Using the Services Extension Snap-in

The Services Extension Snap-in can be used to extend the context menu of scope and result items. The snap-in adds Start, Stop, Pause, Resume, and Restart menu items to the context menu of the node type it extends. These menu items can then be used to modify the status of a services application that conforms to the interface rules of the Windows NT/2000 Service Control Manager (SCM).

Required Clipboard Formats

The following table lists the clipboard formats required for making use of the Services Extension Snap-in:

	Clipboard Format
	Description

	MMC_SNAPIN_MACHINE_NAME
	Provides the name of the machine on which the service is installed.

	FILEMGMT_SNAPIN_SERVICE_NAME
	Provides the name of the service.

	FILEMGMT_SNAPIN_SERVICE_DISPLAYNAME
	Provides the display name for the service as it should appear in the context menu items.

Using the Services Extension Snap-in – Sample Scenario

In this section, we’ll consider a sample scenario that makes use of the Services Extension Snap-in. Here’s the scenario:

You provide a services application that conforms to the interface rules of the Windows NT/2000 Service Control Manager (SCM). You want users of your service to be able to modify the status of the service from within the Computer Management snap-in. Also, when Computer Management is retargetted to another machine, users should be able to modify the status of the service on the new machine (if the service is installed on that machine.)

To realize this scenario, you need to do the following things:

1. Create a namespace extension that extends the Applications and Services scope item of Computer Management by adding its own child scope item. Implement retargetting of your namespace extension when Computer Management is retargetted.

2. Install your service application on the system(s) on which it is to run. Use the Services APIs to properly write your service and install it on host machines.

3. Add the functionality that allows the Services Extension Snap-in to extend the context menu of item(s) added by your namespace extension snap-in.

This document covers only the last of the above steps. For details about creating and installing a service application, refer to the Platform SDK documenation. For details about writing a namespace extension to the Applications and Services scope item of Computer Management, see the document Extending Computer Management. This document is available on the Snap-in Gallery.

The ExtSnap Sample Snap-in

A sample snap-in, ExtSnap, is available. The sample demonstrates how to implement the scenario covered in this section. The sample snap-in is written in C++ and makes use of the ATL COM Appwizard. Note that all the code snippets in the remaining part of this document are taken from this sample.

The ExtSnap source files can be downloaded from the following Web site:

\\bosrc\sources\SRC\MMCSamp\atl_samp\extsnap
Adding Start/Stop/Pause/Resume/Restart Menu Items to your Context Menus

To use this functionality in your snap-in:

1. Make sure that your service is properly installed.

2. Register the nodetype GUID of your snap-in’s scope or result item that should be extended by Services Extension Snap-in.

3. Add the appropriate registry entries that indicate that Services Extension Snap-in should be a context menu extension for the nodetype GUID you registered in the previous step.

4. Support the following clipboard formats in your snap-in’s IDataObject::GetDataHere method:

· MMC_SNAPIN_MACHINE_NAME

· FILEMGMT_SNAPIN_SERVICE_NAME

· FILEMGMT_SNAPIN_SERVICE_DISPLAYNAME

Registration Settings

The node type GUID of your extendable scope or result item should be registered under the HKEY_LOCAL_MACHINE\Software\Microsoft\MMC\SnapIns\{snapinCLSID}\NodeTypes key, where {snapinCLSID} is the CLSID of the snap-in. The following registration snippet from the .rgs file for the sample snap-in shows this:

HKLM

{

 NoRemove Software

 {

 NoRemove Microsoft

 {

 NoRemove MMC

 {

 NoRemove Snapins

 {

 ForceRemove {3F40BB91-D7E4-4A37-9DE7-4D837B30F998} =

 s 'ATL-based extension snap-in sample'

 {

 val NameString = s 'ATL-based extension snap-in sample'

 val About = s '{4E7F429A-9A8A-4FA5-BBA0-10EB183898D1}'

 ForceRemove NodeTypes

 {

 ForceRemove {28D4F536-BDB5-4bc5-BA88-5375A4996850} =

 s 'Extendable scope node of ATL-based extension snap-in sample'

 }

 }

 }

 }

 }

 }

}

The CLSID of the Services Extension Snap-in must be registered under the HKEY_LOCAL_MACHINE\Software\Microsoft\MMC\NodeTypes\{nodetypeGUID}\Extensions\ContextMenu key, where {nodetypeGUID} is the nodetype GUID registered under the HKEY_LOCAL_MACHINE\Software\Microsoft\MMC\SnapIns\{snapinCLSID}\NodeTypes key. The following registration snippet from the .rgs file for the sample snap-in shows this:

HKLM

{

 NoRemove Software

 {

 NoRemove Microsoft

 {

 NoRemove MMC

 {

 NoRemove NodeTypes

 {

 NoRemove {28D4F536-BDB5-4bc5-BA88-5375A4996850} =

 s 'Extendable scope node of ATL-based extension snap-in sample'

 {

 NoRemove Extensions

 {

 NoRemove ContextMenu

 {

 val '{58221C6A-EA27-11CF-ADCF-00AA00A80033}' =

 s 'System Service Management Extension'

 }

 }

 }

 }

 }

 }

 }

}

The GUID {58221C6A-EA27-11CF-ADCF-00AA00A80033} is the CLSID of Services Extension Snap-in’s cocreatable class object, which exposes the snap-in’s IExtendContextMenu interface to MMC.

