Extending Computer Management

The Computer Management snap-in offers the following extensibility features:

· Computer Management provides a clipboard format containing the name of the current target computer. All extensions should consume this information to retarget properly.

· A mechanism is provided to have an extension snap-in appear only when the service it is managing is actually installed on that particular machine

Extendable Node Types

The following table lists the GUIDs of the extendable nodetype that Computer Management makes available. Note that all the node types listed in the table correspond to scope items.

	Display Name
	Nodetype GUID

	Computer Management
	{476e6446-aaff-11d0-b944-00c04fd8d5b0}

	System Tools
	{476E6448-AAFF-11D0-B944-00C04FD8D5B0}

	Services and Applications
	{476E6449-AAFF-11D0-B944-00C04FD8D5B0}

	Storage
	{476e644a-aaff-11d0-b944-00c04fd8d5b0}

Generally, snap-in developers can write extensions of any type for the node types listed above. However, namespace extensions to the Computer Management scope item are discouraged. This is because the structure of namespace items in Computer Management is designed to organize management functionality into 3 groups: system tools, services and applications, and storage. If extension snap-ins add new groups, this will make it more difficult for users to find what they need in the existing groups.

Also, the Services and Applications scope item is generally extended by dynamic namespace extensions.

Required Clipboard Formats

The following table lists the clipboard formats required for making use of Computer Management’s extensibility features:

	Clipboard Format
	Description

	MMC_SNAPIN_MACHINE_NAME
	Used for retargetting. Provides the name of the machine that Computer Management currently targets.

Extending Computer Management – Sample Scenario

There are number of different ways of extending Computer Management. In this section, we’ll consider a sample scenario that can be realized by extending one of the scope items of Computer Management. Here’s the scenario:

You provide a services application that conforms to the interface rules of the Windows NT/2000 Service Control Manager (SCM). You want users of your service to be able to modify the status of the service from within the Computer Management snap-in. Also, when Computer Management is retargetted to another machine, users should be able to modify the status of the service on the new machine (if the service is installed on that machine.)

To realize this scenario, you need to do the following things:

1. Create a namespace extension that extends the Applications and Services scope item by adding its own child scope item. Implement retargetting of your namespace extension when Computer Management is retargetted.

2. Install your service application on the system(s) on which it is to run. Use the Services APIs to properly write your service and install it on host machines.

3. Add the functionality that allows users to modify the status of your service.

This document covers only the first of the above steps. For details about creating and installing a service application, refer to the Platform SDK documenation. Details about Step 3 are covered in the document Using the Services Extension Snap-in. This document is available on the Snap-in Gallery.

The ExtSnap Sample Snap-in

A sample snap-in, ExtSnap, is available. The sample demonstrates how to implement the scenario covered in this section. The sample snap-in is written in C++ and makes use of the ATL COM Appwizard. Note that all the code snippets in the remaining part of this document are taken from this sample.

The ExtSnap source files can be downloaded from the following Web site:

\\bosrc\sources\SRC\MMCSamp\atl_samp\extsnap
Extending the Applications and Services Scope Item

To extend Applications and Services, you need to do the following things:

1. Create a namespace extension snap-in.

2. Allow your extension snap-in to be retargetted (if necessary).

3. Register your snap-in as a namespace extension to the Applications and Services scope item.

Creating a Namespace Extension Snap-in

For general information about creating a namespace extension snap-in, see the “Extending a Primary Snap-in's Namespace” topic and related topics in the MMC section of the Platform SDK documentation. This section discusses how to handle the MMCN_EXPAND notification.

