������������Server Manager / User Manager Extensions Specification	�Microsoft Windows NT™�Microsoft Confidential

Revision:	1.70

Date:	16 May 1996

Authors:	Narendra Gidwani

	Microsoft

	Email: nareng (Internet nareng@microsoft.com)

	Jon Newman

	Microsoft

	Email: jonn (Internet jonn@microsoft.com)

	Keith Moore

	Microsoft

	Email: keithmo (Internet keithmo@microsoft.com)

Revision History�

1.0	09/3/92	Initial version							NarenG

1.1	09/11/92	Added comments from review by ChuckC, KeithMo and NarenG	NarenG

1.2	10/1/92	Added comments from review by ChuckC, KeithMo and NarenG	NarenG

1.3	10/15/92	Added comments from review by JonN, KeithMo and NarenG	NarenG

1.4	11/11/92	Extended to include User Manager Extensions			JonN

1.5	11/24/92	Updated to reflect actual implementation				JonN

1.6	12/07/92	Added Validation entrypoint for Server Manager Extension		KeithMo

1.61	07/15/94	LoadLibrary uses LOAD_WITH_ALTERED_SEARCH_PATH	JonN

1.62	08/03/94	UMECreate returns valid RID + new message UM_GETOPTIONS2	JonN

1.70	16/05/96	New version numbers and three new messages for long servernames	JonN

�
Introduction

	

	The goal of this document is to define, in sufficient technical detail, the interface that will enable server providers, other then NT LM, to integrate their administration functionality with the Server Manager and/or User Manager Administrator's tools on NT.

	This document will ultimately serve as a functional specification for the implementation of this interface as well as a developers guide to write an extension to the Server Manager or User Manager.

	This document was originally written as a guide to the Server Manager Extensions, and was later extended to include the User Manager Extensions. Some parts of this document may not have been updated to reflect this change. Where you see a reference to the Server Manager but not to the User Manager, assume that the User Manager functionality and design is similar.

Audience�

	The reader is assumed to have good knowledge of the functionality and appearance of the NT Server Manager and/or User Manager tools. Some understanding of Windows application programming as well as the File Manager extension specification will be helpful to the reader.

Background�

	The Services For Macintosh on NT is a product that allows Macintosh and NT clients to share files. This is done by the Macintosh File Service component. The administration of this service requires a tool that has a lot in common with the Server Manager on NT. The natural progression of the product led to examining the possibility of exploiting the commonalty between the two tools by integrating them together. This would present a consistent view to the user by concentrating all server side administration within one tool.

	Rather than make special hooks in the Server Manger for the Services For Macintosh File Server, it was thought to be beneficial to spend more resources on this issue to come up with a general solution that would allow any server providers to integrate with the Server Manager tool. This was also supported by the fact that the File Manager is currently extensible and the possibility of yet another server provider being written for product 1.

	The User Manager Extensions are provided for the use of the new NT-based mail program, tentatively named Touchdown. Touchdown administers a database which is roughly parallel to the User Manager user database. The User Manager Extensions allow Touchdown to provide a simplified version of its administration functionality from the same tool where users are ordinarily administered, and to provide Touchdown with notification when users are created, deleted or renamed.

Solution.

In a fashion similar with the File Manger extension, a Server Manager or User Manager extension will be a Dynamic Link Library which will add commands and menu items to the Server Manager. The Server Manager / User Manager will maintain a list of the installable extensions and will load them when starting up. The extension DLL will contain entry points to notify the DLL of loading, unloading, initialization of menus and invocation of commands. Whenever translatable text is exchanged there will be both ANSI and UNICODE versions of the function calls and related data structures. This is provided for WIN32s interoperablity. However, on NT only the UNICODE version of the calls and data structures will be used.

	Installation.