Supporting the Necessary Clipboard Formats

As stated earlier, the Services Extension Snap-in requires the following three clipboard formats:

	Clipboard Format
	Description

	MMC_SNAPIN_MACHINE_NAME
	Provides the machine name that is currently targetted by your snap-in.

	FILEMGMT_SNAPIN_SERVICE_NAME
	Provides the name of the service whose status you want to be able to modify. This name must a service name that is known to the Service Control Manager (SCM) and which is maintained in its database of installed services.

	FILEMGMT_SNAPIN_SERVICE_DISPLAYNAME
	Provides the display name for the service that will appear in the context menu items.

The following code snippets taken from the sample snap-in’s IDataObject::GetDataHere implementation show sample implementations of these three clipboard formats:

…

} else if (cf == s_cfSnapinMachineName) {

LPOLESTR wszName = NULL;

const _TCHAR *pszName = base->GetMachineName();

wszName = (LPOLESTR)T2COLE(pszName);

// get length of original string and convert it accordingly

ULONG ulSizeofName = lstrlen(pszName);

ulSizeofName++; // Count null character

ulSizeofName *= sizeof(WCHAR);

hr = pStream->Write(wszName, ulSizeofName, NULL);

} else if (cf == s_cfServiceName) {

LPOLESTR wszName = NULL;

static _TCHAR buf[128];

_stprintf(buf, _T("Alerter"));

wszName = (LPOLESTR)T2COLE(buf);

// get length of original string and convert it accordingly

ULONG ulSizeofName = lstrlen(buf);

ulSizeofName++; // Count null character

ulSizeofName *= sizeof(WCHAR);

hr = pStream->Write(wszName, ulSizeofName, NULL);

} else if (cf == s_cfServiceDisplayName) {

LPOLESTR wszName = NULL;

static _TCHAR buf[128];

_stprintf(buf, _T("Alerter"));

wszName = (LPOLESTR)T2COLE(buf);

// get length of original string and convert it accordingly

ULONG ulSizeofName = lstrlen(buf);

ulSizeofName++; // Count null character

ulSizeofName *= sizeof(WCHAR);

hr = pStream->Write(wszName, ulSizeofName, NULL);

…

T2COLE is an ATL string conversion macro for converting an LPTSTR or LPWSTR (depending on compiler directive) to an LPCOLESTR. The s_cfSnapinMachineName, s_cfServiceName, and s_ cfServiceDisplayName variables are defined and implemented as follows:

static UINT s_cfServiceName;

static UINT s_cfServiceDisplayName;

static UINT s_cfSnapinMachineName;

#define _T_FILEMGMT_SNAPIN_SERVICE_NAME _T("FILEMGMT_SNAPIN_SERVICE_NAME")

#define _T_FILEMGMT_SNAPIN_SERVICE_DISPLAYNAME _T("FILEMGMT_SNAPIN_SERVICE_DISPLAYNAME")

#define _T_CCF_SNAPIN_MACHINE_NAME _T("MMC_SNAPIN_MACHINE_NAME")

//Additional formats needed for allowing our snap-in to be extended by

//System Service Management Extension

UINT CDataObject::s_cfServiceName = RegisterClipboardFormat(_T_FILEMGMT_SNAPIN_SERVICE_NAME);

UINT CDataObject::s_cfServiceDisplayName = RegisterClipboardFormat(_T_FILEMGMT_SNAPIN_SERVICE_DISPLAYNAME);

UINT CDataObject::s_cfSnapinMachineName = RegisterClipboardFormat (_T_CCF_SNAPIN_MACHINE_NAME);

In the code snippet above, the GetMachineName function returns the current machine name:

_TCHAR* GetMachineName() { return m_szMachineName; }

To fill the value of the m_szMachineName variable, the snap-in uses the MMC_SNAPIN_MACHINE_NAME clipboard format to query the data object (from the Applications and Services scope item) passed into the snap-in’s IComponentData::Notify method during an MMCN_EXPAND notification. The MMC_SNAPIN_MACHINE_NAME clipboard format is therefore used by both your snap-in and by the Services Extension Snap-in for querying for the current machine name.

