Windows Security

Roadmap for This Lecture

- Windows Security Features
- Components of the Security System
- Protecting Objects
- Security Descriptors and Access Control Lists
- Auditing and Impersonation
- Privileges
- Windows Logon
- Kerberos Protocol Principles / Active Directory

Windows Security Mechanisms

- Permissions can be applied to all shareable resources
 - Including the NTFS file system
 - ...but not the FAT file system
- Encrypted File System protects data while OS is offline
 - Un-authorized physical access
- Native support for Kerberos authentication
- Public Key infrastructure to pass digital certificates
- IP Security to protect sensitive data traveling across the wire
- Crypto-APIs built into Windows
 - Hashing and encryption

The three hearts of Windows Security

- Local Security Authority (LSA) as local user-mode process
 - Heart of user authentication on local machine
- LSA on domain controller
 - Heart of user authentication on networked machines
- Security Reference Monitor
 - Heart of object access protection

Security Components

NtosKrnl.Exe

hardware interfaces (buses, I/O devices, interrupts, interval timers, DMA, memory cache control, etc., etc.)

Security Components

- Local Security Authority
 - User-mode process (\Windows\System32\Lsass.exe) that implements policies (e.g. password, logon), authentication, and sending audit records to the security event log
 - LSASS policy database: registry key HKLM\SECURITY

LSASS Components

SAM Service

- A set of subroutines (\Windows\System32\Samsrv.dll) responsible for managing the database that contains the usernames and groups defined on the local machine
- SAM database: A database that contains the defined local users and groups, along with their passwords and other attributes. This database is stored in the registry under HKLM\SAM.
- Password crackers attack the local user account password hashes stored in the SAM

LSASS Components

Active Directory

- A directory service that contains a database that stores information about objects in a domain
- A domain is a collection of computers and their associated security groups that are managed as a single entity
- The Active Directory server, implemented as a service, \Windows\System32\Ntdsa.dll, that runs in the Lsass process

Authentication packages

- DLLs that run in the context of the Lsass process and that implement Windows authentication policy:
 - LanMan: \Windows\System32\Msvc1_0.dll
 - Kerberos: \Windows\System32\Kerberos.dll
 - Negotiate: uses LanMan or Kerberos, depending on which is most appropriate

LSASS Components

- Net Logon service (Netlogon)
 - A Windows service (\Windows\System32\Netlogon.dll) that runs inside Lsass and responds to Microsoft LAN Manager 2 Windows NT (pre-Windows 2000) network logon requests
 - Authentication is handled as local logons are, by sending them to Lsass for verification
 - Netlogon also has a locator service built into it for locating domain controllers

Security Components

- Logon process (Winlogon)
 - A user-mode process running \Windows\System32\Winlogon.exe that is responsible for responding to the Secure Attention Sequence (SAS) and for managing interactive logon sessions
- Graphical Identification and Authentication (GINA)
 - A user-mode DLL that runs in the Winlogon process and that Winlogon uses to obtain a user's name and password or smart card PIN
 - Default is \Windows\System32\Msgina.dll

Security Reference Monitor

- Performs object access checks, manipulates privileges, and generates audit messages
- Group of functions in Ntoskrnl.exe
 - Some documented in DDK
 - Exposed to user mode by Windows API calls

Communication between SRM and LSA

- Communication via local procedure call (ALPC)
 - SeLsaCommandPort/SeRmCommand port for initialization
 - Usage of private ports/shared memory when initialization is completed

Protecting Objects

- Access to an object is gated by the Security Reference Monitor (SRM),
 - performs access validation at the time that an object is opened by a process
- Access validation is a security equation that consists of the following components:
 - Desired Access: the type of access that is being requested.
 - must be specified up front,
 - include all accesses that will be performed on the object as a result of the validation.
 - Token: identifies the user that owns the process, as well as the privileges of the user.
 - Threads can adopt a special type of token called an "impersonation token" that contains the identify of another account.
 - The Object's Security Descriptor
 - contains a Discretionary Access Control List (DACL),
 - describes the types of access to the object users are allowed.