	

A Server Manager or User Manager Extension will be installed by placing a string in the registry, in the section corresponding to NTNET.INI. This can be done by using the WritePrivateProfileString WIN32 API. Each extension defines a name used as a tag under the [SMAddOns] section (for User Manager, [UMAddOns]). The value of this tag is the name of the DLL. If the value of the tag does not include the full path of the DLL the PATH environment variable is used to locate the DLL. If the DLL is not found the Server Manager / User Manager will not display an error message. Therefore the extension may be removed by either removing the DLL or removing the corresponding profile string.

ex -

	[SMAddOns]

	Macintosh File Service = c:\nt\system\macext.dll

For test purposes, this string can be added to the registry manually with a command such as

	INI -f NTNET.INI SMAddOns.SMXDEBUG = SMXDEBUG.DLL

	INI -f NTNET.INI UMAddOns.UMXDEBUG = UMXDEBUG.DLL

	Extension DLL Interface Specification.

The extension DLL will contain an the following entry points:

syntax: DWORD PASCAL SMELoadMenu(IN 		HWND hWndMessage, �				 		IN OUT 	PSMS_LOAD pSMSLoad)

or, for User Manager,

syntax: DWORD PASCAL UMELoadMenu(IN 		HWND hWndMessage, �				 		IN OUT 	PUMS_LOAD pUMSLoad)

This call is used to notify the extension DLL that it is being loaded for the first time by the Server Manager. hWndMessage is the window handle which the extension should use for its callbacks now and until it is unloaded. pUMSLoad is a pointer to a SMS_LOAD structure. The return value indicates the result of the load. The return value is a WIN32 error code. The appropriate string will be displayed by the Server Manager on any error.

If the return code is ERROR_EXTENDED_ERROR, the Server Manager will call SMEGetExtendedErrorString (See below) to retrieve the error text to be displayed.

There will be ANSI and UNICODE versions of these entry points i.e. SMELoadW and SMELoadA.

typedef struct _SMS_LOAD_MENU {

		

	// This will contain the version number of the Server Manger on entry.

	// The extension DLL should set this field to its version on exit.

	// The version number can be 0 or 1; 1 indicates the availability of the

	// UM_GETCURFOCUS2, SM_GETCURFOCUS2, and SM_GETSERVERSEL2

	// message callbacks.

	//

	IN OUT DWORD	dwVersion;

	// The tszMenuName is the string that will appear on the Server Manager main menu, 	// in the list of extensions for which help may be requested and as an item in the View

	// menu. MENU_TEXT_LEN is 50

	// NOTE: This should have an accelerator. The server manager will use this supplied

	// 	 accelerator if there are no conflicts. If there is a conflict, then the Server

	//	 Manager will resolve it, hence it is not guaranteed that the supplied accelerator

	//	 will be used.

	//

	OUT TCHAR	szMenuName[MENU_TEXT_LEN+1];	

	// The hMenu parameter is the menu handle to the popup that is added to the Server 	// Manager's main menu. This is owned by the Server Manager, the extension DLL is

	// not responsible for destroying the menu.

	//

	OUT HMENU hMenu;

	// The szHelpFileName is the name of the winhelp file that will be called from the

	// top-level help menu. This help file should reside in the path.

	//

	OUT TCHAR 	szHelpFileName[MAX_PATH];

	// The dwServerType field is a bit field that will indicate the type of servers to be 	

	// enumerated in the top level list box. ex. SV_TYPE_AFP for Macintosh File Server.	

	//

	OUT DWORD dwServerType;

// This field should be used to bias any menu IDs when manipulating menu items

// directly. When the Server Manager loads the hMenu into its own menu, it will set all // IDs to originalid + dwMenuDelta. The dwMenuDelta value will vary from session

// to session depending on other extensions being loaded.

//

	IN DWORD	dwMenuDelta;

} SMS_LOAD; *PSMSLOAD;

typedef struct _UMS_LOAD_MENU {

		

	IN OUT DWORD	dwVersion;

	OUT TCHAR	szMenuName[MENU_TEXT_LEN+1];	

	OUT HMENU hMenu;

	// no hBitMap member

	OUT TCHAR 	szHelpFileName[MAX_PATH];

	// no dwServerType member

	IN DWORD	dwMenuDelta;

} UMS_LOAD; *PUMSLOAD;

syntax: LPTSTR SMEGetExtendedErrorString(VOID)

syntax: LPTSTR UMEGetExtendedErrorString(VOID)

This call is made to retrieve the text to be displayed in the event that the extension DLL failed to load and returned ERROR_EXTENDED_ERROR on the SMELoad call. There are ANSI (SMEGetExtendedErrorStringA) and UNICODE (SMEGetExtendedStringW) versions of this call.

syntax: VOID PASCAL SMEUnloadMenu(VOID)

syntax: VOID PASCAL UMEUnloadMenu(VOID)

This call is used to notify the extension DLL that it is being unloaded.

