WMI Sources File Quick Reference

Common macro problems

Shouldn’t be used

· MIDL_FLAGS=/no_warn

Strongly Discouraged

· USER_C_FLAGS=anything
instead use the appropriate NT Build macro:

For:

Use:

/GX

USE_NATIVE_EH=1

/GX-

<this is the build.exe default>

/GR

USE_RTTI=1

/GR-

<this is the build.exe default, unless you use MFC, then build.exe turns it on>

/GF

<this is the build.exe default>

/Z7

<this is the build.exe default>

/Zl

USER_C_FLAGS=/Zl

[I’m looking into this one]

/EHa

USER_C_FLAGS=/EHa

[I’m looking into this one]

/Od

MSC_OPTIMIZATION=/Od
[Please check why you’re disabling optimization]

/Odi

MSC_OPTIMIZATION=/Odi
[Please check why you’re disabling optimization]

/Ob2

MSC_OPTIMIZATION=/Ob2
[Please check why you’re disabling optimization]

/Ox

<this is the build.exe default>

/Oy-

NTNOFPO=1
· C_DEFINES=/D_WIN32_WINNT=0x0400; instead use WIN32_WINNT_VERSION=0x0400
· LINKER_FLAGS=/STACK:x,y; instead use LINKER_STACKSIZE=/STACK:x,y
· LINKER_FLAGS=-NOENTRY <this is the build.exe default if you don’t specify DLLENTRY>

· INCLUDE=$(PUBLIC_SDK_INC)\ATL30; instead use USE_ATL=1 and ATL_VER=30
· NOT_LEAN_AND_MEAN=1; instead try putting #include <ole2.h> [or other necessary headers] before your #include <windows.h> line, usually this is in a precompiled header.

· LINK_FLAGS=/DEBUGTYPE:FIXUP <this is the build.exe default>

Unnecessary

· These are defined in admin\wmi\wbem\common\makefile.cmn:

MIDL_TLBDIR=$(O)

PASS0_CLIENTDIR=$(O)

PASS0_SERVERDIR=$(O)

PASS0_SOURCEDIR=$(O)

PASS0_HEADERDIR=$(O)

Caution

· MIDL_NO_ROBUST=1

Only use this if the idl targets any non-Win2K or greater platforms

· /D_WIN32_WINNT=0x0400
Please check why this is used

· WIN32_WINNT_VERSION=0x0400
Please check why this is used

· USER_C_FLAGS=/Od

Please check why you’re disabling optimization

· MSC_OPTIMIZATION=/Od
Please check why you’re disabling optimization

· USER_C_FLAGS =/Odi
Please check why you’re disabling optimization

· MSC_OPTIMIZATION=/Odi
Please check why you’re disabling optimization

Makefile.cmn

· All sources files should include these two lines at the top [or !include another file that has these lines at the top]:

!include $(PROJECT_ROOT)\wmi\wbem\common\makefile.cmn

SOURCES_USED=$(PROJECT_ROOT)\wmi\wbem\common\makefile.cmn

· The main purpose of makefile.cmn is to define macros for WMI include paths and WMI libraries, both to alleviate typos and to make it easier to move projects and rename libraries.
· All entries in the INCLUDES macro should be macros defined in makefile.cmn or one of the internal depot include macros:
$(ADMIN_INC_PATH)

$(BASE_INC_PATH)

$(COM_INC_PATH)

$(DRIVERS_INC_PATH)

$(DS_INC_PATH)

$(ENDUSER_INC_PATH)

$(INETCORE_INC_PATH)

$(INETSRV_INC_PATH)

$(MULTIMEDIA_INC_PATH)

$(NET_INC_PATH)

$(PRINTSCAN_INC_PATH)

$(SDKTOOLS_INC_PATH)

$(SHELL_INC_PATH)

$(TERMSRV_INC_PATH)

$(WINDOWS_INC_PATH)

· All entries in the TARGETLIBS and LINKLIBS macros should be macros defined in makefile.cmn, $(SDK_LIB_PATH)\filename.lib or one of the internal depot library macros followed by a library name:
$(ADMIN_LIB_PATH)\filename.lib

$(BASE_LIB_PATH)\filename.lib

$(COM_LIB_PATH)\filename.lib

$(DRIVERS_LIB_PATH)\filename.lib

$(DS_LIB_PATH)\filename.lib

$(ENDUSER_LIB_PATH)\filename.lib

$(INETCORE_LIB_PATH)\filename.lib

$(INETSRV_LIB_PATH)\filename.lib

$(MULTIMEDIA_LIB_PATH)\filename.lib

$(NET_LIB_PATH)\filename.lib

$(PRINTSCAN_LIB_PATH)\filename.lib

$(SDKTOOLS_LIB_PATH)\filename.lib

$(SHELL_LIB_PATH)\filename.lib

$(TERMSRV_LIB_PATH)\filename.lib

$(WINDOWS_LIB_PATH)\filename.lib

WMI macros

· WMI macros should be declared BEFORE makefile.cmn is !included.

