
1
14 Part 1 Part Head

Chapter 1 Chapter Head 13

‹^# $ K + ›DMI Support¦@¦
[This is preliminary documentation and subject to change.]

The Web-Based Enterprise Management (WBEM) Software Development Kit (SDK) includes a single DMI provider that integrates into WBEM the modeling and manipulation of DMI information. The DMI provider gives WBEM applications the ability to interact with the DMI 2.0 Service Providers running on the local or remote platforms. For additional information, see DMI provider_hmm_DMI_provider.

For additional information on DMI, visit the DMTF website at http://www.dmtf.org!href("http://www.dmtf.org").

The DMI provider is located between CIMOM and the DMI service providers as illustrated in the following diagram.

‹{bmc dmi.bmp}›
‹[image: image1.png]CIMOM Management ‘ ‘
pls Il
Il
Il
. Il
|| MemworkBoundary
CIMOM COM Interface I
Il
Il
|
_ I
CIMOM COM Interface |
S N
I
Il
_ I
RPC } } RPC
Il
I

›
‹^# $ + ›DMI Provider¦@¦
[This is preliminary documentation and subject to change.]

The WBEM SDK includes a single DMI provider capable of acting as:

symbol 183 \f "Symbol" \s 11 \h
A dynamic class provider that enumerates all classes in the DmiNodes namespace and generates class definitions.

symbol 183 \f "Symbol" \s 11 \h
An instance provider that enumerates all instances of a particular class in the DmiNodes namespace.

symbol 183 \f "Symbol" \s 11 \h
An event provider that provides DMI events for the DmiNodes namespace.

A WBEM namespace must be created for each managed node. Each node's namespace resides in the \Default\DmiNodes namespace.

The DMI provider manipulates CIM class definitions. Therefore, the DMI Management Information Format (MIF) Components, Groups, and Attributes map to CIM classes, instances, and properties, respectively. For more information on how this mapping is done, see Mapping DMI to the CIM Schema_hmm_Mapping_DMI_to_the_CIM_Schema
With the DMI provider, WBEM applications will be able to perform the following operations:

SYMBOL 183 \f "Symbol" \s 11 \h
Access all DMI 2.0 Component, Group, and Attribute data.

SYMBOL 183 \f "Symbol" \s 11 \h
Add and Delete DMI Components.

SYMBOL 183 \f "Symbol" \s 11 \h
Add and Delete DMI Groups.

SYMBOL 183 \f "Symbol" \s 11 \h
Add and Delete the Rows of a DMI tablular group.

SYMBOL 183 \f "Symbol" \s 11 \h
Modify the writeable Attribute data.

SYMBOL 183 \f "Symbol" \s 11 \h
Set the language mapping of a DMI Component.

SYMBOL 183 \f "Symbol" \s 11 \h
Add or Delete Languages from a DMI Component.

SYMBOL 183 \f "Symbol" \s 11 \h
Handle DMI Events.

The MOF file and executables for the DMI Provider are in the WBEM directory.

The software components of the DMI Provider are as follows:

DMI Provider Component
Description

WBEMDMIP.DLL
Main DMI Provider module responsible for schema translation, communication with WBEM and DMI, and construction of dynamic classes and instances.

WBEMDMIP.MOF
Sample MOF file shipped with the DMI Provider describing the DMI node namespace for the local node and registering the DMI Provider with WBEM.

MOTDMIENGINE.OCX
Microsoft® ActiveX® Control used by the DMI Provider to establish communications and interactions with the DMI Service Providers.

WCDMI.DLL, WCDMIDCE.DLL, and WDMIUTIL.DLL
DLL modules used by MOTDMIENGINE.OCX to handle RPC connection and tear down with DMI 2.0 Service Providers on the local and remote nodes.

‹^# $ + ›Setting Up the DMI Provider¦@¦
[This is preliminary documentation and subject to change.]

