Microsoft Corporation

MSI Provider Functional Specification

Revision History

	Date
	Version
	Revised By

	7/22/98
	1.0
	Eric Gates

	7/14/98
	0.5
	Eric Gates

MSI Provider Functional Specification
1
Revision History
1
Introduction
3
Overview
3
Items Not Addressed
3
1.
Distribution
3
2.
Package Design and Editing
3
Provider Registrations
4
Provider Organization
5
Class Hierarchy
5
Class Usage
5
MSI Interaction
6
Supported Methods
7

Installation Methods (Install Product, Admin Product and Advertise Product)
7

Reinstall (both SoftwareFeature and Product)
8

Upgrade Product
8

Uninstall Product
8

Configure (both SoftwareFeature and Product)
8
Method Status
9
Object Deletion
10
Security
10
Reentrancy and Multithreading
10
Packaging
10
Development Tools
10
Test Tools
10
References
12

Introduction

The MSI Provider acts as a means for WBEM to surface information about applications installed using the Windows Installer (a.k.a. MSI, Darwin). The provider implements several methods of the IWbemServices interface in order to interact with WBEM, and retrieves information from MSI enable installations via the set of MSI API calls. The MSI Provider can surface all information about the various elements of an installation as defined by MSI.

The MSI provider is implemented as a single DLL, MsiProv.dll. The provider is structured around the classes that it provides, and this allows for the addition of more classes to the provider’s repertoire as more information becomes available through MSI.

Overview

This document describes the structure and flow of information through the MSI Provider. This is a developing document and will be modified as changes occur in the MSI Provider.

Items Not Addressed

1. Distribution

This version of the MSI Provider should deal with package level information and operations and not the larger picture of managing installations over a distributed medium. It has been proposed that Directory Services should be used as a medium for the distribution of MSI packages. This, however, has not been addressed in this version of the MSI Provider.

2. Package Design and Editing

The ability to tailor installation packages should not be included in this version of the MSI Provider. These operations should be left to tools provided by MSI and other vendors.

Provider Registrations

The following information is used to register the MSI Provider with the system and CIMOM.
The MsiProv.dll is registered with the system using the CLSID {BE0A9830-2B8B-11d1-A949-0060181EBBAD}, which is stored in the registry. MsiProvRes.dll is registered by the GUID {BE5A9830-2C8B-15d1-A9849-0965181EBBAD}.
This instance of the system class __Win32Provider registers the MSI Providers CLSID with CIMOM. CIMOM will then make use of information stored in the registry to access the appropriate DLL.

instance of __Win32Provider as $Z

{

Name = "MSIProv";

ClsId = "{BE0A9830-2B8B-11d1-A949-0060181EBBAD}";

};
This instance of the system class __InstanceProviderRegistration identifies the MSI Provider as an instance provider and declares the operations that are supported by the provider (note: all operations except delete are supported.)

instance of __InstanceProviderRegistration

{

Provider = $Z;

SupportsGet = "TRUE";

SupportsEnumeration = "TRUE";

SupportsPut = "TRUE";

SupportsDelete = "FALSE";

};
This instance of the system class __MethodProviderRegistration identifies the MSI provider as a valid method provider.

instance of __MethodProviderRegistration

{

Provider = $Z;

};
The CIM classes that are populated by the MSI Provider are tightly tied to the CIM v2 specification (most of the classes derive from the CIM model.) For this reason the MSI provider will populate the \root\cimv2 namespace.

For information on supported platforms and timeline information see MSIProvProposal.doc

Provider Organization

Class Hierarchy

The following are the foundation classes that make up the MSI Provider.

	· CProvFactory
	This class acts as the class factory for the CMsiProv class.

	· CMsiProv: IWbemServies, IWbemProviderInit
	IWbemServices implementation the acts as the interface to WBEM.

	· CRequestObject
	This class performs parsing and delegates instance operations to the appropriate CGenericClass descendant.

	· CGenericClass
	This class acts as the base class for all the individual instance provider classes. The descendants of this class handle all interactions with the MSI environment.

The code that is required for the creation and maintenance of individual instances is contained in a series of classes derived from CGenericClass. Each of these derived classes handles all of the operations for a specific CIM class and its instances. This allows for easy addition to the list of CIM classes supported by the provider.