· Because of how some of the WMI macros operate, it is important to append to some macros in your sources file instead of overwriting them. Currently, it’s best to always use:

C_DEFINES=$(C_DEFINES) /D...

INCLUDES=$(INCLUDES); \

$(...); \
USER_C_FLAGS=$(USER_C_FLAGS) /...

· Current WMI macros [defined in admin\wmi\wbem\common\makefile.cmn] are:

WMIMFC

Usage:
WMIMFC=1
Effects:
!ifdef WMIMFC
USE_MFC=1
MFC_VER=42
!ifdef WMIUNICODE
USE_MFCUNICODE=1
!endif
!endif

WMIUNICODE

Usage:
WMIUNICODE=1

Effects:
!ifdef WMIUNICODE
WMICHARTYPE=UNICODE
C_DEFINES=$(C_DEFINES) /DUNICODE /D_UNICODE
!ifdef WMIMFC
USE_MFCUNICODE=1
!endif
!else
WMICHARTYPE=ANSI
C_DEFINES=$(C_DEFINES) /D_MBCS
!endif
· WMICHARTYPE is used within makefile.cmn to determine which library [ANSI or Unicode for libraries that have both versions] to link with.

WMIPRECOMP

Usage:
WMIPRECOMP=1
Effects:
PRECOMPILED_INCLUDE=precomp.h
PRECOMPILED_CXX=1

· This is the simplest way to have precompiled headers.

· In order to use WMIPRECOMP, all CPP files listed in the SOURCES macro must have identical statements [ignoring comments] up to the #include “precomp.h” line [usually the first line].

· Precomp.h should be in the current directory.

WMIPRECOMPSHARED

Usage:
WMIPRECOMPSHARED=1

Effects:
PRECOMPILED_INCLUDE=..\precomp.h
PRECOMPILED_CXX=1
INCLUDES=..;$(INCLUDES)
· This is the same as WMIPRECOMP except that the precomp.h file is located one directory up.

· In order to use WMIPRECOMPSHARED, all cpp files listed in the SOURCES macro should have identical statements [ignoring comments] up to the #include “precomp.h” line [usually the first line].

· Precomp.h should be in the parent directory of the current directory.

· This macro adds .. to the INCLUDES macro. If this causes problems because you have the same name on a file in your parent directory as a file in you include path, and you don’t want to use the one in your parent directory, consider renaming your file to avoid the conflict.

WMIAUTOPRECOMP

Usage:
WMIAUTOPRECOMP=filename.h
Effects:
USER_C_FLAGS=/Fp$(O)\ /YX$(WMIAUTOPRECOMP)
· This allows precompiled headers when you don’t have all of your cpp files starting with the same statements.

· This uses VC’s automatic precompiled headers.

· It is not necessary to have all of your cpp files #include “filename.h”, but those without it won’t benefit from precompiled headers.

· If you don’t put cpp files with the same statements up to #include “filename.h” together in the SOURCES macro, or you don’t have any cpp files that share their starting statements, this won’t do any good.

· NOTE: filename.h does not need to be in the current directory. If you use precomp.h; however, it’s best to have one of your own in the current directory since there are a lot of them in the WMI tree, and you can never be sure whose you’ll get.

WMIAUTOPRECOMPSHARED

Usage:
WMIAUTOPRECOMPSHARED=filename.h
Effects:
USER_C_FLAGS=/Fp$(O)\ /YX$(WMIAUTOPRECOMPSHARED)
INCLUDES=..;$(INCLUDES)
· This is the same as WMIAUTOPRECOMP except that the filename.h file is located in the parent directory.

· This uses VC’s automatic precompiled headers.

· It is not necessary to have all of your cpp files #include “filename.h”, but those without it won’t benefit from precompiled headers.

· If you don’t put cpp files with the same statements up to #include “filename.h” together in the SOURCES macro, or you don’t have any cpp files that share their starting statements, this won’t do any good.

· filename.h should be in the parent directory of the current directory.

· This macro adds .. to the INCLUDE macro. If this causes problems because you have the same name on a file in your parent directory as a file in you include path, and you don’t want to use the one in your parent directory, consider renaming your file to avoid the conflict.

WMIPLATFORM

Usage:
WMIPLATFORM=WIN2K
WMIPLATFORM=WINNT
WMIPLATFORM=WIN9X
WMIPLATFORM=MILLEN
Effects:
!if “$(WMIPLATFORM)” == “WIN2K”
WBEMCORE_LIB = $(WBEMCORE_WIN2K_LIB)
!elseif “$(WMIPLATFORM)” == “WINNT”
WBEMCORE_LIB = $(WBEMCORE_WIN2K_LIB)
ALT_PROJECT_TARGET=nt4
!elseif “$(WMIPLATFORM)” == “WIN9X”
WBEMCORE_LIB = $(WBEMCORE_WIN9X_LIB)
ALT_PROJECT_TARGET=Chicago
!elseif “$(WMIPLATFORM)” == “MILLEN”
WBEMCORE_LIB = $(WBEMCORE_MILLEN_LIB)
ALT_PROJECT_TARGET=millennium
!else
WBEMCORE_LIB = $(WBEMCORE_WIN2K_LIB)
!endif

· This allows linking with the correct platform’s library AND sets the proper binplace directory.