�syntax: VOID PASCAL SMEInitializeMenu(VOID)

syntax: VOID PASCAL UMEInitializeMenu(VOID)

This call is used to notify the extension DLL that the user is bringing down the extension's menu. The extension can use this notification to initialize the menu items within the menu.

	

syntax: VOID PASCAL SMERefresh(IN HWND hwndParent)

syntax: VOID PASCAL UMERefresh(IN HWND hwndParent)

This call is used to notify the extension DLL that the user invoked the Window.Refresh (F5) command. The extension can update itself when this is called. This will also be invoked whenever there is a focus change of whenever the main listbox is refreshed.

syntax:VOID PASCAL SMEMenuAction (IN HWND hwndParent, IN DWORD dwEventId)

syntax:VOID PASCAL UMEMenuAction (IN HWND hwndParent, IN DWORD dwEventId)

This call is used to notify the extension DLL of a menuitem selection by the user.

The hWndParent parameter specifies a window to use as the parent of any message or dialog box calls. Note that Server Manager and User Manager messages should be sent to the window indicated at LoadMenu time, not to the hWndParent window.. The dwEvent Id parameter specifies the event that caused the extension function to be called. This will be in the range 1-99. All menu IDs should be defined in this range.

syntax:DWORD PASCAL UMECreate (IN HWND hwndParent,

					IN PUMS_GETSEL pumsSelection)

This call is used to notify the extension DLL that a new user or group has been created. There is no Server Manager equivalent. The extension should use the hwndParent parameter if it wishes to display any modal dialogs etc., and such graphic elements should be removed before the extension returns from this function. Note that we do not guarantee that UMECreate will be called whenever a user or group is created; for example, the NET.EXE command-line program can create users or groups, as could some other program which uses the appropriate APIs, or the User Manager itself running on a machine where the extension is not installed. Note that this structure contains some ordinary pointers, which are only guaranteed to be valid during this function call; the extension must make a copy of any data it plans to keep longer-term. Also note that the dwRID field in this structure is not valid for groups, or when focus is set on a downlevel machine (UM_FOCUS_TYPE_LM). (In earlier versions, the user RID was not valid, but this has been corrected.)

	// These manifests are a bit mask representing the type

	// of a selected user or group.

	#define UM_SELTYPE_USER	0x10

	#define UM_SELTYPE_NORMALUSER	0x1 | UM_SELTYPE_USER

	#define UM_SELTYPE_REMOTEUSER	0x2 | UM_SELTYPE_USER

	#define UM_SELTYPE_GROUP	0x20

	#define UM_SELTYPE_LOCALGROUP	0x4 | UM_SELTYPE_GROUP

	#define UM_SELTYPE_GLOBALGROUP	0x8 | UM_SELTYPE_GROUP

	typedef struct _UMS_GETSEL {

		// RID of one user or group that is currently selected.

		// Note that the RID is the only immutable characteristic

		// of a user account, their names can change.

		// This is always 0 when focus is on a downlevel

		// (Lan Manager for OS/2) server, in which case

		// the username cannot change.

		// This is also always 0 for a group, or for UMECreate().

		DWORD dwRID;

		// Name of one user or group that is currently selected

		// Note that this returns a pointer, rather than the actual

		// name. Usernames can be as long as UNLEN (256)

		// characters, and fullnames and comments can have

		// almost unlimited length. The caller may use this

		// pointer only until it returns from its current message.

		//

		LPTSTR pchName;

		// This is a mask of bits representing the user or group.

		//

		DWORD dwSelType;

		// This is the fullname of the user, or NULL for groups.

		// Note that this can have almost unlimited length.

		//

		LPTSTR pchFullName;

		// This is the comment of the user or group.

		// Note that this can have almost unlimited length.

