
File System (II)

2

Roadmap for Lecture

NTFS Recovery Support

Log File Service Operation

NTFS Recovery Procedures

Fault-Tolerance Support

Volume Management -
Striped and Spanned Volumes

Encryption File System Security

Encrypting File System (EFS) Terminology

EFS Operation

Data Encryption and Decryption

Windows EFS Architecture

Encryption Process Details

3

NTFS Recovery Support

Transaction-based logging scheme

Fast, even for large disks

Recovery is limited to file system data

Use transaction processing like SQL server for user data

Tradeoff: performance versus fully fault-tolerant file system

Design options for file I/O & caching:

Careful write: VAX/VMS fs, other proprietary OS fs

Lazy write: most UNIX fs, OS/2 HPFS

4

Careful Write File Systems

OS crash/power loss may corrupt file system

Careful write file system orders write operations:

System crash will produce predictable, non-critical inconsistencies

Update to disk is broken in sub operations:

Sub operations are written serially

Allocating disk space: first write bits in bitmap indicating usage;
then allocate space on disk

I/O requests are serialized:

Allocation of disk space by one process has to be completed before
another process may create a file

No interleaving sub operations of the two I/O requests

Crash: volume stays usable; no need to run repair utility

5

Lazy Write File Systems

Careful file system write sacrifices speed for safety

Lazy write improves performance by write back caching

Modifications are written to the cache;

Cache flush is an optimized background activity

Less disk writes; buffer can be modified multiple times

before being written to disk

File system can return to caller before op. is completed

Inconsistent intermediate states on volume are ignored

Greater risk / user inconvenience if system fails

6

Recoverable File System
(Journaling File System)

Safety of careful write fs / performance of lazy write fs

Log file + fast recovery procedure

Log file imposes some overhead

Optimization over lazy write: distance between cache flushes
increased

NTFS supports cache write-through and cache flushing
triggered by applications

No extra disk I/O to update fs data structures necessary:
all changes to fs structure are recorded in log file which can
be written in a single operation

In the future, NTFS may support logging for user files (hooks
in place)

7

Log File Service (LFS)

LFS is designed to provide logging to multiple

kernel components (clients)

Currently used only by NTFS

Cache

manager

I/O manager

NTFS driver

Access the mapped

file or flush the cache

Flush the

log file

Write/flush

the log file

Log file

service
Log the transaction

Write the

Volume updates

8

Log File Regions

NTFS calls LFS to read/write restart area

Context info: location of logging area to be used for recovery

LFS maintains 2nd copy of restart area

Logging area: circularly reused

LFS uses logical sequence numbers (LSNs) to identify log records

NTFS never reads/writes transactions to log file directly

During recovery:

NTFS calls LFS to read forward; recorded transactions are redone

NTFS calls LFS to read backward; undo all incompletely logged
transactions

LFS restart area „infinite“ logging area

Copy 1 Copy 2 Log records

9

Operation of the LFS/NTFS

1. NTFS calls LFS to record in (cached) log file any
transactions that will modify volume structure

2. NTFS modifies the volume (also in the cache)

3. Cache manager calls LFS to flush log file to disk
(LFS implements flushing by calling cache manager back, telling
which page to flush)

4. After cache manager flushes log file, it flushes volume
changes

Transactions of unsuccessful modifications can be
retrieved from log file and un-/redone

Recovery begins automatically the first time a volume is
used after system is rebooted.

10

Log Record Types

Update records (series of ...)

Most common; each record contains:

Redo information: how to reapply on subop. of a committed
trans.

Undo information: how to reverse a partially logged sub
operation

Last record commits the transaction (not shown here)

Log file records

... T1a T1b T1c

Redo: Allocate/initialize an MFT file record

Undo: Deallocate the file record

Redo: Add the filename to the index

Undo: Remove the filename from the index

Redo: Set bits 3-9 in the bitmap

Undo: Clear bits 3-9 in the bitmap

Recovery: redo committed/undo incompletely logged transact.

