������������Ideas for 50K-user Domains	�Microsoft Windows NT™�Microsoft Confidential

Revision:	1.10

Date:	12 August 1994

Authors:	Jon Newman

	Microsoft

	Email: jonn (Internet jonn@microsoft.com)

Revision History�

1.00	08/11/94	Initial version				JonN

1.10	08/12/94	Added notes on Cairo interop		JonN

�
Introduction

There are a number of problems with the current design and implementation of user/group administration (at the service, API and UI levels) which prevent it from scaling well to 50K-user domains. Eric Lockard and PierreS have been working with ITG to identify and understand these problems, and to try to help ITG work around them until we can provide fixes. I have been asked to present some ideas on how to fix these problems in the timeframe between Daytona and Cairo. I list some ideas here, in rough order of increasing difficulty.

In addition, we should probably contact the Cairo group to find out what we can do to improve Cairo interoperability in this time frame.

Low Speed Connection mode

This mode was originally meant to support running User Manager when the client is across a slow (relative to the database size) network link from the PDC. However, it also works well for hiding the database size from the client. Many of the known problems administering large domains do not apply when Low Speed Connection is set.

Quick Fixes

Some of the problems may have solutions which can be implemented entirely in User Manager, and which do not require changes in the User Manager interface. These include:

the delay transferring accounts from the User Browser listbox to the User Browser MLE, for which ThomasPa already has a fix;

the delay adding a single user to a global group, which can be fixed by moving from NetGroupSetUsers to SamAddMemberToGroup; and

the delay in opening a global group with a large number of users, which might be fixed (I’m not sure yet) by moving from NetGroupGetUsers to SamGetMembersInGroup.

Of course, some of the problems probably do not have a quick fix.

Minor SAM API improvements

Some of the extremely long delays could be fixed by minor improvements in the SAM API. For example, SAM only allows one account to be added to a group at a time; this causes the delay in adding large numbers of users to a SAM local group or global group. If SAM had APIs to add many accounts at once, and User Manager and/or NETAPI32 were updated to try to use this API and fall back if it is not present, these delays could be drastically reduced.

Minor User Manager Interface Changes

Some delays could be shortened through minor changes in the UI interface. For example, the Global Group Properties dialog could be changed to the same interface as the Local Group Properties dialog. Unfortunately, this would only improve its performance to roughly that of the Local Group Properties dialog, which according to the test results is already roughly the same. Presumably the time to create the 15K-user listbox, and to manipulate the listboxes 15K times, is not substantial compared to the inherent delays in loading information.

Lazy Listboxes

Listboxes which are likely to have more than 1K items should always be "lazy listboxes," that is, they should have the LBS_NODATA style set. This style allows the app to delay creating listbox items until they are actually displayed, and (more importantly) sidesteps the notoriously slow W32USER listbox item insertion-sort. These listboxes are: the User Manager main user listbox, the User Manager -> Global Group Properties user listboxes, the User Browser main listbox, and under some circumstances the User Manager -> Local Group Properties. All of these listboxes are already lazy listboxes except the Local Group Properties listbox. I can look into converting the Local Group Properties listbox once I am convinced that:

local groups containing hugh numbers of accounts are really an interesting case; and

other problems do not dominate time response in this case.

Really Lazy Listboxes

While these listboxes are nominally lazy, they lack one property of true laziness; all of the data for the entire listbox must be loaded before a single LBI can be displayed. For large domains, this can run to several megabytes of network traffic, which dominates the User Manager startup time and (in some cases) the User Browser start time. A real database application (such as RAID) only loads the data it needs to display at any on time (plus possibly a small buffer on either side), then loads more data from the server when the user pages the data display up or down. User Manager and User Browser could take a similar approach, and in fact the SamQueryDisplayInformation API has some of the properties of a base API which could support this. There are, however, several problem areas which must be addressed before we can adopt such a solution:

Selection Maintenance: Unlike RAID, the User Manager/User Browser user listboxes support multiple selection. This means that items can be selected for which the client application does not have data. SHIFT-CLICK can select items which are never even displayed. W32USER will report the ordinal positions of all selected users, but if the database is constantly shifting under our feet, the actual selected items could change without the user knowing it.

Keystroke Handling: If the client application does not know the names of the users in its lazy listbox, it will have difficulty finding the first user whose name begins with a certain prefix. Keystroke support from SAM is essential for navigating a database of this size.

Listbox Sorting: With any change of this type, the client will no longer be able to define the sort order of the user listbox. Instead, the sort order will be that of the server, which might be different. This is not a terrible problem, although it could be a source of programming errors. Also, it would be difficult to continue to support Sort by Fullname, or to support the registry flag option which changes the sort order to SORT_STRINGSORT (see net\ui\common\src\string\string\uinetlib.cxx).

All of these problems fall under the category of maintaining the user's illusion that the listbox is really a normal listbox with data behind it, especially when the data on the server could change without the client being notified.

I can see several possible approaches to supporting "really lazy listboxes," although I haven't worked through all of the problems yet. All of these approaches require changes to SAM as well as to User Manager.

