
1. XML Adapter
Spec Title
XML Adapter

Version
1.0.2

Distribution
 FORMDROPDOWN

Component
XML

Feature area
XML

Feature scope
 FORMDROPDOWN

Product
WMI

Product Version
 FORMDROPDOWN

Project
Pulsar

Author
Alan Boshier

Manager
Irena Hudis

Status
 FORMDROPDOWN

Last Changed
5/24/99

Revision Summary

Version
Date
Author
Changes

1.0.0
4/19/99
Alan Boshier
Initial draft

1.0.1
4/26/99
Alan Boshier
Minor updates

1.0.2
5/24/99
Alan Boshier
Updated for code complete, and added test hints/scenarios section

1.0.3
6/24/99
Alan Boshier
Corrected method names

1.1 Executive Summary

This document describes the features of a new component of WMI, to be introduced in the Pulsar timeframe.

This component, henceforth known as the XML Adapter is intended to allow WMI users access to XML [1] representations of WMI objects.

The XML Adapter has previously been available in a prototype (unreleased) form. The prime motivation for including this in Pulsar is to meet the requirements of the PCHealth (http://pchealth) project; however it should also be noted that PSS has also expressed great interest in using this functionality.

It should be noted that Pulsar is intended to be a lightweight release. Therefore the emphasis is on defining minimum acceptable functionality rather than a fully featured solution, at least for the Pulsar timeframe.

1.2 Platform Requirements

1.2.1 Operating System Support

The XML Adapter must function on all currently supported WMI OS platforms
.
No explicit dependencies on other Microsoft XML technologies will exist (for example we will not require particular flavors of the XML DOM APIs to function).

1.2.2 WMI Version Support

The XML Adapter should work with the Nova M3 codebase or later.

1.2.3 DTD Version Support

The XML Adapter will support version 2.0 of the DMTF XML DTD for CIM [2, 3]. No earlier version will be supported. The XML Adapter will expose a mechanism by which a user can configure the version of the DTD required, but this is primarily for future-proofing at this stage.

The XML Adapter will also support (in a configurable manner) extensions to the DMTF DTD which allow XML to be generated for meta-schema constructs not covered by the DMTF CIM specification [4], but which are used in WMI. For example, embedded objects would be covered by these extensions.

1.3 Setup Requirements

The XML Adapter may be included in a WMI setup program. The only setup requirements for the component are that:

1. wmixmlt.dll and wmixmlt.tlb be installed into the WMI installation directory and regsvr32 be run on the DLL in that location.

2. CIM20.DTD and WMI20.DTD be installed in the dtd subdirectory of the WMI installation directory.

1.4 Security Requirements

For this first version of the XML Adapter, default credentials only will be allowed. There will be no explicit control over domain, user and password credentials.

The XML Adapter will use an impersonation level of Impersonate when communicating with WMI. This will not be configurable via the Adapter.

For this version the XML Adapter will not expose any capability to enable NT Privileges. C++ clients can of course use the Win32 APIs to achieve this, but automation clients will in general not be able to modify this.

1.5 Internationalization Requirements

The XML Adapter returns XML representations in BSTR format.

1.6 Programming Environment Requirements

The XML Adapter shall support access from C++ or any of the commonly used Microsoft automation environments:

· VB/VBA

· VBScript and JScript (access from WSH, IE or ASP)

The XML Adapter will be architected as an ActiveX control, and expose COM interfaces; no other interfaces will be exposed to the user. All interfaces exposed will be dual.

The control will be marked as "Safe for Scripting"
.

1.7 Detailed Technical Requirements

1.7.1 Supported Operations

The XML Adapter will support the following operations:

· Given an instance or class path, return a XML stream representation of that WMI instance or class.

· Given a namespace path and a WQL query (not including a notification query), return an XML stream representation of the query results set.

1.7.2 Configurable Modes of Operation

The following properties will be exposed as configurable to the user:

· The location of the validating DTD (as an URL). This can be included using the XML DOCTYPE processing instruction in the output DTD – it defaults to blank which means that no DOCTYPE PI is generated.

· The version of the DTD to be used as the basis for generation (defaults to DMTF CIM XML DTD 2.0 [2]).

· Whether WMI-specific extensions may be generated - certain WMI elements (such as embedded objects) are not yet part of the DMTF standard meta-model for CIM. They are only generated if this flag is set true, otherwise they are silently ignored by the control and not included in the output stream. (defaults to false).

· Whether all/local-only/propagated-only/none Qualifiers are included in the output stream (defaults to local)

· Whether the <HOSTNAME> portion of the generated XML is set from the WMI information, or whether it is left blank (default true - i.e. HOSTNAME is set to a valid value).

· Whether CLASSORIGIN information is generated for classes and instances (default is no generation) on Property and Method elements. Options are None, Classes Only, Instances Only or Classes and Instances.

· Whether declarations include namespace location information. Default is no.

· Which of DECLGROUP, DECLGROUP.WITHNAME and DECLGROUP.WITHPATH XML elements are generated in the resulting output. The default is to generate DELGROUP elements.

All of the above properties affect all of the operations specified in the previous section.

1.7.3 Handling of Character Data

The XML Adapter will employ the following algorithm when outputting string values of Properties and Qualifiers:

1. If the string contains no reserved XML characters that may not appear in XML character data, the string appears without modification in the output XML document.