SYMBOL 219 \f "MSIcons" \s 11 \h
To set up the DMI provider

1.
Create a MOF file.

2.
Create the \DmiNodes namespace. To create a namespace, create an instance of the __NAMESPACE class. The \DmiNodes namespace must reside in the \Root namespace:

#pragma namespace("\\\\.\\root")

instance of __Namespace

{

Name = "DmiNodes";

};

3.
Create a namespace for each managed node under DmiNodes. Each namespace representing a DMI node must include a class and an instance that describes the node, as well as instances of the required provider registration class.

#pragma namespace("\\\\.\\root\\DmiNodes")

instance of __NameSpace

{

Name = "ManagedNode1";
// Logical name given to a

// remote node

};

4.
Create the class DmiNode. This class must have the qualifier singleton and the string property called “NetworkAddress”:

[singleton]

class DmiNode

{

string NetworkAddress;

};

5.
Create an instance of DmiNode. Set the NetworkAddress property to the network name or address of the managed node:

instance of DmiNode

{

// Network address for ManagedNode1 or its machine name

NetworkAddress = "206.170.168.35”

};

6.
Create an instance of __Win32Provider to register the DMI provider to handle class and instance operations for the node created above:

#pragma namespace("\\\\.\\root\\DmiNodes\\ManagedNode1")

instance of __Win32Provider As $Provider

{

Name = "WbemDmip" ;
// Provider DLL name

ClsId = "{DE065A70-19B5-11D1-B30C-00609778D668}" ;

};

7.
Create an instance of __InstanceProviderRegistration to tell the Common Information Model Object Manager (CIMOM) that the provider supports instance operations:

{

Provider = $Provider;

SupportsGet = TRUE;

SupportsPut = TRUE;

SupportsDelete = TRUE;

SupportsEnumeration = TRUE;

};

8.
Create an instance of __MethodProviderRegistration to tell CIMOM that the provider handles methods:

instance of __MethodProviderRegistration

{

 Provider = $Provider;

};

9.
Create an instance of __ClassProviderRegistration to tell CIMOM that the provider supports class operations:

instance of __ClassProviderRegistration

{

 Provider = $Provider;

 SupportsGet = TRUE;

 SupportsPut = FALSE;

 SupportsDelete = TRUE;

 SupportsEnumeration = TRUE;

 QuerySupportLevels = NULL ;

ResultSetQueries = {

"Select * From meta_class Where __this isa \"DmiComponent\"" ,

"Select * From meta_class Where __this isa \"DmiGroupRoot\"" ,

"Select * From meta_class Where __this isa \"DmiBindingRoot\"" ,

"Select * From meta_class Where __this isa \"DmiNodeData\"" ,

"Select * From meta_class Where __this isa \"DmiLanguage\"" ,

"Select * From meta_class Where __this isa \"DmiEvent\"" ,

"Select * From meta_class Where __this isa \"DmiAddMethodParams\"" ,

"Select * From meta_class Where __this isa \"DmiGetEnumParams\"" ,

"Select * From meta_class Where __this isa \"DmiLanguageMethodsParams\""

} ;

} ;

};

10.
Create an instance of __Win32Provider to tell CIMOM that the provider supports events:

instance of __Win32Provider as $EventProv

{

 Name = "WbemDmiEventp" ;

 ClsId = "{B21FBFA0-1B39-11d1-B317-00609778D668}";

};

11.
Create an instance of __EventProviderRegistration to tell CIMOM the types of events that the provider can handle:

Instance of __EventProviderRegistration

{

 Provider = "WbemDmiEventp";

 EventQueryList = {

 "select * from DmiEvent",

"select * from __InstanceCreationEvent where TargetInstance is a \"DmiComponent\"",

"select * from __InstanceDeletionEvent where TargetInstance is a \"DmiComponent\"",

"select * from __InstanceCreationEvent where TargetInstance is a \"DmiLanguage\"",

"select * from __InstanceDeletionEvent where TargetInstance is a \"DmiLanguage\""

 };

};

Alternately, you can use the WBEM Developer Studio to create namespaces and the required class and instance definitions. For instructions, see the WBEM SDK Applications Guide for instructions. See the sample MOF file WBEMDMIP.MOF included with the WBEM SDK.