		//

		LPTSTR pchComment;

	} UMS_GETSEL, *PUMS_GETSEL;

syntax:VOID PASCAL UMEDelete(IN HWND hwndParent,

					IN PUMS_GETSEL pumsSelection)

This call is used to notify the extension DLL that a user or group has been deleted. There is no Server Manager equivalent. See UMECreate for a definition of the UMS_GETSEL structure. The extension should use the hwndParent parameter if it wishes to display any modal dialogs etc., and such graphic elements should be removed before the extension returns from this function. Note that we do not guarantee that UMEDelete will be called whenever a user or group is deleted; for example, the NET.EXE command-line program can delete users or groups, as could some other program which uses the APIs, or the User Manager itself running on a machine where the extension is not installed. Note that this structure contains some ordinary pointers, which are only guaranteed to be valid during this function call; the extension must make a copy of any data it plans to keep longer-term.

syntax:VOID PASCAL UMERename(IN HWND hwndParent,

					IN PUMS_GETSEL pumsSelection,

					IN LPTSTR pchNewName)

This call is used to notify the extension DLL that a user or group has been renamed. There is no Server Manager equivalent. See UMECreate for a definition of the UMS_GETSEL structure; this structure contains information about the user or group before it was renamed, and pchNewName contains the new name. The extension should use the hwndParent parameter if it wishes to display any modal dialogs etc., and such graphic elements should be removed before the extension returns from this function. Note that we do not guarantee that UMERename will be called whenever a user or group is renamed. Note that this structure contains some ordinary pointers, which are only guaranteed to be valid during this function call; the extension must make a copy of any data it plans to keep longer-term.

syntax: BOOL PASCAL SMEValidate(IN OUT PSMS_VALIDATE pSMSValidate)

This call allows the extention the opportunity to validate (or recognize) a particular server. This is called only by the Server Manager, and only when the app is focused on an individual server. The return value should be TRUE if the extension recognizes the server, FALSE otherwise. pSMSValidate is a pointer to an SMS_VALIDATE structure. Note that there are ANSI and UNICODE versions of this entrypoint and structure. SMS_VALIDATE is defined as follows:

typedef struct _SMS_VALIDATE {

	//

	// This field is filled by the Server Manager before calling the extension

	// entrypoint. It contains a pointer to the name of the server to validate.

	//

	IN TCHAR pszServer;

	//

	// This field is filled by the extension if the server is recognized. This

	// should contain a pointer to a type description describing the server,

	// such as "Windows NT 3.1 Workstation". A type description string

	// must always be returned, or the server will be considered unrecognized.

	// If no type string is available, pszType should point to an empty string "".

	//

	OUT TCHAR pszType;

	//

	// This field is filled by the extension if the server is recognized. This

	// should contain a pointer to a comment or description string for the

	// server, such as "KeithMo's way cool MIPS R4000". A comment

	// string must always be returned, or the server will be considered

	// unrecognized. If no comment string is available, pszComment should

	// point to an empty string "".

	//

	OUT TCHAR pszComment;

} SMS_VALIDATE, * PSMS_VALIDATE;

	Extension Messages

	The extension DLL can send the following messages to retrieve information about the state of the Server Manager. Note that these messages should be sent to the window indicated by the hwndMessages parameter to the LoadMenu API, and not to any of the hwndParent windows from other APIs; these may be the same window in some cases, but not in others.

	SM_GETSERVERSEL

	SM_GETSERVERSEL2 (available only for Version 1)

	UM_GETUSERSEL

	UM_GETGROUPSEL

	This message retrieves the selection from the main list box of servers. To get the information in

ANSI the SM_GETSERVERSELA message will be sent . Similarly, SM_GETSERVERSELW will be sent to retrieve for information in UNICODE. The lparam value is a pointer to a SMS_GETSERVERSEL structure. The wParam should be 0. (This is actually an index (0-based) into the list of currently selected items. Since the Server Manager currently allows only one selection at a time, this should always be zero) The return value is of BOOL type. TRUE means that the call was successful, and FALSE otherwise. If the server name is too long then the call will fail.

SM_GETSERVERSEL2A and SM_GETSERVERSEL2W are the same as the SM_GETSEVERSEL messages, except that they use the SMS_GETSERVERSEL2 structures. These structures leave MAX_PATH characters for the servername. If these messages are passed to a Version 0 Server Manager, then they will always return FALSE.

