Microsoft Corporation

MSI Provider Functional Specification

Nova M1 Release Version
Revision History

Date
Version
Revised By

7/28/98
1.0
Eric Gates

MSI Provider Functional Specification
1
Revision History
1
Introduction
3
Overview
3
M1 Requirements
3
Supported Classes
5
Provider Organization
5
Class Hierarchy
5
Class Usage
5
MSI Interaction
6
Security
6
Reentrancy and Multithreading
6
Packaging
6
Development Tools
7
Test Tools
7
References
8

Introduction

The MSI Provider acts as a means for WBEM to surface information about applications installed using the Windows Installer (a.k.a. MSI, Darwin). The provider implements several methods of the IWbemServices interface in order to interact with WBEM, and retrieves information from MSI enable installations via the set of MSI API calls. The MSI Provider can surface all information about the various elements of an installation as defined by MSI.

The MSI provider is implemented as a single DLL, MsiProv.dll. The provider is structured around the classes that it provides, and this allows for the addition of more classes to the provider’s repertoire as more information becomes available through MSI.

Overview

This document describes the structure and flow of information through the MSI Provider. This is a developing document and will be modified as changes occur in the MSI Provider.

M1 Requirements

· Read Only coverage for all Classes and Properties supported
This is the only requirement for the Nova M1 version of the provider. Only properties that can be populated directly from the MSI tables (see Supported Classes) and those available through MSI management APIs will be required.

Provider Registrations
The following information is used to register the MSI Provider with the system and CIMOM.
The MsiProv.dll is registered with the system using the CLSID {BE0A9830-2B8B-11d1-A949-0060181EBBAD}, which is stored in the registry.
This instance of the system class __Win32Provider registers the MSI Providers CLSID with CIMOM. CIMOM will then make use of information stored in the registry to access the appropriate DLL.

instance of __Win32Provider as $Z

{

Name = "MSIProv";

ClsId = "{BE0A9830-2B8B-11d1-A949-0060181EBBAD}";

};
This instance of the system class __InstanceProviderRegistration identifies the MSI Provider as an instance provider and declares the operations that are supported by the provider (note: all operations except delete are supported.)

instance of __InstanceProviderRegistration

{

Provider = $Z;

SupportsGet = "TRUE";

SupportsEnumeration = "TRUE";

SupportsPut = "FALSE";

SupportsDelete = "FALSE";

};
The CIM classes that are populated by the MSI Provider are tightly tied to the CIM v2 specification (most of the classes derive from the CIM model.) For this reason the MSI provider will populate the \root\cimv2 namespace.

For information on supported platforms and timeline information see MSIProvProposal.doc

Supported Classes

The M1 version of the MSI provider will provide Read Only support for all classes that are part of the MSI mapping. These classes (contained in the file msi.mof) are based closely on the organization of information used by MSI itself. The majority of the classes that are not associations are based directly on a table from the MSI schema (which is in the form of relational tables).

The properties for these classes are largely taken directly from the columns in these tables, the notable exception being columns that reference other tables. These are handled as associations. Some classes require additional properties in order to follow the key requirements supplied by the CIM v2.0 model and the SolarCoaster requirements (e.g. Win32_SoftwareElement, Win32_SoftwareFeature and descendants of both CIM_Action and CIM_Check.) Each row of a table is treated as an instance of the class associated with that table.

In the case were information not directly supplied by an MSI table is required, that information is taken from Product wide information available through the MSI management APIs

Provider Organization
Class Hierarchy

The following are the foundation classes that make up the MSI Provider.

· CProvFactory
This class acts as the class factory for the CMsiProv class.

· CMsiProv: IWbemServies, IWbemProviderInit
IWbemServices implementation the acts as the interface to WBEM.

· CRequestObject
This class performs parsing and delegates instance operations to the appropriate CGenericClass descendant.

· CGenericClass
This class acts as the base class for all the individual instance provider classes. The descendants of this class handle all interactions with the MSI environment.