11

Log Records (contd.)

Physical vs. logical description of redo/undo actions:

Delete byte range on disk vs. Delete file “a.dat”

NTFS writes update records with physical descriptions

NTFS writes update records (usually several) for:

Creating a file

Deleting a file

Extending a file

Truncating a file

Setting file information

Renaming a file

Changing security applied to a file

Redo/undo ops. must be idempotent
(can be applied multiple times)

12

Checkpoint Records

NTFS periodically writes a checkpoint record

Describes, what processing would be necessary to recover a

volume if a crash would occur immediately

How far back in the log file must NTFS go to begin recovery

LSN of checkpoint record is stored in restart area

Log file records

... LSN 2058 LSN 2059 LSN 2060

Checkpoint record

NTFS restart

13

Log File Full

LFS presents log file to NTFS as if it were infinitely large

Writing checkpoint records usually frees up space

LFS tracks several numbers:

Available log space

Amount of space needed to write an incoming log record and to undo the
write

Amount of space needed to roll back all active (no committed)
transactions, should that be necessary

Insufficient space: “Log file full” error & NTFS exception

NTFS prevents further transactions on files (block creation/deletion)

Active transactions are completed or receive “log file full” exception

NTFS calls cache manager to flush unwritten data

If data is written, NTFS marks log file “empty”; resets beginning of log file

No effect on executing programs (except short I/O pause)

14

Recovery - Principles

NTFS performs automatic recovery

Recovery depends on two NTFS in-memory tables:

Transaction table: keeps track of active transactions (not
completed)
(sub operations of these transactions must be removed from disk)

Dirty page table: records which pages in cache contain
modifications to file system structure that have not yet been written
to disk

NTFS writes checkpoint every 5 sec.

Includes copy of transaction table and dirty page table

Checkpoint includes LSNs of the log records containing the tables

Dirty page

table

Update

record

Transaction

table

Checkpoint

record

Update

record

Update

record

Begin of checkpoint operation End of checkpoint operation

Analysis pass

15

Recovery - Passes

1. Analysis pass

• NTFS scans forward in log file from beginning of last checkpoint

• Updates transaction/dirty page tables it copied in memory

• NTFS scans tables for oldest update record of a non-committed trans.

2. Redo pass

• NTFS looks for “page update” records which contain volume
modification that might not have been flushed to disk

• NTFS redoes these updates in the cache until it reaches end of log file

• Cache manager “lazy writer thread” begins to flush cache to disk

3. Undo pass

• Roll back any transactions that weren't committed when system failed

• After undo pass – volume is at consistent state

• Write empty LFS restart area; no recovery is needed if system fails now

16

Undo Pass - Example

LSN

4044

LSN

4045

LSN

4046

LSN

4047

LSN

4048

LSN

4049

“Transaction committed” record

Redo: Allocate/Initialize an MFT file record

Undo: Deallocate the file record

Redo: Add the filename to the index

Undo: Remove the filename from the index

Redo: Set bits 3-9 in the bitmap

Undo: Clear bits 3-9 in the bitmap

Power

failure

Transaction 1 was commited before power failure

Transaction 2 was still active

NTFS must log undo operations in log file!

Power might fail again during recovery;

NTFS would have to redo its undo operations

17

NTFS Recovery - Conclusions

Recovery will return volume to some pre-existing consistent state
(not necessarily state before crash)

Lazy commit algorithm: log file is not immediately flushed when a
“transaction committed” record is written

LFS batches records;

Flush when cache manager calls or check pointing record is
written (once every 5 sec)

Several parallel transactions might have been active before
crash

NTFS uses log file mechanisms for error handling

Most I/O errors are not file system errors

NTFS might create MFT record and detect that disk is full when
allocating space for a file in the bitmap

NTFS uses log info to undo changes and returns “disk full” error
to caller

18

Fault Tolerance Support

NTFS’ capabilities are enhanced by the fault-tolerant
volume managers FtDisk/DMIO