2. If the string contains a reserved character (< or &) then the entire string is escaped with a CDATA section, unless it also contains the special CDATA closing escape sequence (]]>) in which case CDATA is not used and instead the regular XML escape sequences (< and &) are used for these characters wherever they occur.

1.8 Limitations & Constraints

1.8.1 No Write Capability

The translation from WMI to XML will be one way only; there will be no capability to commit XML back into WMI or WMI objects.

1.8.2 No Asynchronous Capability

The WMI XML Control will provide synchronous operation only.

1.8.3 No Additional Transport Mechanisms

No other transport mechanisms will be provided for conveyance of the XML other than the current DCOM-based remoting to Windows Management.

1.9 Deliverables

1.9.1 Software Deliverables

The XML Adapter will be installed as an in-process COM server DLL. In addition a type library describing the interfaces supported by the Adapter will be installed for automation support
.

1.9.2 Documentation Deliverables

This document is a deliverable to the WMI team only.

The SDK documentation needs to be expanded to provide material on the use of the XML Adapter, assuming this component is made publicly available.

Samples should be added to the SDK (and to http://wmig) illustrating the use of the Adapter, and illustrating how it can be used in conjunction with other Microsoft XML-friendly technologies (including the XMLDOM API and XML Data Islands within IE 5.0).

2. Quasar Considerations

The features described in this document are designed with the goal of expediting development and minimizing changes to already shipping components.

However, in the Quasar timeframe it is expected that richer functionality for XML support will be integrated seamlessly into the WMI APIs. Support for the XML Adapter would be continued for the benefit of existing customers.

3. Test Considerations

This section provides some suggestions about how to maximize the efficacy of the formal test of this component.

There are 3 conceptual layers to testing the output XML:

· Ensuring the output XML is well-formed – this means that element tags nest strictly, there is a unique root element, and we don't use any reserved characters where we shouldn't.

· Ensuring the XML output is valid with respect to the WMI and DMTF DTDs; this is an additional level of assurance that the structure of the XML document conforms to that specified by the DTD. Due to the way the DTD models the CIM meta-schema, the validity of our XML documents is equivalent to their correctness with respect to the meta-schema (e.g. classes can have methods but instances can't, qualifiers can't have qualifiers, and so on).

· Ensuring that the XML output is an accurate transformation of the underlying WMI data e.g. this is ensuring that the correct property names, types and values are reported when transforming a specific class or instance.

As well-formed and valid are generic XML concepts, there are generic XML tools that can verify that our documents meet these criteria. These are highlighted in section 3.1.

Accuracy is a WMI-specific concept, and must be verified using bespoke tools, but even here existing tools and APIs can assist. More details are in section 3.2.
3.1 Use of Existing Tools

XML being a generic standard, Microsoft already publishes a number of components and tools that can be used against any XML documents. These can be used as the basis for testing the adapter.

· Internet Explorer 5.0 includes a text/xml mime-type viewer; this means that you can point IE at any XML document and IE will display the document in an expandable tree format. The ability to display a document in this way is a basic test that the output XML is well-formed.

· XML Notepad is another good way of viewing (and editing) XML documents – it is available from the http://xmlweb site (and you'll find a host of useful XML resources at this site).

· There are a number of tools and samples available on http://www.microsoft.msdn/ that make it easy to validate XML documents, In particular the XML Validator sample (available at http://msdn.microsoft.com/downloads/c-frame.htm?927583836531#/downloads/samples/internet/default.asp) allows you to validate any XML document against a DTD. We need to ensure that all of our generated XML documents are valid with respect to the CIM and WMI DTDs, and this sample is a good basis for a more specific WMI application that can perform validation automatically against a large sample of object path and query inputs.

· The Microsoft XML DOM API is a generic API that provides scripted access to any XML document. This can be used as the basis for a tool

3.2 Bespoke Tools

In order to verify the accuracy of the output XML documents, it will be necessary to match the XML output of the adapter against output generated by an independent means.

The easiest way to do this is to use the WMI Scripting API as the second source of data. The idea would be as follows:

1. Given an object path or query as input:

a. Use the WMI scripting API to retrieve the corresponding SWbemObject or SWbemObjectSet

b. Use the XML adapter to generate the corresponding XML document

2. Walk the two data trees using the WMI Scripting API (for the SWbemObject or SWbemObjectSet) and the XML DOM API (for the XML document), doing a element-by-element comparison.

It is clear that this process can be automated and parameterized so that a single script can automatically verify the XML Adapter against an unbounded number of different inputs.

4. References

[1]
Extensible Markup Language
Version 1.0
February 10th 1998
http://www.w3.org/TR/REC-xml

[2]
CIM XML DTD
Version 2.0
June 1999
http://www.dmtf.org/spec/cim_dtd_V101.txt

[3]
Specification for the Representation of CIM in XML
Version 2.0
June 1999

[4]
Common Information Model
Version 2.0
March 3rd 1998 http://www.dmtf.org/spec/cim_spec_v20

� Although PCHealth only require Millennium support, the component should be written in a completely portable manner. This does not imply any test schedule to cover (e.g.) Win2000 or NT 4.0 support in the Pulsar timeframe.

� Note that this is done because the control will not support any write capability. It means that arbitrary scripts loaded from any IE zone can use the control. This MUST be revisited if the control is ever extended to support write capability.

� Minor technical detail: we may choose to wrap the type library inside the DLL.

10/06/99
Microsoft Confidential
Page 3