12.
After you create a MOF for a managed node, you must submit the file to WBEM's MOF compiler.

mofcomp <MOF-file>

‹^# $ + ›Mapping DMI To The CIM Schema¦@¦
[This is preliminary documentation and subject to change.]

The WBEM DMI Provider uses the following schema to represent the MIF component group attribute information:

DmiNode

Static class defined in MOF. Used to establish the network address of the managed node.

DmiNodeData

Dynamic singleton class with a dynamic instance. Contains DmiGetConfig data. Has methods that allow you to add and delete components, and set the default language.

DmiComponent

A dynamic class with dynamic instances. Contains component and component ID group data. Has methods that allow you to add a group, add and delete a language, and extract the component ID group attribute enumeration.

DmiLanguage

A dynamic class with dynamic instances. Contains language data.

DmiGroupRoot

This is an abstract class that does not have any instances. All dynamic group classes are derived from this class.

Dynamic DmiGroup Classes
A dynamic class is created for each group on the managed node. Each dynamic group class is given a name in the form:

Component<Component Id>__Group<Group Id>__<Class String>.

A dynamic instance is created for each row of a tabular group. For a scalar group, only one instance is created.

DmiBindingRoot

This is an abstract class from which all bindings in the namespace are derived. The classes derived from DmiBindingRoot are used to bind a DmiComponent class to a DmiNode class, a DmiGroup class to a DmiComponent class, and so on.

DmiLanguageBinding

Instances of this dynamic class bind DmiLanguage instances to instances of DmiComponent.

Dynamic DmiGroupBinding Classes

A dynamic group binding class is created for each group on the managed node. Each dynamic group binding class is given a name in the form:

Component<Component Id>__Group<Group Id>__<Class String>__Binding.

Dynamic instances of these classes are created for each row of a tabular group. For a scalar group, only one instance is created. An instance of a dynamic group binding class binds an instance of a dynamic group class to an instance of a DmiComponent.

DmiAddMethodParams

Instances of this dynamic class contain the parameters required by the add language, add group, and delete language methods.

DmiGetEnumParams

Instances of this dynamic class contain the parameters required by the get attribute enumeration method.

DmiEnum class

A dynamic class created for attribute enumeration. Instances of this class contain the value string pair of a DMI attribute's enumeration.

DmiLanguageMethodParams

Instances of this dynamic class are used in setting the default language.

DmiEvent

Instances of this dynamic class are generated when a DMI event is generated.

‹^# $ + ›DMI Operations Using WBEMDMIP.DLL¦@¦
[This is preliminary documentation and subject to change.]

This section briefly describes the WBEM methods used for common DMI management tasks. See the DMITEST sample application included in this SDK for an example of how to use the DMI access methods.

DmiGetVersion

Use IWbemServices::CreateInstanceEnum_hmm_IWbemServices_GetObject with the class set to the singleton instance of DmiNodeData.

DmiGetConfig

Use IWbemServices::GetObject_hmm_IWbemServices_GetObject with the path for the singleton instance of DmiNodeData.

DmiSetConfig

Use the IWbemServices::ExecMethod_hmm_IWbemServices_ExecMethod with the path for the singleton instance of DmiNodeData, the method SetDefaultLanguage, and the instance of DmiLanguageMethodParams with the Language property set to the desired language string.

DmiListComponents

Use the IWbemServices::CreateInstanceEnum_hmm_IWbemServices_CreateInstanceEnum method with the class set to DmiComponent.

DmiListLanguages

Use the IWbemServices::CreateInstanceEnum_hmm_IWbemServices_CreateInstanceEnum method with the class set to DmiLanguage.

DmiListGroups

Use the IWbemServices::CreateClassEnum_hmm_IWbemServices_CreateClassEnum method with the superclass set to DmiGroupRoot.

DmiListAttributes

Use the IWbemServices::GetObject_hmm_IWbemServices_GetObject method with the path set to the desired instance of the desired dynamic group class.

DmiGetAttribute

Use the IWbemServices::GetObject_hmm_IWbemServices_GetObject method with the path set to the desired instance of the desired dynamic group class.

Note

This gives you all the attributes in the group. There is no way to access just one attribute. Once you get the object that contains all the attributes, you can perform the Get operations on the object to get the class property representing a given DMI attribute.

DmiSetAttribute

Use the IWbemServices::GetObject_hmm_IWbemServices_GetObject method with the path set to the desired instance of the desired dynamic group class. Use the WBEM’s PUT method on the object to modify the instance returned, then use IWbemServices::PutInstance_hmm_IWbemServices_PutInstance.

DmiGetMultiple

Use the IWbemServices::GetObject_hmm_IWbemServices_GetObject method with the path set to the desired instance of the desired dynamic group class.

Note

This gives you all the attributes in the group.

DmiSetMultiple
Use the IWbemServices::GetObject method with the path set to the desired instance of the desired dynamic group class. Modify the instance returned. Then use IWbemServices::PutInstance.

DmiAddRow

Use the IWbemServices::GetObject method with the path set to the desired instance of the desired dynamic group class. Modify the instance returned then use IWbemServices::PutInstance.

Note

The RowId property must be changed to a nonexistent RowId.

DmiDeleteRow

Use the IWbemServices::DeleteInstance_hmm_IWbemServices_DeleteInstance with the path set to the desired dynamic instance of the dynamic class.

DmiAddComponent

Use the IWbemServices::ExecMethod_hmm_IWbemServices_ExecMethod with the path for the singleton instance of DmiNodeData, the method of AddComponent, and the MifFile property of the instance of the DmiAddMethodParams set to the desired MIF file path.

DmiAddLanguage

Use the IWbemServices::ExecMethod_hmm_IWbemServices_ExecMethod with the path to the instance of the component to which the language is to be added. Set the method to AddLanguage, and the MifFile property of the instance of the DmiAddMethodParams set to the desired MIF file path.

DmiAddGroup

Use the IWbemServices::ExecMethod_hmm_IWbemServices_ExecMethod with the path to the instance of the component to which the language is to be added. Set the method to AddGroup, and the MifFile property of the instance of the DmiAddMethodParams set to the desired MIF file path.

DmiDeleteComponent

Use IWbemServices::DeleteInstance_hmm_IWbemServices_DeleteInstance with the path set to the desired dynamic instance of the DmiComponent class.

DmiDeleteLanguage

Use the IWbemServices::ExecMethod_hmm_IWbemServices_ExecMethod with the path to the instance of component to which the language is going to be deleted. Set the method to DeleteLanguage, and the Language property of the instance of the DmiLanguageMethodParams set to the language string to be deleted.

DmiDeleteGroup

Use IWbemServices::DeleteClass_hmm_IWbemServices_DeleteClass with the path set to the desired dynamic group class.
‹^# $ + ›DMITEST Code Sample¦@¦
This section describes the dmitest code sample (DMITEST.EXE), a Win32 console application that uses the WBEM API to access and manipulate a DMI 2.0 enabled Win32 platform. The sample includes examples of DMI 2.0 MIF files that will be used to install components in the DMI database.

The same code reads input data from a script file, DMITEST.SCR, processes the command script, and makes appropriate WBEM API calls to access the DMI database. The application then will store the output data into a file called DMITEST.OUT.

The DMITEST application relies on the user to ensure that the DMI 2.0 Service Provider is already running on the system and that the WBEMDMIP.MOF file has already been compiled and installed into the CIMOM’s repository to enable DMI operations.

The DMITEST code sample was developed using Microsoft Visual C++ version 5.0, and is in the \WBEM\SDK\COM\DMITEST directory.

The DMITEST’ s MIF data

The application uses the MIF files DBTYPES1.MIF and TEMPCOM1.MIF to install three components in the DMI database and access them through the DMI provider. The DBTYPES1.MIF is installed twice.