For User Manager, UM_GETUSERSEL retrieves the selection from the main list box of users, and UM_GETGROUPSEL retrieves the selection from the main list box of groups. Since more than one user may be selected at a time, the wParam field for UM_GETUSERSEL should be the index into the list of currently selected users. The lparam value should be a pointer to a UMS_GETSEL structure (as defined for the UMECreate API). Note that this structure contains some ordinary pointers, which are only guaranteed to be valid while the extension is processing its current message; the extension must make a copy of any data it plans to keep longer-term.

	typedef struct _SMS_GETSERVERSEL {

		// Name of computer that is currently selected

		//

		TCHAR szServerName[UNCLEN+1];

		// This is a mask of bits representing the various services running on the selected 			// server. If this is zero, then the Server Manager is not aware of the type of services

		// running and it is up to the extension DLL to figure this out.

		//

		DWORD dwServerType;

	} SMS_GETSERVERSEL, *PSMS_GETSERVERSEL;

	typedef struct _SMS_GETSERVERSEL 2{

		TCHAR szServerName[MAX_PATH];

		DWORD dwServerType;

	} SMS_GETSERVERSEL2, *PSMS_GETSERVERSEL2;

SM_GETSELCOUNT

UM_GETSELCOUNT

This message is used to retrieve the count of selected items. The return value will be the number of items currently selected. lParam is a pointer to a SMS_GETSELCOUNT structure and wParam is an index (0 based) into the listboxes in the main window (always 0 for Server Manager).The return value is of BOOL type. TRUE means that the call was successful, and FALSE otherwise.

For User Manager, wparam should be UMS_LISTBOX_USERS or UMS_LISTBOX_GROUPS.

	#define UMS_LISTBOX_USERS		0

	#define UMS_LISTBOX_GROUPS	1

	typedef struct _SMS_GETSELCOUNT {

		// Number of items currently selected in the specified listbox

		//

		DWORD dwCount;

	} SMS_GETSELCOUNT, *PSMS_GETSELCOUNT, UMS_GETSELCOUNT, *PUMS_GETSELCOUNT;

SM_GETCURFOCUS

UM_GETCURFOCUS

SM_GETCURFOCUS2

UM_GETCURFOCUS2

This message is used to retrieve the current focus. The lParam is a pointer to a SMS_GETCURFOCUS structure and wParam must be 0. The return value is of BOOL type. TRUE means that the call was successful, and FALSE otherwise.

For User Manager, lparam points to a UMS_GETCURFOCUS structure. The UM_FOCUS_TYPE_ manifests correspond to the SM_FOCUS_TYPE manifests, except that UM_FOCUS_TYPE_NT is always a Windows NT (as opposed to Lan Manager NT) machine.

SM_GETCURFOCUS2 and UM_GETCURFOCUS2 are the same as the SM_GETCURFOCUS and UM_GETCURFOCUS messages, except that they use the SMS_GETCURFOCUS2 and UMS_GETCURFOCUS2 structures. These structures leave MAX_PATH characters for the servername and domain name. If these messages are passed to a Version 0 User Manager or Server Manager, then they will always return FALSE.

typedef struct _SMS_GETCURFOCUS {

		// This is either a domain name or a server name.

		//

		TCHAR	 szFocus[UNCLEN+1];

		// This determines the type of focus.

		// This could have the following values:

		//		SM_FOCUS_TYPE_NT_DOMAIN,

		//		SM_FOCUS_TYPE_LM_DOMAIN,

		//		SM_FOCUS_TYPE_UNKNOWN_DOMAIN,

		// 		SM_FOCUS_TYPE_NT_SERVER,

		//		SM_FOCUS_TYPE_LM_SERVER,

		//		SM_FOCUS_TYPE_WFW_SERVER,

		//		SM_FOCUS_TYPE_UNKNOWN_SERVER

		//

		DWORD dwFocusType;

		

	} SMS_GETCURFOCUS, *PSMS_GETCURFOCUS;

	typedef struct _UMS_GETCURFOCUS {

		// This is either a domain name or a server name.

		//

		TCHAR	 szFocus[UNCLEN+1];

		// This determines the type of focus.