The following code snippet taken from the sample snap-in demonstrates how to handle the MMCN_EXPAND notification:

…

case MMCN_EXPAND:

{

 GUID myGuid;

 GUID* pGUID= &myGuid;

 hr = ExtractObjectTypeGUID(lpDataObject, pGUID);

 _ASSERT(S_OK == hr);

 if (IsEqualGUID(*pGUID, getPrimaryNodeType()))

 {

 HRESULT hr = ExtractString(lpDataObject, s_cfMachineName, m_szMachineName, sizeof(m_szMachineName));

 /* Uncomment following three lines of code to disable re-targeting of this snap-in. */

// if (_tcslen(m_szMachineName)) // Non-zero string length indicates remote machine

// return hr = S_FALSE;

// else

 hr = OnExpand(m_ipConsoleNameSpace2, m_ipConsole2, (HSCOPEITEM)param);

 }

 else

 // currently selected node is one of ours instead

 {

 CDelegationBase *base = GetOurDataObject(lpDataObject)->GetBaseNodeObject();

 hr = base->OnExpand(m_ipConsoleNameSpace2, m_ipConsole2, (HSCOPEITEM)param);

 }

 break;

}

…

When the extension snap-in receives the MMCN_EXPAND notification message in a call to its IComponentData::Notify implementation, it must first determine if the data object passed in the method call belongs to the primary snap-in (Computer Management), or whether the data object is one of its own. The ExtractObjectTypeGUID helper function is used to request the currently selected scope item’s nodetype GUID from the data object. The getPrimaryNodeType function returns the GUID of the node type that the extension snap-in extends. If the values returned by the two functions match, the scope item belongs to a primary snap-in. The extension snap-in then adds its own items underneath it.

The data object passed to the namespace extension supports the MMC_SNAPIN_MACHINE_NAME clipboard format. Before inserting its own scope item, the namespace extension calls the ExtractString helper function with the MMC_SNAPIN_MACHINE_NAME clipboard format to request the current machine name, which is then stored in the m_szMachineName member variable. The ExtractString helper function is defined as follows:

HRESULT CClassExtSnap::ExtractString(IDataObject *piDataObject,

 CLIPFORMAT cfClipFormat,

 _TCHAR *pstr,

 DWORD cchMaxLength)

{

 return ExtractData(piDataObject, cfClipFormat, (PBYTE)pstr, cchMaxLength);

}

ExtractData is a generic helper function for extracting data of a specified clipboard format from a specified data object:

HRESULT CClassExtSnap::ExtractData(IDataObject* piDataObject,

 CLIPFORMAT cfClipFormat,

 BYTE* pbData,

 DWORD cbData)

{

 HRESULT hr = S_OK;

 FORMATETC formatetc = {cfClipFormat, NULL, DVASPECT_CONTENT, -1, TYMED_HGLOBAL};

 STGMEDIUM stgmedium = {TYMED_HGLOBAL, NULL};

 stgmedium.hGlobal = ::GlobalAlloc(GPTR, cbData);

 do // false loop

 {

 if (NULL == stgmedium.hGlobal)

 {

 hr = E_OUTOFMEMORY;

 break;

 }

 hr = piDataObject->GetDataHere(&formatetc, &stgmedium);

 if (FAILED(hr))

 {

 break;

 }

 BYTE* pbNewData = reinterpret_cast<BYTE*>(stgmedium.hGlobal);

 if (NULL == pbNewData)

 {

 hr = E_UNEXPECTED;

 break;

 }

 ::memcpy(pbData, pbNewData, cbData);

 } while (FALSE); // false loop

 if (NULL != stgmedium.hGlobal)

 {

 ::GlobalFree(stgmedium.hGlobal);

 }

 return hr;

} // ExtractData()

Retargetting your Extension Snap-in

Extensions snap-ins of any type can be retargetted to another computer when the user retargets Computer Management. One important thing to keep in mind when writing a namespace extension snap-in is that MMC associates with every root node of a console a list of IComponentData instances, where each IComponentData is for a particular snap-in (as identified by its CLSID). For a particular namespace extension, all its scope items anywhere under that console root node are serviced by one IComponentData instance.

With this in mind, here is what happens to your namespace extension’s IComponentData instance when Computer Management is targetted at one machine and then retargetted:

1. The user expands the Computer Management console root node (targetted, let's say, at the local computer) and Computer Management creates the Applications and Services scope item targetted at the local computer.

2. The user expands the Applications and Services scope item. Because there is currently no instance of your extension snap-in under this Computer Management console root node, MMC creates one and associates it with the console root node and with your snap-in’s CLSID.