Handles and Security

- If the validation succeeds, a handle is created in the process requesting access and through which the process accesses the resource
- Changing security on an object only affects subsequent opens
 - Processes that have existing handles can continue to access objects with the accesses they were granted
 - E.g. changing permissions on a share won't affect currently connected users

Tokens

- The main components of a token are:
 - SID of the user
 - SIDs of groups the user account belongs to

Privileges assigned to the user (described in next)

section)

Account SID

Group 1 SID

Group n SID

Privilege 1

Privilege 1

Security Identifiers - SIDs

- Windows uses Security Identifers (SIDs) to identify security principles:
 - Users, Groups of users, Computers, Domains
- SIDs consist of:
 - A revision level e.g. 1
 - An identifier-authority value e.g. 5 (SECURITY_NT_AUTHORITY)
 - One or more subauthority values
- SIDs are generally long enough to be globally statistically unique
- Setup assigns a computer a SID
- Users and groups on the local machine are assigned SIDs that are rooted with the computer SID, with a Relative Identifier (RID) at the end
 - Some local users and groups have pre-defined SIDs (eg. World = S-1-1-0)
 - RIDs start at 1000 (built-in account RIDs are pre-defined)

Security Descriptors

- Descriptors are associated with objects: e.g. files, Registry keys, application-defined
- Descriptors are variable length

Constructing a Security Descriptor

Discretionary Access Control Lists DACLs

- DACLs consist of zero or more Access Control Entries
 - A security descriptor with no DACL allows all access
 - A security descriptor with an empty (0-entry) DACL denies everybody all access
- An ACE is either "allow" or "deny"

Access Check

- ACEs in the DACL are examined in order
 - Does the ACE have a SID matching a SID in the token?
 - If so, do any of the access bits match any remaining desired accesses?
 - If so, what type of ACE is it?
 - Deny: return ACCESS_DENIED
 - Allow: grant the specified accesses and if there are no remaining accesses to grant, return ACCESS_ALLOWED
 - If we get to the end of the DACL and there are remaining desired accesses, return ACCESS_DENIED
- The Security Reference Monitor (SRM) implements an explicit allow model
 - Exposed to apps through Windows API AccessCheck(), AccessCheckByType(), TrusteeAccessToObject())

Example: Access granted

Example: Access denied

Access Check Quiz

ACE Ordering

- The order of ACEs is important!
 - Low-level security APIs allow the creation of DACLs with ACEs in any order
 - All security editor interfaces and higher-level APIs order ACEs with denies before allows
 Token
- Example:

DACL
Deny
Authors
Read
Allow
Mark
All

Access Special Cases

- An object's owner can always open an object with WRITE_DACL and READ_DACL permission
- An account with "take ownership" privilege can claim ownership of any object
- An account with backup privilege can open any file for reading
- An account with restore privilege can open any file for write access

Object-specific ACEs

- Object-specific ACEs can be applied to Directory Services (DS) objects
 - They are just like ACES, but have two GUID fields
- The GUIDs allow the ACE to:
 - Control access to a property sheet or set on the object
 - Specify the type of child object that can inherit the ACE.
 - Specify the type of child object for which the ACE grants or denies creation rights

Controllable Inheritance

- In NT 4.0, objects only inherit ACEs from a parent container (e.g. Registry key or directory) when they are created
 - No distinction made between inherited and non-inherited ACES
 - No prevention of inheritance
- In Windows 2000 and higher inheritance is controllable
 - SetNamedSecurityInfoEx and SetSecurityInfoEx
 - Will apply new inheritable ACEs to all child objects (subkeys, files)
 - Directly applied ACEs take precedence over inherited ACEs.