· For example:

WMIPLATFORM=WIN2K binplaces under %_NTTREE%
WMIPLATFORM=WINNT binplaces under %_NTTREE%\nt4
WMIPLATFORM=WIN9X binplaces under %_NTTREE%\Chicago
WMIPLATFORM=MILLEN binplaces under %_NTTREE%\millennium

· The default is WMIPLATFORM=WIN2K
DLLDEF macro

· Not all platforms support the same def file statements [64 bit doesn’t like DESCRIPTION and has to be DllGetClassObject PRIVATE instead of DllGetClassObject = _DllGetClassObject@12 PRIVATE]. For this reason, if build.exe sees DLLDEF=$(O)\filename.def in a sources file it will first look for a filename.src file, preprocess it, put the output in $(O)\filename.def and then use that def file when linking. This allows the following in a filename.src file:

LIBRARY

WBEMCORE.DLL
#if defined(_M_IX86)
DESCRIPTION

‘WMI Core DLL’
#endif

EXPORTS

#if defined(_M_IX86)

DllGetClassObject

= _DllGetClassObject@12
PRIVATE

DllCanUnloadNow

= _DllCanUnloadNow@0
PRIVATE

DllRegisterServer

PRIVATE

DllUnregisterServer

PRIVATE

Shutdown

= _Shutdown@4

PRIVATE

ExternFlushDB

= _ExternFlushDB@0
PRIVATE

ExternDoBackup

= _ExternDoBackup@4
PRIVATE

ExternManualBackup
= _ExternManualBackup@8
PRIVATE

#else

DllGetClassObject

PRIVATE

DllCanUnloadNow

PRIVATE

DllRegisterServer

PRIVATE

DllUnregisterServer
PRIVATE

Shutdown

PRIVATE

ExternFlushDB

PRIVATE

ExternDoBackup

PRIVATE

ExternManualBackup
PRIVATE

#endif

· Handy defines for this purpose are _M_IX86, _M_IA64 and _M_AXP64.

LINKLIBS vs. TARGETLIBS

· Whenever possible, use TARGETLIBS instead of LINKLIBS.

· LINKLIBS is only needed when your target is a dll that exports symbols that are defined in another static library. When this is the case, add the static library name to LINKLIBS instead of TARGETLIBS.
· The way that build.exe works with regards to libraries is this: in Pass 1, after all the object files are created in a directory, build.exe creates static libraries that contain all of the object files plus all libraries listed in the LINKLIBS macro. It does this when the target is a static or dynamic library. If the libraries in the LINKLIBS macro aren’t built yet, you get an error. With multithreaded builds, directories have to either be so far apart in the build process that it’s virtually guaranteed that the LINKLIBS have already been built, or synchronization macros have to be used. TARGETLIBS libraries are link in during Pass 2, so all of them are guaranteed to be there, unless the build broke.

· The synchronization macros are:

SYNCHRONIZE_DRAIN=1
Do not build this subdirectory until all the prior subdirectories are done.

SYNCHRONIZE_BLOCK=1
Do not continue building until this subdirectory is done.

· Whenever possible, use TARGETLIBS instead of LINKLIBS.

Building MOF Files

Directory that just contains MOF files

· sources file:

TARGETNAME=

TARGETTYPE=NOTARGET

TARGETPATH=

SOURCES=

MISCFILES= \

 $(O)\filename1.mof \

 $(O)\filename1.mfl \

 $(O)\filename2.mof \

 $(O)\filename2.mfl

NTTARGETFILE0= \

 $(O)\filename1.mof \

 $(O)\filename1.mfl \

 $(O)\filename2.mof \

 $(O)\filename2.mfl

· makefile.inc file:

$(O)\filename1.mof $(O)\filename1.mfl: filename1.mof

mofcomp -amendment:ms_409 -MOF:$(O)\filename1.mof -MFL:$(O)\filename1.mfl filename1.mof

$(O)\filename2.mof $(O)\filename2.mfl: filename2.mof

mofcomp -amendment:ms_409 -MOF:$(O)\filename2.mof -MFL:$(O)\filename2.mfl filename2.mof

Directory that also builds a normal binary

· Add these lines to your sources file:

MISCFILES= \

 $(O)\filename1.mof \

 $(O)\filename1.mfl \

 $(O)\filename2.mof \

 $(O)\filename2.mfl

NTTARGETFILE0= \

 $(O)\filename1.mof \

 $(O)\filename1.mfl \

 $(O)\filename2.mof \

 $(O)\filename2.mfl

· makefile.inc file:

$(O)\filename1.mof $(O)\filename1.mfl: filename1.mof

mofcomp -amendment:ms_409 -MOF:$(O)\filename1.mof -MFL:$(O)\filename1.mfl filename1.mof

$(O)\filename2.mof $(O)\filename2.mfl: filename2.mof

mofcomp -amendment:ms_409 -MOF:$(O)\filename2.mof -MFL:$(O)\filename2.mfl filename2.mof