Copy Display Cache: The client could ask the server to clone off a copy of the display cache for the client's personal use. This copy would effectively be an RPC context handle with several megabytes of data behind it. The client could then access the copy of the display cache, which would be guaranteed not to change behind the client's back. Note that DCs for domains of this size typically have many hundreds of megabytes of RAM. The DC could choose to use the same copy for several clients, especially for use by User Browser which has relaxed consistency constraints. The DC would always have the option of limiting the number of such copies, and kicking off clients.

Copy RID List: The client could ask the server to clone off a copy of the RIDs stored in the display cache, reducing the size from several megabytes to about 200K. This has much the same effect as the previous option at a lower cost in server resources, although the client would have to deal with the possibility that users will be renamed, deleted etc.

Send RID List: The client could ask the server to send a username-sorted list of the RIDs stored in the current display cache. This reduces the network traffic by about an order of magnitude, from several megabytes to about 200K. The client could then call SamLookupIdsInDomain to get information on the users (a new version of this API would have to return comments). Keystroke handling would require SAM API support and even with it would still be challenging.

Send Display Cache: (This is what we do now, presented only by way of comparison.)

Omniscient Server: In this approach, all the global information the server (SAM) sends is the number of users. Since the client has no information about which user is at any ordinal location in the listbox, the server will have to be notified of any selection changes where the User Manager does not know the RID of the selected user(s). The server will have to remember for the client which users are selected, and tell the client when it requests a range of users for display.

All of these options would require a SAM API to perform a prefix search for a username. We lose the beneficial effect of the “really lazy listbox” if clicking a single key causes large parts of the display cache to be downloaded to the client. (Some of these options lose that effect anyway if we SHIFT-CLICK.)

As a development issue, I should express my opinion that the “natural order of things” is for W32USER to maintain the listbox selection, rather than some application component trying to take over behind its back. The further we move from this model (e.g. Omniscient Server), the more likely we are to get into trouble.

SAM Base Layer

As I understand it, in the early days of NT, the designers considered (and rejected) the idea of storing the security database in a standard database package (e.g. SQL or JET). If the database had ODBC entrypoints, customers could use alternate interfaces such as Access which are more flexible and more suited to large databases. We could reconsider this decision in one of two ways:

offer limited ODBC entrypoints to the existing SAM database; or

move the SAM internal database to another format, with SAM APIs shelled through.

With the first option, it is unclear whether our clients will be able to build a more efficient interface than we can presently; the inherent limitaions of SAM remain. The second option removes those limitations. In either case, we would probably be expected to provide a framework application providing an example on how to access the ODBC entrypoints. These solutions may also have implications for C2 security; but as long as clients can erect appropriate firewalls for the servers and their entrypoints, I would think we would be OK.

Individual Problems

This section will list each slow action currently being tested, and the proposed solution if any. Times are for User Manager running locally on a 15K-user database on a Carrera Hercules (1xAXP/200Mhz, 64mb RAM) PDC; these are the best we have for now.

Slow User Manager start (16 seconds): I am skeptical of the “really lazy listbox” approaches. This time is not unreasonable for a domain of this size, and larger domains will hopefully have proportionally faster PDCs. I don’t think we need to attack this problem, especially given the high development cost of any apparent solution.

Slow User Browser start (??): This time may be similar to the User Manager start time, which would concern me more than the User Manager start time per se. Still, the cost of any fix is high.

Open a Global Group (1:13 for 100% of users): This might be improved by moving from NetGroupGetUsers to SamGetMembersInGroup. I would like to be more convinced that this is an interesting case. Also, this fix does not mix well (from a development standpoint) with the “really lazy listbox” changes.

Open a Local Group (1:09 for 100% of users): This might be improved by making the listbox a standard “lazy listbox”, although I’m not sure of this yet and the cost is high. I would like to be more convinced that this is an interesting case.

Add one user to a Global Group (2:44 for group containing 100% of users): This can be addressed by changing User Manager internally to user SamAddMemberToGroup instead of NetGroupSetUsers.

Prepare to add many users to a Local Group (15:00 for 100% of users): ThomasPa has a fix to the User Browser to address the time it takes to copy selected users from the listbox to the MLE.

Add many users to a new Global Group (17:33 for 100% of users): SAM should have an API to add many members to a Global Group in one call (SamAddMembersToGroup?).

Add many users to a new Local Group (1h36:00 for 100% of users): SAM should have an API to add many members to a Global Group in one call (SamAddMembersToAlias?).

Cairo Interoperability Notes

Here are some questions I have about NT/Cairo inter-op after readingPradyM’s document version 0.5:

Granting Permissions: So the Win32 APIs work NT -> Cairo, but not if an NT SID is passed?

It will not be possible for an NT user to have a Cairo homedir and have the permissions set automatically.

The User Browser also needs the SamQueryDisplayInformation API. There are numerous functions of the User Browser which may break against a Cairo domain. For example, ADMIN_AUTHORITY assumes every domain has two SAM domains. The User Browser will not be able to enumerate the members of a Cairo group.

Will NT clients (e.g. WINFILE) be able to set permissions on Cairo files? If so we will need good User Browser support.

�PAGE�5�

