cluster Numbers represent clusters belonging to one file

Attribute lists may extend over multiple runs (not only data)

NTFS filename Standard info Security desc. Data

 Data

VCN-to-LCN mappings for a

nonresident data attribute

Starting

VCN

Starting

LCN

Number of

clusters

0 1355 4

4 1588 4

VCN 0 1 2 3

LCN 1355 1356 1357 1358

 Data

VCN 4 5 6 7

LCN 1588 1589 1590 1591

54

Data Compression

NTFS supports compression

Per-file, per-directory, per-volume basis

NTFS compression is performed on user data only,

not NTFS metadata

Inspect files/volume via Winndows API:

GetVolumeInformation(), GetCompressedFileSize()

Change settings for files/directories:

DeviceIoControl()

with flags

FSCTL_GET_COMPRESSION, FSCTL_SET_COMPRESSION

55

Compression of sparse files

NTFS zeroes all file contents on creation (C2 req.)

Many sparse files contain large amount of zero-bytes

These bytes occupy space on disk – unless files are compressed

NTFS filename Standard info Security desc. Data

 Data

Starting

VCN

Starting

LCN

Number of

clusters

0 1355 16

32 1588 16

48 96 16

128 324 16

VCN 0 1 2 3 15

LCN 1355 1356 1357 1358 1370

 Data

VCN 32 33 34 35 ... 47

LCN 1588 1589 1590 1591 1603

Certain ranges of VCNs have no

disk allocation (16-31, 64-127)

56

Compressing Nonsparse Data

NTFS divides the file‘s unprocessed data into
compression units 16 clusters long

Certain sequence might not compress much

NTFS determines for each compression unit whether it will shrink
by at least one cluster

If data does not compress, NTFS allocates cluster space and simply
writes data

If data compresses at least one cluster, NTFS allocates only the
clusters needed for compressed data

When writing data, NTFS ensures that each run begins on virtual 16-
cluster boundary

NTFS reads/writes at least one compression unit when accessing a
file

Read-ahead + asynch. decompression improves performance

57

Data runs of a compressed file
0 15

19 20 21 22

VCN

LCN

Compressed data

16 31

23 24 25 26

Compressed data

32 47

97 98 99 100 101 102

Noncompressed data

48 63

Compressed data

27 28 29 30

103 104 105 106 107 108 109 110 111 112

113 114 115 116 117 118 119 120 121 122

Startin

g VCN

Startin

g LCN

No. of

cluster

s

0 19 4

16 23 8

32 97 16

48 113 10

MFT record for a compressed file

58

Further Reading

Mark E. Russinovich, et al. Windows Internals, 5th
Edition, Microsoft Press, 2009.

File Systems supported by Windows (from pp. 890)

File System Driver Architecture (from pp. 895)

NTFS Design Goals and Features (from pp. 918)

NTFS On-Disk Structure (from pp. 937)

59

Source Code References

Windows Research Kernel sources do not

include NTFS

A raw file system driver is included in

\base\ntos\raw

Also see \base\ntos\fstrl (File System Run-Time

Library)