The DMITEST.SCR script uses hard-coded path of C:\TESTMIFS for the location of the above two MIF files. To access the MIF files from a different directory, change the DMITEST.SCR file to look for the correct path.

The files included in this sample

Sample File
Description

DMITEST.CPP
Main source file for the DMITEST application responsible for reading and processing command scripts from the DMITEST.SCR input file and submitting DMI requests to WBEM.

DMITEST.H
Header file for DMITEST.CPP module.

DMITEST.SCR
Containing the DMI command scripts processed by the DMITEST application.

DMITEST.OUT
DMITEST application generated output file containing the results from executing the DMI service requests.

DATATYPES.CPP
Code for manipulating the OLE data types used by DMITEST.CPP.

DATATYPES.H
Header file for DATATYPES.CPP.

DEFINES.H
Header file of definitions used to turn off some sections of the WINDOWS.H header file not used by the application.

WBEMSVC.H
Header file containing the CIMOM interface definitions.

DBTYPES1.MIF
MIF file used to install a DMI component called “First Database Types MIF.”

TEMPCOM1.MIF
MIF file used to install a DMI component called “Test System Temporary Component.”

DMITEST.DSP, DMITEST.DSW
Visual C++ 5.0 project file used to build the DMITEST.EXE executable.

SYMBOL 219 \f "MSIcons" \s 11 \h
To build the DMITEST module

1.
Run the Microsoft Visual C++ 5.0 Development Studio program.

2.
Load the DMITEST.DSP project file.

3.
From the BUILD menu, select SETTINGS. Choose the Preprocessor option from the C/C++ Tabbed dialog box. Set the Additional Include Directory entry to the INCLUDE directory of the WBEM SDK installed on your system.

4.
Replace the WBEMUUID.LIB module in the project files list with the one in the LIB directory of the WBEM SDK installed on your system. To build this library, run the “nmake” program from the \wbem\include subdirectory.

5.
From the BUILD menu, select UPDATE ALL DEPENDENCIES.

6.
Rebuild the project to generate the DMITEST.EXE module.

7.
Verify that DMITEST.SCR file is in the same directory as the DMITEST.EXE module.

8.
Run the DMITEST application and view DMITEST.OUT file for the results after the program terminates.

9.
Open the DMITEST.CPP module and set breakpoints on the ProcessScriptFile() function, run the DMITEST application again, and observe how the application accesses DMI information through WBEM.

Using The WBEMTEST* Application To View DMI Data

To view the DMI data on the local or remote node, connect to the machines residing in the DMINODES namespace. For example, to view the DMI data on the local machine, use the following connect string:

Root\dminodes\local

After you establish connection, you can query and view the DMI classes specified earlier in this document. For example, to view a list of the DMI components installed in the DMI database, click on the “EnumInstances” button, and enter “dmicomponent” without quotes for the class name. To view a list of the DMI groups, click “EnumClasses” button, and enter “dmigrouproot” without quotes for the class name.

Subscribing For DMI Events and Notifications

You can use the WBEMTEST application to subscribe for DMI events and notifications. To subscribe for events, enable the “Execute asynchronously” check box, click on the “Notification Query” button and enter the appropriate event subscription queries. The following example shows how to subscribe for a “DmiComponent Added” notification:

Select * from __InstanceCreationEvent Where TargetInstance isa “DmiComponent”

The following example shows how to subscribe for a “DmiComponent Added” notification:

Select * from __InstanceDeletionEvent Where TargetInstance isa “DmiComponent”

The “DmiGroup Added/Deleted” notifications map to ClassCreation and ClassDeletion events in CIMOM. Since CIMOM does not support the ClassCreation and ClassDeletion events, the DMI provider does not support the above DMI group notifications.

The following example shows how to subscribe for all kinds of DMI events including the extrinsic DMI events:

Select * from DmiEvent

_hmm_DMI_Support

$ DMI Provider

K DMI Provider

+ main:0000

_hmm_DMI_Provider

$ DMI Provider

+ main:0000

_hmm_Setting_Up_the_DMI_Provider

$ Setting Up the DMI Provider

+ main:0000

_hmm_Mapping_DMI_To_The_CIM_Schema

$ Mapping DMI To The CIM Schema

+ main:0000

_hmm_DMI_Operations_Using_WBEMDMIP.DLL

$ DMI Operations Using WBEMDMIP.DLL

+ main:0000

_hmm_DMITEST_Code_Sample

$ DMITEST Code Sample

+ main:0000

/ndf{1 index where{pop pop pop}{dup xcheck{bind}if def} ifelse}bind def

/ed{exch def}bind def

/SetPageOffset{neg wp$y add/dTop ed/dLeft ed}ndf

/SetPageSize {neg dTop add/dBot ed dLeft add/dRight ed}ndf

/DoCropMarks{gsave 0 setgray /dopaint true def 0.25 setlinewidth

 dLeft 76 sub dTop moveto 72 0 rlineto dLeft 76 sub dBot moveto 72 0 rlineto

 dRight 4 add dTop moveto 72 0 rlineto dRight 4 add dBot moveto 72 0 rlineto

 dLeft dTop 76 add moveto 0 -72 rlineto dRight dTop 76 add moveto 0 -72 rlineto

 dLeft dBot 4 sub moveto 0 -72 rlineto dRight dBot 4 sub moveto 0 -72 rlineto

 stroke grestore}ndf

/DoPageBox {gsave 0 setgray /dopaint true def 0.25 setlinewidth

 dLeft dTop moveto dRight dTop lineto dRight dBot lineto dLeft dBot lineto

 closepath stroke grestore}ndf

40.5 72 SetPageOffset

531 648 SetPageSize

DoCropMarks

DoPageBox"

Filename: backsdk7.dot Project: title
Template: Normal.dot Author: Robert Keller Last Saved By: Luke McGuff
Revision #: 102 Page: 14 of 1 Printed: 02/08/96 02:55 PM

0 setgray /dopaint true def 2 2 moveto

/str 30 string def /Times-Roman findfont 5 scalefont setfont

(Printed On:) show statusdict begin product show end

(Colorlayer:) show /colorlayer where {pop colorlayer str cvs show}{(?) show}ifelse

(Document Page:) show wp$fpage show"
!Unexpected End of Expression

/ndf{1 index where{pop pop pop}{dup xcheck{bind}if def} ifelse}bind def

/ed{exch def}bind def

/SetPageOffset{neg wp$y add/dTop ed/dLeft ed}ndf

/SetPageSize {neg dTop add/dBot ed dLeft add/dRight ed}ndf

/DoCropMarks{gsave 0 setgray /dopaint true def 0.25 setlinewidth

 dLeft 76 sub dTop moveto 72 0 rlineto dLeft 76 sub dBot moveto 72 0 rlineto

 dRight 4 add dTop moveto 72 0 rlineto dRight 4 add dBot moveto 72 0 rlineto

 dLeft dTop 76 add moveto 0 -72 rlineto dRight dTop 76 add moveto 0 -72 rlineto

 dLeft dBot 4 sub moveto 0 -72 rlineto dRight dBot 4 sub moveto 0 -72 rlineto

 stroke grestore}ndf

/DoPageBox {gsave 0 setgray /dopaint true def 0.25 setlinewidth

 dLeft dTop moveto dRight dTop lineto dRight dBot lineto dLeft dBot lineto

 closepath stroke grestore}ndf

40.5 72 SetPageOffset

531 648 SetPageSize

DoCropMarks

DoPageBox"

Filename: backsdk7.dot Project: title
Template: Normal.dot Author: Robert Keller Last Saved By: Luke McGuff
Revision #: 102 Page: 13 of 1 Printed: 02/08/96 02:55 PM

0 setgray /dopaint true def 2 2 moveto

/str 30 string def /Times-Roman findfont 5 scalefont setfont

(Printed On:) show statusdict begin product show end

(Colorlayer:) show /colorlayer where {pop colorlayer str cvs show}{(?) show}ifelse

(Document Page:) show wp$fpage show"
!Unexpected End of Expression