Lies above hard disk drivers in the I/O system‘s layered driver
scheme

FtDisk – for basic disks

DMIO – for dynamic disks

Volume management capabilities:

Redundant data storage

Dynamic data recovery from bad sectors on SCSI disks

NTFS itself implements bad-sector recovery for
non-SCSI disks

19

Volume Management Features –

Spanned Volumes

Spanned Volumes:

single logical volume composed of a maximum of 32 areas of free
space on one or more disks

NTFS volume sets can be dynamically increased in size
(only bitmap file which stores allocation status needs to be extended)

FtDisk/DMIO hide physical configuration of disks from file system

Tool: Windows Disk Management MMC snap-in

Spanned volumes were called volume sets in Windows NT 4.0

C:

(100 MB)

E:

(100 MB)

D:

(100 MB)

D:

(100 MB)

Volume set D:

occupies half of

two disks

20

Striped Volumes

Series of (up to 32) partitions, one partition per disk (of same size)

Combined into a single logical volume

FtDisk/DMIO optimize data storage and retrieval times

Stripes are relatively narrow: 64KB

Data tends to be distributed evenly among disks

Multiple pending read/write ops. will operate on different disks

Latency for disk I/O is often reduced (parallel seek operations)

(150 MB) (150 MB) (150 MB)

1 2

4

3

21

Fault Tolerant Volumes

FtDisk/DMIO implement redundant storage schemes

Mirror sets

Stripe sets with parity

Sector sparing

Tools: Windows Disk Management MMC snap-in

• Mirrored Volumes (a.k.a. RAID-1):
– Contents of a partition on one disk are duplicated on another disk

– FtDisk/DMIO write same data to both locations

– Read operations are done simultaneously on both disks

(load balancing)

C:

C:

(mirror)

22

RAID-5 Volumes

Fault tolerant version of a regular stripe set

Parity: logical sum (XOR)

Parity info is distributed evenly over available disks

FtDisk/DMIO reconstruct missing data by using XOR op.

However I/O performance degraded until the failed disk is replaced

parity

23

Bad Cluster Recovery

Sector sparing is supported by FtDisk/DMIO

Dynamic copying of recovered data to spare sectors

Without intervention from file system / user

Works for certain SCSI disks

FtDisk/DMIO return bad sector warning to NTFS

Sector re-mapping is supported by NTFS

NTFS will not reuse bad clusters

NTFS copies data recovered by FtDisk/DMIO into a new
cluster

NTFS cannot recover data from bad sector without help
from FtDisk/DMIO

NTFS will never write to bad sector (re-map before write)

24

Bad-cluster re-mapping

NTFS filename Standard info Security desc. Data

 Data

User file

Startin

g VCN

Startin

g LCN

Number of

clusters

0 1355 2

2 1049 1

3 1588 4

VCN 0 1

LCN 1355 1356 Data

VCN 3 4 5 6

LCN 1588 1589 1590 1591

 Data

VCN 2

LCN 1049

NTFS filename Standard info Security desc. Data

Startin

g VCN

Startin

g LCN

Number of

clusters

0 1357 1
 Bad

VCN 0

LCN 1357

25

Encrypting File System Security

EFS relies on Windows cryptography support

Transparent encryption through Windows Explorer or cipher-utility

26

EFS operation

When a file is encrypted...

EFS generates random File Encryption Key (FEK) to encrypt file content

Stronger variant of Data Encryption Standard (3DES or AES) to encrypt
file content (fast, shared secret)

File’s FEK is stored with file and encrypted using the file creator‘s
RSA public key (slow)

File can be decrypted...

only with the user‘s private RSA key

What about lost keys?

FEK can be stored in multiple encryptions...

Users can share an encrypted file

Can store a recovery key to allow recovery agents access to files

Secure public/private key pairs are essential

Stored on \Users\xxx\AppData\Roaming\Microsoft\Crypto\RSA

27

Basic Terminology

Plaintext

The stuff you want to secure, typically readable by humans (email) or
computers (software, order)

Ciphertext

Unreadable, secure data that must be decrypted before it can be
used

Key

You must have it to encrypt or decrypt (or do both)

Cryptoanalysis

Hacking it by using science

Complexity Theory

How hard is it and how long will it take to run a program

28

Symmetric Key Cryptography

Encryption

“The quick

brown fox

jumps over

the lazy

dog”

“AxCv;5bmEseTfid3)

fGsmWe#4^,sdgfMwi

r3:dkJeTsY8R\s@!q3

%”

“The quick

brown fox

jumps over

the lazy

dog”

Decryption

Plain-text input Plain-text output Cipher-text

Same key

(shared secret)

29

Symmetric Pros and Cons

Weakness:

Agree the key beforehand

Securely pass the key to the other party

Strength:

Simple and really very fast (order of 1000 to 10000

faster than asymmetric mechanisms)

Super-fast if done in hardware (DES)

Hardware is more secure than software, so DES makes it

really hard to be done in software, as a prevention

30

Public Key Cryptography

Knowledge of the encryption key doesn’t give

you knowledge of the decryption key

Receiver of information generates a pair of keys

Publish the public key in directory

Then anyone can send him messages

that only she can read

31

Public Key Encryption

Encryption

“The quick

brown fox

jumps over

the lazy

dog”

“Py75c%bn&*)9|fDe^

bDFaq#xzjFr@g5=&n

mdFg$5knvMd’rkveg

Ms”

“The quick

brown fox

jumps over

the lazy

dog”

Decryption

Clear-text Input Clear-text Output Cipher-text

Different keys
Recipient’s

public key
Recipient’s

private key

private public

32

Problem of Key Recovery

What if you lose the private key? 

Data recovery by authorized agents

Integrated key management

Windows:

Flexible recovery policy

Enterprise, domain, or per machine

Encrypted backup and restore

Integrated with Windows backup

Potential weakness but you can opt not to use it!

33

Windows EFS Architecture

LSASS

LSAsrv

EFS functions

Microsoft Base

Cryptographic

Service Provider 1.0

Cryptographic service

providers

...

Application

NTFS
KSecDD

Encrypted

 file access ALPC

User mode

Kernel mode

34

EFS Components

Local Security Authority Subsystem

LSASS (\Winnt\System32\Lsass.exe) manages logon sessions

EFS obtains FEKs from LSASS

KSecDD device driver implements comm. with LSASS

LSAsrv listens for ALPC comm.

Passes requests to EFS functions

Uses functions in MS CryptoAPI (CAPI) to decrypt FEK for EFS

Crypto API ...

is implemented by Cryptographic Service Provider (CSP) DLLs

Details of encryption/key protection are abstracted away

35

Format of EFS information

and key entries for a file

Version

Checksum

Number of DDF key entries

DDF key entry 1

DDF key entry 2

Number of DRF key entries

DRF key entry 1

Header

Data

decryption

field

Data

recovery

field

EFS information

User SID

(S-1-5-21-...)

Container name

(ee341-2144-55ba...)

Provider Name
(MS Base Cryptographic Provider 1.0)

EFS certificate hash

(cb3e4e...)

Encrypted FEK

(03fe4f3c...)

Key entry

Describes the storage

position of the user‘s key
Key ring

(users sharing a file)

36

Encrypted Data Recovery Agents

group policy

Use Group Policy MMC snap-in to configure
recovery agents (...list may be empty)

37

Data Encryption Process

Data Recovery

Field generation

(e.g., RSA)

DRF

Recovery agent’s

public key (in certificate)

in recovery policy

Launch key
for nuclear

missile
“RedHeat”

is...

Data Decryption

Field generation

(e.g., RSA)

DDF

User’s

public key

(in certificate)

RNG

Randomly-

generated

file encryption key

(FEK)

File encryption

(e.g., DES)

*#$fjda^j

u539!3t

t389E *&\@

5e%32\^kd

38

Encryption Process Details

1. User profile is loaded if necessary

2. A log file Efsx.log is created

• In system volume info dir; x is unique number

3. Base Cryptographic Provider 1.0 generates random 128-bit FEK

4. User EFS private/public key pair is generated or obtained

• HKEY_CURRENT_USER\Software\Microsoft\Windows
NT\CurrentVersion
\EFS\CurrentKeys\CertificateHash identifies the user‘s key pairs

5. A DDF key ring is created for the file with an entry for the user

• Entry contains copy of FEK encrypted with user‘s public key

6. A DRF key ring is created for the file

• Has an entry for each recovery agent on the system

• Entries contain copies of FEK encrypted with agents‘ public keys

39

Encryption Process Details (contd.)

7. A backup file is created (Efs0.tmp)

• Same directory as original file

8. DDF and DRF rings are added to a header

• EFS attributes - $LOGGED_UTILITY_STREAM

9. Backup file is marked encrypted, original file is copied to backup

10. Original file‘s contents are destroyed

• Backup is copied to original

• This results in encrypting the file contents

11. The backup file is deleted

12. The log file is deleted

13. The user profile is unloaded (if it was loaded in step 1)

 In case of system crash, either original file or backup contain valid
copy of the file content.

40

*#$fjda^j

u539!3t

t389E *&\@

5e%32\^kd

Launch key
for nuclear

missile
“RedHeat”

is...

File decryption

(e.g., DES)

DDF

DDF extraction

(e.g., RSA)

File encryption

key (FEK)

DDF is decrypted

using the private key

to get to the file

encryption key (FEK)
DDF contains file

encryption key (FEK)

encrypted under

user’s public key

User’s private

key

Data Decryption Process

41

*#$fjda^j

u539!3t

t389E *&\@

5e%32\^kd

Launch key
for nuclear

missile
“RedHeat”

is...

File decryption

(e.g., DES)

DRF

DRF extraction

(e.g., RSA)

DRF contains file

encryption key (FEK)

encrypted under

recovery agent’s

public key

File encryption

key (FEK)

DRF is decrypted

using the private key

of recovery agent to

get to the file

encryption key (FEK)

Recovery agent’s

private key

Data Recovery Process

42

Flow of EFS

Application

NTFS file

system driver
Cache manager

Volume

Application writes data

to an encrypted file
1

NTFS places data in

file system cache
2

Cache manager lazy

writes data to disk via NTFS
3

4 NTFS uses EFS code to encrypt

file contents headed to disk.

NTFS writes encrypted

file contents to disk

43

Backing Up Encrypted Files

Data is never available in unencrypted form

Except to applications that access file via encryption facility

EFS provides a facility for backup programs:

No need to encrypt or decrypt files when backup

EFS API: OpenEncryptedFileRaw(), ReadEncryptedFileRaw(),
WriteEncryptedFileRaw(), CloseEncryptedFileRaw()

Implemented in Advapi32.dll, use ALPC to invoke function in
LSAsrv

LSAsrv calls EfsReadFileRaw() to obtain file‘s EFS attribute
and the encrypted contents from NTFS driver

Similarly, EfsWriteFileRaw() is invoked to restore file‘s
contents

44

Further Reading

Mark E. Russinovich et al. Windows Internals, 5th
Edition, Microsoft Press, 2009.

Chapter 11 - File Systems
NTFS Recovery Support (from pp. 974)

Chapter 8 - Storage Management
Multipartition Volume Management (from pp. 661)

Encrypting File System Security (from pp. 990)

Applied Cryptography, B. Schneier, John Wiley & Sons,
ISBN 0-471-12845-7

Handbook of Applied Cryptography, A.J. Menezes, CRC
Press, ISBN 0-8493-8523-7

45

Source Code References

Windows Research Kernel sources do not

include NTFS

A raw file system driver is included in

\base\ntos\raw

Also see \base\ntos\fstrl (File System Run-Time

Library)