Auditing

- Provides for monitoring of accesses to objects
 - Even if you specify auditing information for an object, it won't result in audit records unless Auditing is enabled
 - An administrator can enable it with the Local Security Policy Editor (secpol.msc)
 - The security log can be viewed with the Event Log Viewer
- Like for DACLs, SACL check is made on open after access check
 - Audit check is performed only if system auditing for access check result is on
 - Only ACEs that match access check result are processed
 - Test is similar to DACL test, but a record is written if there is any match

Impersonation

- Lets an application adopt the security profile of another user
 - Used by server applications
 - Impersonation is implemented at the thread level
 - The process token is the "primary token" and is always accessible
 - Each thread can be impersonating a different client
- Can impersonate with a number of client/server networking APIs – named pipes, RPC, DCOM

Process and Thread Security Structures

- Process/thread/access token objects have security descriptors
- Thread 2 has an impersonation token
- Thread 1 defaults to process access token

Privileges

- Specify which system actions a process (or thread) can perform
- Privileges are associated with groups and user accounts
 - There are sets of pre-defined privileges associated with built-in groups (e.g. System, Administrators)
- Examples include:
 - Backup/Restore
 - Shutdown
 - Debug
 - Take ownership
- Privileges are disabled by default and must be programmatically turned on with a system call

Powerful Privileges

- There are several privileges that gives an account that has them full control of a computer:
 - Debug: can open any process, including System processes to
 - Inject code
 - Modify code
 - Read sensitive data
 - Take Ownership: can access any object on the system.
 - Replace system files
 - Change security
 - Restore: can replace any file
 - Load Driver
 - Drivers bypass all security
 - Create Token
 - Can spoof any user (locally)
 - Requires use of undocumented Windows API
 - Trusted Computer Base (Act as Part of Operating System)
 - Can create a new logon session with arbitrary SIDs in the token

What Makes Logon Secure?

- Before anyone logs on, the visible desktop is Winlogon's
- Winlogon registers CTRL+ALT+DEL, the Secure Attention Sequence (SAS), as a standard hotkey sequence
- SAS takes you to the Winlogon desktop
- No application can deregister it because only the thread that registers a hotkey can deregister it
- When Windows' keyboard input processing code sees SAS it disables keyboard hooks so that no one can intercept it

Logon

- After getting security identification (account name, password), the GINA sends it to the Local Security Authority Sub System (LSASS)
- LSASS calls an authentication package to verify the logon
 - If the logon is local or to a legacy domain, MSV1_0 is the authenticator.
 User name and password are encrypted and compared against the Security Accounts Manager (SAM) database
 - If the logon is to a AD domain the authenticator is Kerberos, which communicates with the AD service on a domain controller
- If there is a match, the SIDs of the corresponding user account and its groups are retrieved
- Finally, LSASS retrieves account privileges from the Security database or from AD

Logon

- LSASS creates a token for your logon session and Winlogon attaches it to the first process of your session
 - Tokens are created with the NtCreateToken API
 - Every process gets a <u>copy</u> of its parent's token
- SIDs and privileges can be added to a token
- A logon session is active as long as there is at least one token associated with the session

Local Logon

Remote Logon - Active Directory

If the logon is for a domain account, the encrypted credentials are sent to LSASS on the domain controller:

Kerberos Authentication

- Single account store in Active Directory
- Integrated Kerberos v5 logon
- Protected store for public key credentials

Industry standard network security protocols

(SSL - Secure Socket Layer, TLS - Transport Layer Security)

Cross-platform Strategy

Common Kerberos domain

(SSPI - Security Service Provider Interface, GSS - Global Security Service)

Kerberos Authentication Service

- Developed as part of MIT project Athena
- Kerberos implements an authentication procedure which verifies identity of communication partners
 - DES algorithm, symmetric key encryption
 - Authentication server (Kerberos Server)
 - TGS (Ticket Granting Service)
 - Client proves his identity by presenting an encrypted, servicespecific ticket (T_{c.s}) when issuing a request
- Kerberos server and Ticket Granting Service (TGS) are assumed to be secure (trusted hosts)

Kerberos principles

- Kerberos requires three main steps:
 - Client identifies himself against Kerberos Server (Active Directory), it receives a master ticket (the Ticket Granting Ticket -TGT)
 - 2. Client requests service-specific tickets and prove his identity with the TGT
 - 3. Client uses service-specific ticket to contact server
- Authentication is transparent from user's point of view
 - Windows login program acquires TGT
 - (Client) Applications transparently acquire service-specific tickets
 - TGS-issued tickets and TGT have a default lifetime of eight hours

Kerberos principles (contd.)