3. Your IComponentData::Notify method is called with the MMCN_EXPAND notification . The data object passed to your namespace extension in the method call supports the MMC_SNAPIN_MACHINE_NAME clipboard format. You can call the GetDataHere method on the data object with this clipboard format to request the current machine name that Computer Management (and Applications and Services) is targetted to. You can store this information with either your child scope items or with the IComponentData instance.

4. The user tells Computer Management to retarget to another machine. In response, Computer Management deletes the Applications and Services scope item.

5. Your IComponentData::Notify method is called with the MMCN_REMOVE_CHILDREN notification. Your namespace extension should destroy all resources for the subtree it added under Applications and Services scope item. MMC takes care of removing the items for the scope pane, so your snap-in need not call IConsoleNameSpace2::DeleteItem. Note that your IComponentData is not released - MMC will use it for the life of the Computer Management console root node.

6. MMC creates a new Applications and Services scope item targetted at the new machine. When the user expands this item, your same IComponentData will get another MMCN_EXPAND notification. You should read the new current machine name and store this information with either your IComponentData instance or your child scope items.

Registering the Snap-in as a Namespace Extension

The following registration snippet taken from the .rgs file for the sample snap-in shows the appropriate registery settings that you will need:

HKLM

{

 NoRemove Software

 {

 NoRemove Microsoft

 {

 NoRemove MMC

 {

 NoRemove NodeTypes

 {

 NoRemove {476e6449-aaff-11d0-b944-00c04fd8d5b0}

 {

 NoRemove Extensions

 {

 NoRemove NameSpace

 {

 val '{3F40BB91-D7E4-4A37-9DE7-4D837B30F998}' =

 s 'ATL-based extension snap-in sample'

 }

 NoRemove 'Dynamic Extensions'

 {

 val '{3F40BB91-D7E4-4A37-9DE7-4D837B30F998}' =

 s 'ATL-based extension snap-in sample'

 }

 }

 }

 }

 }

 }

 }

}

The GUID {476e6449-aaff-11d0-b944-00c04fd8d5b0}is the nodetype GUID of the Applications and Services scope item. The GUID {3F40BB91-D7E4-4A37-9DE7-4D837B30F998} is the CLSID of the sample snap-in. This should be replaced by the CLSID of your namespace extension.

As you can see, the sample snap-in is a dynamic namespace extension to the Applications and Services scope item. This is discussed later on in this document.

Dynamically Extending Applications and Services

Namespace extensions to the Applications and Services scope item are typically dynamic namespace extensions. This ensures that your snap-in extends only the specific instance of the Applications and Services item. Other scope items of the same nodetype as Applications and Services are not affected.

To register your namespace extension as a dynamic extension to Computer Management, you need to add the appropriate registery settings. See the registration snippet in the “Extending the Applications and Services Scope Item” above for sample settings.

In addition to the registry requirements imposed by MMC, your namespace extension’s CLSID must also be registered under the HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Server Applications key. This registration should be done when your service is installed. When your service is un-installed, the registry settings for your snap-in should be removed.

Note that it is important that you add your snap-in’s CLSID under the HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Server Applications only when the underlying service is installed, not when your snap-in is installed. Otherwise, MMC dynamic extensibility feature may not work properly.

Also note that the sample snap-in performs this registration when its DLL (ExtSnap.dll) is registered. This of course contradicts the statement above. The snap-in uses the Windows Alerter service to demonstrate how to modify the status of a service. Since this is a NT standard service that is installed during installation of the OS, performing this registration at that time was impossible. As a result, the sample snap-in has to add the appropriate regisration entries itself.

The following registry snippet taken from the .rgs for the sample snap-in shows this:

HKLM

{

 NoRemove SYSTEM

 {

 NoRemove CurrentControlSet

 {

 NoRemove Control

 {

 NoRemove 'Server Applications'

 {

 val '{3F40BB91-D7E4-4A37-9DE7-4D837B30F998}' =

 s 'ATL-based extension snap-in sample'

 }

 }

 }

 }

}

The GUID {3F40BB91-D7E4-4A37-9DE7-4D837B30F998} is the CLSID of the sample snap-in. This should be replaced by the CLSID of your namespace extension.