Class Usage

The provider is implemented as a Win32 DLL, and needs to export several functions. These include DllRegisterServer, DllUnregisterServer, DllGetClassObject and DllCanUnloadNow. The first two are used to self-register/unregister the DLL in the registry. CIMOM will call DllGetClassObject to create a CProvFactory object, which will be used to create the CMsiProv object. DllCanUnloadNow is called to determine when it is safe to unload the DLL.

When CProvFactory.CreateInstance() is called by CIMOM an instance of CMsiProv is created. CMsiProv.Initialize() will then be called by CIMOM. At this time any initialization required by the provider will be performed. The provider then enters the standard operation cycle in which the following interfaces are supported.

CreateInstanceEnumAsync

When this method is called the list of known installations is initialized (this insures that the most update information available from MSI is used) and a CRequestObject is created. CRequestObject.CreateObjectEnum() is then called with the requested object path. The path is parsed by the CRequestObject and control is then handed to the appropriate descendant of CGenericClass through a call to the virtual function CreateEnum(). This method (specific to each descendant of CGenericClass) interacts with MSI and performs the necessary operations to populate any instances of the requested class.

GetObjectAsync

When this method is called the list of known installations is initialized and again, a CRequestObject is created. CRequestObject.CreateObject() is then called with the requested object path. The path is parsed by the CRequestObject and control is then handed to the appropriate descendant of CGenericClass through a call to the virtual function CreateInst(). This method (specific to each descendant of CGenericClass) interacts with MSI and performs the necessary operations to populate the requested instance.

PutInstanceAsync

When this method is called a CRequestObject is created. CRequestObject.PutObject() is then called with the requested object path and the object that is to be inserted. The path is parsed by the CRequestObject and if the put operation is supported by the requested object control is then handed to the appropriate descendant of CGenericClass through a call to the virtual function PutInst(). This method (specific to each descendant of CGenericClass that supports put operations) performs the necessary operations to populate the requested instance including any interactions with MSI.

DeleteInstanceAsync

When this method is called a CRequestObject is created. CRequestObject.DeleteObject() is then called with the requested object path. The path is parsed by the CRequestObject and if the delete operation is supported by the requested object control is then handed to the appropriate descendant of CGenericClass through a call to appropriate method. This method (specific to each descendant of CGenericClass that supports delete operations) performs the necessary operations to remove the requested instance including any interactions with MSI.

ExecMethodAsync

When this method is called a CRequestObject is created. CRequestObject.ExecMethod() is then called with the requested object path and the input and output parameters. The path is parsed by the CRequestObject and if the requested method is supported by the requested object, control is then handed to the appropriate descendant of CGenericClass through a call to a function of the requested name (e.g. for an instance that supports the method “UpgradeProduct”, the method “UpgradeProduct” will be called for the appropriate descendant of CGenericClass). This method performs the operations associated with the method call itself.

In most cases there is a one-to-one relationship between the methods supported by the MSI Provider and an equivalent MSI API call. The parameters required by the methods supported by the MSI Provider can generally be mapped directly to the MSI API that is being called by the method. Any exceptions to this can be thought of as supporting information for the associated API call. With this in mind, the MSI Provider is acting as somewhat of a wrapper for the MSI API calls.

Both methods that are static (only accessible from a class definitions and not an instances) and those available only to instances are implemented in the CIM classes associated descendant of CGenericClass. The CRequestObject will determine whether the call has been made from a valid source (e.g. from the appropriate CIM class definition for a static method).

The return value for method calls is based on the return values generated by calls to the MSI APIs. In the cases where there is one API that corresponds to a method call, the return value from that API is returned. In other cases a value based on the MSI return values is returned.

MSI Interaction

All interactions with the MSI environment are handled through calls to the MSI API functions. This includes the retrieval of data for instance population, the setting of data for put operations and the execution of methods. The more efficient MSI management APIs are used when possible, however they are relatively limited in scope and in many cases calls to APIs that directly interact with the MSI databases are used.

The information surfaced through the instances associated with the MSI Provider is primarily pulled directly from the associated MSI database through the use of relational queries. For most CIM classes there is a one-to-one relationship between the class and a particular MSI table. Most of the columns in these tables map directly to properties in the CIM classes (the notable exception being columns that reference other tables. These are recreated as associations.) The limited amount of information the does not come directly from the database is retrieved through the management APIs which can provide streamlined access to specific information in the database along with access to information held in the registry (e.g. usage metrics are not held in the database, and are accessed via the management APIs. These appear as any other property once populated in the CIM classes).

MSI supports both ANSI and UNICODE versions of their APIs, and the UNICODE versions have been used by the MSI Provider whenever possible.

Supported Methods

The MSI Provider supports the following methods

· Installation Methods (Install Product, Admin Product and Advertise Product)

There are three types of installations that are supported by MSI: Install, Admin and Advertise. Install has the same affect that users have come to expect from a setup executable; the Product is installed in the defined format on the local machine. Admin installs an administrative image to a share point. From this point the Product is installed with one of the two other install types. Advertising is when the User Interface is populated so that the Product appears to be installed (e.g. shortcuts and registry entries are installed), but the executable is not. The executable gets installed when it is requested by the user (Just in Time installation.)

These methods are implemented statically for the class Win32_Product. The basic definition for these methods is as follows:

[static, Implemented]

 uint32 Install

(

[in] string PackageLocation,

[in] string Options,

[in] boolean AllUsers = FALSE

);

 [static, Implemented]

 uint32 Admin

(

[in] string PackageLocation,

[in] string TargetLocation,

[in] string Options

);

 [static, Implemented]

 uint32 Advertise

(

[in] string PackageLocation,

[in] string Options,

[in] boolean AllUsers = FALSE

);

The in bound parameter PackageLocation contains the path to the *.msi package that is to be installed. The in bound parameter Options contains the list of command line options for the installation as specified in the MSI documentation.

· Reinstall (both SoftwareFeature and Product)

These methods are implemented for instances of the Win32_SoftwareFeature and Win32_Product class respectively. The method definitions are both as follows:

[Implemented]

 uint32 Reinstall

(

[in, values{"FileMissing", "FileOlderVersion", "FileEqualVersion", "FileExact", "FileVerify", "FileReplace", "UserData", "MachineData", "Shortcut", "Package"}, valuemap{"1", "2", "3", "4", "5", "6", "7", "8", "9", "10"}]

uint16 ReinstallMode = 1

);

The in bound parameter ReinstallMode contains the specific type of reinstallation that is desired. Explanations for the possible values are found in the MSI documentation.

· Upgrade Product

This method is implemented for instances of the Win32_Product class. This method is essentially an install for a Product that is already installed. The method definition is as follows:

[Implemented]

 uint32 Upgrade

(

[in] string PackageLocation,

[in] string Options

);

The in bound parameter PackageLocation contains the path to the *.msi package that contains the upgrade. The in bound parameter Options contains the list of command line options for the installation as specified in the MSI documentation.

· Uninstall Product

This method is implemented for instances of the Win32_Product class. This method will allow for the removal of an installed Product. The method definition is as follows:

[Implemented]

 uint32 Uninstall();

There are no in or out bound parameters for this method. It acquires all the information if needs from the object which it is called from.

· Configure (both SoftwareFeature and Product)

This method is implemented for instances of both the Win32_SoftwareFeature and the Win32_Product class. This method allows for the configuration of an existing installation (e.g. conversion from an installed Product to an advertised one). The method definition for Win32_SoftwareFeature is as follows:

[Implemented]

uint32 Configure

(

[in, values{"Default", "Advertise", "Local", "Absent", "Source"}, valuemap{"1", "2", "3", "4", "5"}]

uint16 InstallState = 1

);

The in bound parameter InstallState is unsigned integer representing the desired state of the SoftwareFeature. The method definition for Win32_Product is as follows:

[Implemented]

uint32 Configure

(

[in, values{"Default", "Local", "Source"}, valuemap{"1", "2", "3"}]

uint16 InstallState = 1,

[in, values{"Default", "Minimum", "Maximum"}, valuemap{"1", "2", "3"}]

uint16 InstallLevel = 1

);

The in bound parameter InstallState carries the same meaning as it does for the Win32_SoftwareFeature version with the additional in bound parameter InstallLevel specifying what level the Product should be installed at (installation level is used to determine what SoftwareFeatures will be installed and in what state.) Explanations for the possible values can be found in the MSI documentation.

Method Status

The MSI provider through the impersonation of a user interface supports status information for the methods. A callback function of the type INSTALLERUI_HANDLER is passed to MSI as an external user interface implementation. This function does not actually implement a user interface; instead it receives all the status reporting messages that are passed to the UI and issues the appropriate SetStatus() information for a given method call.

When a method is invoked, the installation UI is set to the MSI Providers UI impersonation function. The status messages are received by this INSTALLERUI_HANDLER implementation as they are generated by MSI, and they are then handed to the CRequestObject which handles the SetStatus() call. The following is a list of the status information messages, the type of report they represent and the MSI UI messages that generate them.

	FatalExit
	Completion
	Premature termination

	Error
	Completion
	Formatted error message

	Warning
	Progress
	Formatted warning message

	UserRequest
	Completion
	User Request Message

	Info
	Progress
	Informative message for log

	FileInUse
	Completion
	The associated list of files is in use that must be closed

	ResolveSource
	Completion
	Invalid source location

	OutOfDiskSpace
	Completion
	Insufficient disk space message

	ActionStart
	Progress
	An action has started

	ActionData
	Progress
	Data associated with an action

	Success
	Completion
	The method has completed

	Progress
	Progress
	Progress gauge information. This message includes

Information on units so far and total number of units.

All of these messages are delivered either in a progress report or a completion report (both variations of SetStatus()). Messages that would necessitate the termination of an operation (e.g. anything that would require the user to interact with the installation) will cause a premature end to the method and are delivered as completion reports. Any report that will allow for the continuance of the operation is issued as a progress report.

Object Deletion

The MSI Provider supports deletion of instances of the Win32_Product class. Deleting an instance of this class results in the removal/uninstallation of the Product associated with that instance.

Security

Permissions and access to MSI information and operations are granted based on the security level of the logged in WBEM user. All user impersonation is handled by CIMOM.

Reentrancy and Multithreading

The MSI Provider is thread safe. The majority of its data resides on the stack, with the database accesses being the only area of conflict. In this case a critical section of code is used to control access to this sensitive data.

A list of known MSI packages is maintained by the MSI Provider for the duration of a requested IWbemServices operation (e.g. the list is retained for a single call to GetObjectAsync. Any successive calls reinitialize the list of known packages.) This insures the most up-to-date list of packages for each operation. Each list of packages is specific to an IWbemServices method call to insure that there are no concurrent list access problems.

Packaging

The MSI Providers distribution package will contain the following items:

· MsiProv.dll

· Msi.mof

MsiProv.dll is the primary DLL that contains the code associated with the provider. Msi.mof is the MOF file that contains the class definitions and CIMOM registrations required for the functioning of the MSI Provider.

These items will be bundled into a single installable that will make use of MSI as the installation medium. The installer will detect the presence of WBEM and MSI. If both are present then the installation will proceed. If one is absent the user will be informed of the condition and the installation will terminate.

Development Tools

The MSI Provider was developed using Microsoft Visual C++ version 5.0. The provider uses COM and DCOM technologies where appropriate. Otherwise standard Win32 programming practices are observed.

Test Tools

There are no special test tools that are required by the MSI Provider. Wbemtest and the CIM Object Browser are used to review the instances and execute methods. The sample installations provided in the MSI SDK have formed the core of the testing packages, with any other packages being added, as they have become available.

Note: This assumes that WBEMTEST is able to handle progress messages through calls to IwbemObjectSink::SetStatus() in a fashion that will be adaquate for testing. If this is not the case then a simple tool capable of dealing with these messages will be required.

References

· MSI Documentation, Pre-release version. Available as part of the MSI development set or at \\united\darrel\latest\x86\doc\msi.hlp

· WBEM SDK Documentation, v1.01. Available as part of the WBEM SDK or at http://wmig/wbem

· MSI Provider Proposal. Available at http://anastasio/docs/MSIProvProposal.doc

2