- 1. Client -> AS: c, tgs, n
- 2. AS -> Client: $\{K_{c,tgs},n\}K_c$, $\{T_{c,tgs}\}K_{tgs}$
- 3. Client -> $TGS: \{A_c\}K_{c,tgs}, \{T_{c,tgs}\}K_{tgs}, s, n$
- 4. TGS -> Client: $\{K_{c,s}, n\}K_{c,tgs}$, $\{T_{c,s}\}K_{s}$
- 5. Client-> Server: $\{A_c\}K_{c,s}$, $\{T_{c,s}\}K_{s}$

 $K_{c:}$ client's secret key $K_{c,tgs:}$ key for comm. between client and TGS $\{T_{c,tgs}\}K_{tgs:}$ encrypted ticket for TGS $K_{c,s:}$ key for client/service communication $\{T_{c,s}\}K_{s:}$ encrypted ticket for service Ac authentication info

Tickets and Authentication info

- Kerberos tickets contain the following data:
 - User name
 - Address of workstation
 - Time stamp
 - Lifetime of the ticket
 - Address of the host running the requested service
 - Session key for client/server communication
- Tickets are encrypted with the server's private key (K_s)
- Authentication info (A_c) contains the following data:
 - User name
 - Address of workstation
 - Time stamp
- Authentication info is encrypted with the session key K_{c,s}

Kerberos Version 5 - Windows

- Multiple supported encryption algorithms through Crypto-API foundation
- Keys carry info about encryption algorithm used
 - Can be re-used for different encryption algorithms
- Network addresses may have arbitrary formats
 - Server may specify all supported protocols/addresses in ticket
- Network data format and encryption are standardized
 - ASN.1 format (ISO 8824), no special format for multi-byte data
 - Encryption based on (ISO 8825)
- Tickets contain plaintext section
 - Server may support multiple personalities, actual role is chosen on plaintext info
- Tickets carry starting time and expiration time

Ticket Characteristics

- KDC returns special tickets on initial ticket exchange
 - Password can only be changed with those special tickets
- Renewable tickets may carry two expiration dates
 - Only valid after first but before second date
- Tickets may be postdated
 - Interesting for batch processing
- Authorization data field
 - KDC copies authorization info from TGT into every newly generated ticket
 - Windows Kerberos supports public/private key for initial authentication (to obtain TGT via user-supplied private key)

Lab Demos

- Inspecting SAM service
 - Open Lsass.exe process properties click on services tab
 - Click Find DLL search for Samsrv.dll
- Open Ntoskrnl.exe with Dependency Walker and view functions starting with "Se"
- Run "LogonSessions –p" (from Sysinternals) to view the active logon sessions on your system
 - Run pview.exe (in \sysint\reskit folder)
 - Select process (explorer.exe)
 - Watch process/thread/p-token/t-token security descriptors
 - Watch process/thread access token (gray button no thread specific token existent)
- View process handles and corresponding granted accesses with Process Explorer
- Explorer file auditing settings

Further Reading

- Mark E. Russinovich and David A. Solomon, Microsoft Windows Internals, 5th Edition, Microsoft Press, 2009.
 - Chapter 6, Security
- Wikipedia: Kerberos (Protocol) http://en.wikipedia.org/wiki/Kerberos_(protocol)
- John T.Kohl, B.Clifford Neumann, Theodore Y.Ts'o, The Evolution of the Kerberos Authentication Service, Proceedings of Spring 1991 EurOpen Conference, Tromsø, Norway.
- Johnson M. Hart, Win32 System Programming: A Windows® 2000 Application Developer's Guide, 2nd Edition, Addison-Wesley, 2000.
 - Chapter 5, Securing Win32 objects (from pp. 111)

Source Code References

- Windows Research Kernel sources
- Windows Research Kernel sources
 - \base\ntos\se Security Reference Monitor
 - \base\ntos\inc\se.h additional structure definitions
- Note: WRK does not include sources for security processes or network security components