The code that is required for the creation and maintenance of individual instances is contained in a series of classes derived from CGenericClass. Each of these derived classes handles all of the operations for a specific CIM class and its instances. This allows for easy addition to the list of CIM classes supported by the provider.

Class Usage

The provider is implemented as a single Win32 DLL, and needs to export several functions. These include DllRegisterServer, DllUnregisterServer, DllGetClassObject and DllCanUnloadNow. The first two are used to self-register/unregister the DLL in the registry. CIMOM will call DllGetClassObject to create a CProvFactory object, which will be used to create the CMsiProv object. DllCanUnloadNow is called to determine when it is safe to unload the DLL.

When CProvFactory.CreateInstance() is called by CIMOM an instance of CMsiProv is created. CMsiProv.Initialize() will then be called by CIMOM. At this time any initialization required by the provider will be performed. The provider then enters the standard operation cycle in which the following interfaces are supported.

CreateInstanceEnumAsync

When this method is called the list of known installations is initialized (this insures that the most update information available from MSI is used) and a CRequestObject is created. CRequestObject.CreateObjectEnum() is then called with the requested object path. The path is parsed by the CRequestObject and control is then handed to the appropriate descendant of CGenericClass through a call to the virtual function CreateEnum(). This method (specific to each descendant of CGenericClass) interacts with MSI and performs the necessary operations to populate any instances of the requested class.

GetObjectAsync

When this method is called the list of known installations is initialized and again, a CRequestObject is created. CRequestObject.CreateObject() is then called with the requested object path. The path is parsed by the CRequestObject and control is then handed to the appropriate descendant of CGenericClass through a call to the virtual function CreateInst(). This method (specific to each descendant of CGenericClass) interacts with MSI and performs the necessary operations to populate the requested instance.

MSI Interaction

All interactions with the MSI environment are handled through calls to the MSI API functions. This includes the retrieval of data for instance population, the setting of data for put operations and the execution of methods. The more efficient MSI management APIs are used when possible, however they are relatively limited in scope and in many cases calls to APIs that directly interact with the MSI databases are used.

MSI supports both ANSI and UNICODE versions of their APIs, and the UNICODE versions have been used by the MSI Provider whenever possible.

Security

Permissions and access to MSI information and operations are granted based on the security level of the logged in WBEM user. All user impersonation is handled by through the WBEM User Impersonation feature (Nova M1).

Reentrancy and Multithreading

The MSI Provider is thread safe. The majority of its data resides on the stack, with the database accesses being the only area of conflict. In this case a critical section of code is used to control access to this sensitive data.

A list of known MSI packages is maintained by the MSI Provider for the duration of a requested IWbemServices operation (e.g. the list is retained for a single call to GetObjectAsync. Any successive calls reinitialize the list of known packages.) This insures the most up-to-date list of packages for each operation. Each list of packages is specific to an IWbemServices method call to insure that there are no concurrent list access problems.

Packaging

The MSI Providers distribution package will contain the following items:

· MsiProv.dll
· Msi.mof

MsiProv.dll is the DLL that contains the code associated with the provider. Msi.mof is the MOF file that contains the class definitions and CIMOM registrations required for the functioning of the MSI Provider.

These items will be bundled into a single installable that will make use of MSI as the installation medium. The installer will detect the presence of WBEM and MSI. If both are present then the installation will proceed. If one is absent the user will be informed of the condition and the installation will terminate.

Development Tools

The MSI Provider was developed using Microsoft Visual C++ version 5.0. The provider uses COM and DCOM technologies where appropriate. Otherwise standard Win32 programming practices are observed.

Test Tools

There are no special test tools that are required by the MSI Provider. Wbemtest and the CIM Object Browser are used to review the instances and execute methods. The sample installations provided in the MSI SDK have formed the core of the testing packages, with any other packages being added, as they have become available.

References

· MSI Documentation, Pre-release version. Available as part of the MSI development set or at \\united\darrel\latest\x86\doc\msi.hlp

· WBEM SDK Documentation, v1.01. Available as part of the WBEM SDK or at http://wmig/wbem

· MSI Provider Proposal. Available at http://anastasio/docs/MSIProvProposal.doc

7