		// This could have the following values:

		//		UM_FOCUS_TYPE_DOMAIN,

		// 		UM_FOCUS_TYPE_WINNT,

		//		UM_FOCUS_TYPE_LM,

		//		UM_FOCUS_TYPE_UNKNOWN

		//

		DWORD dwFocusType;

		

		// This is the PDC of the domain of focus, and is valid

		// only if focus is UM_FOCUS_TYPE_DOMAIN.

		//

		TCHAR szFocusPDC[UNCLEN+1];

		// This is the SID of the domain of focus, and is valid

		// only if focus is UM_FOCUS_TYPE_DOMAIN.

		// This pointer is subject to the same restrictions as the

		// pointers in the UM_GETSEL structure.

		//

		PSID psidFocus;

	} UMS_GETCURFOCUS, *PUMS_GETCURFOCUS;

	typedef struct _SMS_GETCURFOCUS2 {

		TCHAR	 szFocus[MAX_PATH];

		DWORD dwFocusType;

	} SMS_GETCURFOCUS2, *PSMS_GETCURFOCUS2;

	typedef struct _UMS_GETCURFOCUS 2{

		TCHAR	 szFocus[MAX_PATH];

		DWORD dwFocusType;

		TCHAR szFocusPDC[MAX_PATH];

		PSID psidFocus;

	} UMS_GETCURFOCUS2, *PUMS_GETCURFOCUS2;

	//

	// See UMECreate() for a definition of the UMS_GETSEL structure.

	//

SM_GETOPTIONS

UM_GETOPTIONS

UM_GETOPTIONS2

This message is used to retrieve the current options set by the user. The lParam is a pointer to a SMS_GETOPTIONS structure and wParam must be zero. The return value is of BOOL type. TRUE means that the call was successful, and FALSE otherwise.

	For User Manager, lparam points to a UMS_GETOPTIONS structure (for UM_GETOPTIONS2, a UMS_GETOPTIONS2 structure).

	

	typedef struct _SMS_GETOPTIONS {

		BOOL	fSaveSettingsOnExit;

		BOOL 	fConfirmation;

	} SMS_GETOPTIONS, *PSMS_GETOPTIONS;

	typedef struct _UMS_GETOPTIONS {

		BOOL	fSaveSettingsOnExit;

		BOOL 	fConfirmation;

		BOOL	fSortByFullName;

	} UMS_GETOPTIONS, *PUMS_GETOPTIONS;

	typedef struct _UMS_GETOPTIONS2 {

		BOOL	fSaveSettingsOnExit;

		BOOL 	fConfirmation;

		BOOL	fSortByFullName;

		BOOL	fMiniUserManager;

		BOOL	fLowSpeedConnection;

	} UMS_GETOPTIONS2, *PUMS_GETOPTIONS2;

Help Integration.

The main help menu will contain a "Help On Extensions" item if there are one or more extensions loaded. On selecting this item, a sub menu will popup listing the loaded extensions by name. (The SMS_LOAD or UMS_LOAD szMenuName value). When the user selects one of these, the Server Manager or User Manager will make the following call:

	WinHelp(hWnd, szHelpFileName, HELP_INDEX, NULL);

Where tchHelpFileName is the name of the help file for that extension. It should be in the path. The helpfile for the extension should begin with an index of contents.

When the user uses the F1 button to view help for a menu item for an extension, the Server Manager or User Manager will make the following call:

	WinHelp(hWnd, szHelpFileName, HELP_CONTEXT, MenuItemID);

Where MenuItemID is the ID of the menu item that help has been requested for.

It is therefore necessary for the DLL to make sure that the help context values for the various menu items in its menu exactly match the menu item IDs.

The extension DLL is responsible for responding to the F1 button while it has the focus.

Implementation

At the present time, the non-UNICODE versions of these APIs and messages are not implemented.

Extension DLLs are loaded by the User Manager and Server Manager with the LoadLibraryEx(..., LOAD_WITH_ALTERED_SEARCH_PATH) API. This means that the extension DLL may be linked to other DLLs which are in the same directory as the extensions DLL but not in the regular search path. See Win32 API documentation for more details.

�PAGE�12�

