
1. WDM Provider

	Spec Title
	WDM Provider

	Version
	1.0

	Distribution
	 FORMDROPDOWN

	Component
	Providers

	Feature area
	

	Feature scope
	A Feature

	Product
	WBEM

	Product Version
	Quasar

	Project
	Quasar

	Author
	Jenny McCollum

	Manager
	Nadir Ahmed

	Status
	 FORMDROPDOWN

	Last Changed
	2/16/2000

	Revision Summary

	Version
	Date
	Author
	Changes

	1.0
	2/16/2000
	Jenny
	Initial draft

1.1 Overview

This document describes the functionality of the WDM Provider. The WDM Provider is an instance, method, event, pseudo-class and hi perf provider.

The hi-perf component will be part of the Quasar time frame and will ship as part of W2K+1 and additionally on the web for platforms that have already been released to Manufacture. The remaining components have already been shipped.

1.2 Goals & Objectives

The goal of this document is to describe the set of interfaces that will be exposed from the WDM Provider and the functionality of the WDMLIB.LIB - which processes the WNODES and manages calls to the WDM APIs.

1.3 Dependencies

The WDM Provider will be dependent upon a stable set of WDM APIs to be delivered by Alan Warwick.

This spec covers two components that must be maintained by this team.

WDMLIB.LIB
- An internal project library which contains the common processing code which actually calls into WDM and parses the WNODES.

WDMPROV.DLL - The actual provider that is shipped.

The WDMLIB.LIB is dependent upon the following libraries:

$(WBEMCOMN_STATIC_LIB) \

$(STDLIBRARY_LIB) \

$(MINIMFC_LIB) \

$(WMIIDL_LIB) \

$(WBEMINT_LIB) \

$(UTILLIB_LIB) \

$(WDMLIB_ADVAPIP_LIB) \

$(SDK_LIB_PATH)\wmip.lib \

$(SDK_LIB_PATH)\ole32.lib \

$(SDK_LIB_PATH)\oleaut32.lib \

$(SDK_LIB_PATH)\uuid.lib \

$(SDK_LIB_PATH)\kernel32.lib \

$(SDK_LIB_PATH)\advapi32.lib \

$(SDK_LIB_PATH)\vccomsup.lib \

$(SDK_LIB_PATH)\rpcrt4.lib \

$(SDK_LIB_PATH)\user32.lib\

The WMIPROV.DLL is dependent upon the following libraries:

$(WBEMCOMN_STATIC_LIB)\

$(STDLIBRARY_LIB) \

$(MINIMFC_LIB) \

$(WMIIDL_LIB) \

$(WBEMINT_LIB) \

$(UTILLIB_LIB) \

$(ESSCLI_STATIC_LIB) \

$(WDMLIB_LIB) \

$(WDMLIB_ADVAPIP_LIB) \

$(SDK_LIB_PATH)\ole32.lib \

$(SDK_LIB_PATH)\oleaut32.lib \

$(SDK_LIB_PATH)\uuid.lib \

$(SDK_LIB_PATH)\wmip.lib\

$(SDK_LIB_PATH)\kernel32.lib \

$(SDK_LIB_PATH)\advapi32.lib \

$(SDK_LIB_PATH)\vccomsup.lib \

$(SDK_LIB_PATH)\rpcrt4.lib \

$(SDK_LIB_PATH)\user32.lib

2. Security

All security is handled within the WMIPROV.DLL. The WDM apis will only allow clients with SecurityImpersonation and SecurityDelegation levels only, so the WMIPROV.DLL must check client impersonation each time one of the following interfaces is called:

 STDMETHODIMP CRefresher::Refresh

STDMETHODIMP CWDM_Prov::Initialize

STDMETHODIMP CWDM_Prov::QueryInstances

STDMETHODIMP CWDM_Prov::CreateRefreshableEnum

STDMETHODIMP CWDM_Prov::GetObjects

STDMETHODIMP CWMIEventProvider::ProvideEvents

STDMETHODIMP CWMIEventProvider::NewQuery

STDMETHODIMP CWMIEventProvider::CancelQuery

STDMETHODIMP CWMIEventProvider::AccessCheck

HRESULT CWDM_Prov::PutInstanceAsync

HRESULT CWDM_Prov::CreateInstanceEnumAsync

HRESULT CWDM_Prov::ExecQueryAsync

HRESULT CWDM_Prov::GetObjectAsync

STDMETHODIMP CWDM_Prov::ExecMethodAsync

In addition, when the namespace is initially opened, the WMIPROV.DLL will query WDM for a list of WDM enabled and available drivers, before this query is executed the provider must insure the proper security level is available before calling into WDM. If it is not, then the local notification events are not setup and will be checked again the next time any of the above methods listed are called.

3. Provider registration

The provider will export DllRegisterServer and DLLUnregisterServer. The following keys will be either added or deleted, depending upon which function is called:

 The keys for the WMI Instance Provider (includes pseudo-class and method provider):

HKEY_CLASSES_ROOT\CLSID\{D2D588B5-D081-11d0-99E0-00C04FC2F8EC}\”WDM Instance Provider”

HKEY_CLASSES_ROOT\CLSID\{D2D588B5-D081-11d0-99E0-00C04FC2F8EC}

\InProcServer32\ WMIProv.dll

HKEY_CLASSES_ROOT\CLSID\{D2D588B5-D081-11d0-99E0-00C04FC2F8EC}

\InProcServer32\ThreadingModel\”BOTH”

 The keys for the WMI Event Provider:

HKEY_CLASSES_ROOT\CLSID\{0725C3CB-FEFB-11d0-99F9-00C04FC2F8EC}\”WDM Event Provider”

HKEY_CLASSES_ROOT\CLSID\{0725C3CB-FEFB-11d0-99F9-00C04FC2F8EC}

\InProcServer32\ WMIProv.dll

HKEY_CLASSES_ROOT\CLSID\{0725C3CB-FEFB-11d0-99F9-00C04FC2F8EC}

\InProcServer32\ThreadingModel\”BOTH”

 The keys for the WMI HiPerf Provider:

HKEY_CLASSES_ROOT\CLSID\{F5280F80-0D8C-4fb7-B60D-CEB99AB45DBC}\”WDM HiPerf Provider”

HKEY_CLASSES_ROOT\CLSID\{F5280F80-0D8C-4fb7-B60D-CEB99AB45DBC}

\InProcServer32\ WMIProv.dll

HKEY_CLASSES_ROOT\CLSID\{F5280F80-0D8C-4fb7-B60D-CEB99AB45DBC}

\InProcServer32\ThreadingModel\”BOTH”

As the WDM Hi Perf provider is now included with the existing WDM Instance and Event providers, no further work is required by the setup team.

4. Scope of operating system support

The WDM provider will only work on Win98, Millenium, Windows 2000 due to the dependency on the WDM layer which is only supported on the above platforms.

5. Prerequisites

The operation of the WDM Provider is dependent upon the successfully compilation of the WMI.MOF, which will create the namespace.

6. External Component Dependencies

The WDM Provider is dependent upon components that are included in the operating system:

· WMI

· WDM

7. Operating, International Support

The provider will define a number of makefiles representing the lists of platforms that require different makefile declarations.

The provider will be required to support full Unicode or full Ansi depending on the platforms that are supported by the provider. The provider will not be accepted into test unless all imported system functions refer to the Unicode or Ansi versions depending on the platform.

The following table defines the language support.

	Platform
	Language support

	Win98
	Ansi

	Millenium
	Ansi

	Windows 2000
	Unicode

All constant strings specified in the provider implementation and used for internal purposes will be placed in a common header.

8. Logging support

The WDM provider will continue to use the existing core logging facility. The format of the registry is documented in the WMI documentation.

This requires that WMILIB.LIB defines the following in order to identify the log file.

#define THISPROVIDER LOG_WIMPROV

LOG_WIMPROV is defined in the core logging facility as one of the official logs it maintains.

In order to enter an item in the log, the following macro is called:

ERRORTRACE((THISPROVIDER,"Text Message....%x\n",nSize));

The ERRORTRACE macro is defined in the core common include files.

9. Performance and Scalability

The Hi Performance provider within WMIPROV.DLL must be able to meet the following refreshing requirements: 12,000 per second.

10. Test coverage

Although every WDM driver, in theory, can be a hi perf driver, the WDM Provider will require WDM Hi Performance drivers in order to provide adequate test coverage.

The EVERYTHING.SYS driver, supported by test, should be updated to return hi performance data.

11. The WMIPROV.DLL and WDMLIB.LIB architecture

The WDM Provider is composed of two major pieces. The WDMLIB.LIB and the WDMPROV.DLL, which uses the WDMLIB.LIB.

The following represents a high-level view of the relationships of the major classes within the Provider:

[image: image1.jpg]

CWDM_Prov
The class that contains the instance, method, class and hi perf provider and the WMIHandleMap and WMIHiPerfHandleMap.

CWDM_Event

The class that contains the event provider and WMIHandleMap.

CWDMHiPerfShell

The class that calls the hi perf apis .

CWDMStandardShell

The class that calls the standard apis.

CWDMHiPerfDataBlock
Parses the WNODEs and sets the information using IWbemObjectAccess.

CWDMStandardDataBlock
Parses the WNODEs and sets the information using IWbemClassObject

CWDMProcessClass

Contains all of the information in order to process the class.

CWDM_IDOrder
Determines the order of the WMIDataIds/Properties, in order to translate the WNODE – basically, contains the mapping of the WNODE.

CWMI_Management
Contains all of the pointers necessary to communicate with the core, such as IwbemServices, IwbemContext, etc.

WMIPROV.DLL

The WDMLIB.LIB exposes two classes - CWMIStandardShell and CWMIHiPerfShell – that are used by the WMIProv.dll to query WDM, extract the data and fill in the IWbemClassObject or IWbemObjectAccess objects.

The provider will expose the following interfaces (the ones listed below are the ones that contain significant processing, interfaces such as AddRef(), the class factory interfaces,etc., are not included in this spec as they are self-explanatory):

All access to internal lists and handle maps are protected by critical sections. All calls to the parser and WDM shells are protected by try/catch blocks.

Upon failure, the provider will return an extended error object, containing either a specific WDM error message - return value, or a Win32_PrivilegesStatus, if applicable.

Upon success, the provider will set the status then return.

The WMIPROV.DLL also has two main classes:

CWDM_PROV that inherits from IWbemServices,

 IWbemProviderInit,

 IwbemHiPerfProvider

CWDM_EVENT that inherits from IWbemEventProvider,

 IWbemEventProviderQuerySink,

 IWbemProviderInit,

 IWbemEventProviderSecurity

The Instance Provider

HRESULT CWDM_Prov::Initialize

The provider calls RevertToSelf() (as everyone has the rights to see classes) then the CWMIBinMof class to process the binary mofs and clean up the namespace. After this is completed, the provider then registers for binary mof added/deleted events. This function is only called once, when the namespace is opened. Before returning, the provider impersonates the client.

HRESULT CWDM_Prov::CreateInstanceEnumAsync

The provider impersonates the client, and checks to make sure the client has sufficient privileges, then calls the CWDMStandardShell ProcessAllInstances to get a list of all of the instances of the requested class.

HRESULT CWDM_Prov::PutInstanceAsync

The provider impersonates the client, and checks to make sure the client has sufficient privileges, then checks the context to determine if we are setting a single property, or the whole instance. If there is no context object, then obviously, put the whole instance, otherwise if __PUT_EXT_PROPERTIES is set, then send the list to the CWDMStandardShell FillInAndSubmitWMIDataBlob function to write the information.
STDMETHODIMP CWDM_Prov::ExecMethodAsync

The provider impersonates the client, and checks to make sure the client has sufficient privileges, then the path is parsed, using the CObjectPathParser. The class is checked for input and output parameter classes, then all of the information is sent to the CWDMStandardShell ExecuteMethod function to execute the method and get the input/output data.

HRESULT CWDM_Prov::GetObjectAsync

The provider impersonates the client, and checks to make sure the client has sufficient privileges, then the path is parsed to get the class name. The CWDMStandardShell ProcessSingleInstance function is called to get the instance of the specified object.

The Event Provider

STDMETHODIMP CWMIEventProvider::Initialize

Checks to make sure the class “WMIEvent” is defined in the namespace.

STDMETHODIMP CWMIEventProvider::ProvideEvents

Opportunity for internal initialization and returns S_OK

STDMETHODIMP CWMIEventProvider::NewQuery

The provider impersonates the client, and checks to make sure the client has sufficient privileges, then uses the SQL1_Parser to get the class name, and calls the CWDMStandardShell RegisterWMIEvent function to register the event, providing the address of the call back function, for WDM to call once the event triggers. The id of the event is stored in the event list, along with the WDM identifying information.
STDMETHODIMP CWMIEventProvider::CancelQuery

The provider impersonates the client, and checks to make sure the client has sufficient privileges, then if the event id is found in the event list, the CWDMStandardShell RemoveWMIEvent function is called.
STDMETHODIMP CWMIEventProvider::AccessCheck

This is only valid on NT, if running on Win9x, simply returns success. The provider impersonates the client, and checks the access permissions when the client subscribes to the specified event to make sure they have sufficient WMIGUID_QUERY privileges.
The Hi Perf Provider
STDMETHODIMP CWDM_Prov::QueryInstances

The provider impersonates the client, and checks to make sure the client has sufficient privileges, then uses CWDMHiPerfShell (with WMIGUID_QUERY access) QueryAllHiPerfData function to get a complete list of instances for the specified class.

STDMETHODIMP CWDM_Prov::CreateRefresher

The provider impersonates the client, and checks to make sure the client has sufficient privileges, then allocates a new refresher based upon an internal definition, initialize and addref it, then return it.
STDMETHODIMP CWDM_Prov::CreateRefreshableObject

The provider impersonates the client, and checks to make sure the client has sufficient privileges, then calls the CWDMHiPerfShell AddAccessObjectToRefresher function to add the object specified by the client into the specified refresher. An id is returned that uniquely identifies this object. The provider maintains a HiPerfhandle map that lists the handles of Access Instances (actual instances)and Enumerator Instances (enumerators) and the unqiue id to identify the object.

STDMETHODIMP CWDM_Prov::CreateRefreshableEnum

The provider impersonates the client, and checks to make sure the client has sufficient privileges, then calls the CWDMHiPerfShell AddEnumeratorObjectToRefresher function to add the enumerator. . The provider maintains a HiPerfhandle map that lists the handles of Access Instances (actual instances)and Enumerator Instances (enumerators) and the unqiue id to identify the object.

STDMETHODIMP CWDM_Prov::StopRefreshing

The provider impersonates the client, and checks to make sure the client has sufficient privileges, then calls the CWDMHiPerfShell RemoveObjectFromHandleMap to remove an object from the refresher. The id can be either an instance or enumerator and is removed from the HiPerf Handle Map.

STDMETHODIMP CWDM_Prov::GetObjects

The provider impersonates the client, and checks to make sure the client has sufficient privileges, then uses the CWDMHiPerfShell GetAllObjects to provide all instances currently being managed by the provider in the specified namespace (which is only ROOT\WMI at present).

STDMETHODIMP CRefresher::Refresh

The provider impersonates the client, and checks to make sure the client has sufficient privileges, then uses the CWDMHiPerfShell RefreshCompleteList to refresh a set of instances bound to a particular refresher.

WDMLIB.LIB

This common library is composed of the following files:

BMOF.C

This is copied code soon to be made into a common library by the core team

CRC32.C

This is copied as well, soon to be included in a common library

WMIMOF.CPP
This contains the code that processes the binary mofs and maintains the namespace.

WMICLASS.CPP
This contains the code that manages the IwbemClassObjects and IwbemAccessObjects, and provides any interface needed to these WMI objects.

WMICOM.CPP
This contains the code that is common to the other classes, as well as the WMI common pointers, such as IwbemServices, IwbemContext, handle maps, etc.

WMIDATA.CPP
This contains the code that calls the WDM interfaces and parses the WNODES.

WMIMAP.CPP
This contains the code that maps the WDM data types to WMI data types.

WDMSHELL.CPP
This is the file that exposes the external interfaces to the library, the two classes: CWMIStandardShell and CWMIHiPerfShell

Processing the Binary Mofs and Managing the Namespace

The provider extracts and submits the binary mofs by querying WDM for ROM binary mofs or via WDM enabled drivers and automatically maintains the namespace. Before querying for the binary mofs, the provider calls RevertToSelf(), as everyone has the right to see the classes, they just may not have the right to get instances.

These classes process this binary mof and maintain the namespace.

CWMIBinMof
Queries WDM and processes the binary mofs, if needed, then calls the namespace class to determine if any classes are to be deleted.

CNamespaceManagement
This class maps drivers to classes and determines if any classes or drivers need to be deleted after all of the latest binary mofs have been processed.
The first time the namespace is opened, the provider does the following:

· Queries the WDM layer by creating a CWDMStandardShell class and calling the function QueryAndProcessAllBinaryGuidInstances(), which queries WDM with the GUID {05901221-D566-11d1-B2F0-00A0C9062910} . This will return a list of instances, with the binary mofs inserted into the data blocks. Simply open the data block and continue identical processing as if the binary mof had just been extracted from the physical file, as stated below. Loop through all instances, and build up the namespace management query as specified below.

· Queries the WDM layer by calling WmiMofEnumerateResources for a list of binary mof resources, this list is composed of a filename/resource combination, or the name of a class to query

· The provider processes each of these resources, there are two types:

1. A file name of a file and resource name, in order to extract the binary mof as a named resource from the physical file.

2. A class to query for and receive the binary mof as a WNODE.

· The provider will loop through the list.

If the resource is a filename/resouce name combination:

The provider will go to the specified location and get the date/time of the file, using:

 GetFileTime((HANDLE)hFile, &ftCreationTime,

&ftLastAccessTime, &ftLastWriteTime))

Then it will attempt to open an instance of WMIBinaryMofResource, with the key of the complete path[resource] of the specified file

 If it isn’t found, then we know we have never processed this driver before, so we go ahead and process it.

If it is found, compare the file date and time. If the time matches, do NOT process it, as this is the latest verion. If it does not match, then process the binary mof.

If it is determined the binary mof needs to be processed, the binary mof must be physically extracted from the file by loading the file and finding the resource, using LoadLibraryEx and FindResource(). Once a pointer to the data is found, then process the binary mof.

If the resource is a GUID to query:

Submit the guid to WMIQuerySingleInstance, then open the WNODE to get a pointer to the data block. Take the data block and calculate the CRC using the CRC32 utility class. Construct the key (which is the instance name[guid]) and try to open an instance of WMIBinaryMofResource, using this constructed key.

If it isn’t found, then we know we have never processed this binary mof before, so process it.

If it is found, compare the CRC – which is stored in the upper date field. If it matches, do nothing. If it does not match, then process the binary mof.

Processing the binary mof

To process a binary mof, the binary mof must be decompressed. The first 4 DWORDS are the signature, compression type and sizes. The signature must equal BMOF_SIG, and the compression type must be 1. Using the expanded size (the 4th DWORD), allocate enough memory to hold the decompressed mof, then ship it off to the CbaseMrciCompression class to decompress it.

After it has been decompressed, call CoCreateInstance(CLSID_WinmgmtMofCompiler…) and send the binary mof via the WinmgmtCompileBuffer function. Note: The flags must be set to 65536, as the WinmgmtCompileBuffer function is hardcoded to look for this flag and automatically put everything in the ROOT\WMI namespace.

After processing a binary mof

After successfully processing a binary mof/ WNODE, create an instance of WMIBinaryMofResource with the correct information.

A mof that comes from a file will use the properties in the following manner:

 Name Complete path/filename[RESOURCENAME]

 LowDateTime The low date time of the file

 HighDateTime The high date time of the file

A mof that comes from a WNODE will use the properties in the following manner:

 Name GUID[instance name]

 LowDateTime CRC

 HighDateTime Not used

The binary mof must be parsed again (this is a good place for optimization) to get a list of classes that were in the mof – this is done using the CBMOFObjList and CBMOFObj classes. This copied code (BMOF.C) will soon be replaced by a common library and the provider will be modified to call these functions.

The list, along with the information just entered in the WMIBinaryMofResource, which uniquely identifies a driver, is passed to the CNamespaceManagement class, to create the mappings of classes to the driver, and to delete any classes that may have been deleted since the last time the mof was processed.

The CNamespaceManagement class creates an instance of WDMClassesOfDriver for each class extracted from the mof with the following properties:

 Driver The value of WMIBinaryMofResource.Name

 ClassName The name of the class

 LowDateTime
The value of the WMIBinaryMofResource.LowDateTime

 HighDateTime The value of WMIBinaryMofResource.HighDateTime

· Maintaining the Namespace

It is necessary to have clean up functions to do such actions as deleting stranded classes and old drivers, as it is possible that system crashes, or the user turning off the machine may leave binary mof processing in an unintended state. Namespace maintenance is done only once, when the namespace is first opened and after all of the current binary mofs have been processed.

A query to find drivers no longer WDM enabled will be built up while looping through the list of binary mofs (via instances and/or drivers). This query will be:

“select * from WMIBinaryMofResource where Name != … “

Once all binary mofs have been processed, CNamespaceManagement class is called to do the following clean up actions:

1. Delete any old drivers that may now be left stranded in the namespace by executing the query that was built above. For each WMIBinaryMofResource instance returned, get the key of the instance and the high and low dates, if that isn’t the one we just entered, then delete any classes that belongs to this unique combination. This is done via the following query:

Once all of the classes we have a record of have been successfully deleted, then delete the instance of WMIBinaryMofResource. If any error was encountered, do NOT delete the instance of WMIBinaryMofResource.

2. Deleting old classes of a specified driver

The query to delete old classes of a specified unique driver is this:

“select * from WDMClassesOfDriver where Driver = x and (HighDateTime != 111) or (LowDateTime != 222)”

Now, just because we get a class name here doesn't mean we delete the class, this class could have been updated, in that case we just delete the instance of the WDMClassesOfDriver. So, in order to check if this class REALLY needs to be deleted or not, we construct the key of the class name with the latest high and low date time of the driver that was passed into this function. If we get the object, then we know the class is still valid and was simply updated, so just delete the instance of WDMClassesOfDriver with the old dates.

If we did not get an instance, we must make certain no other driver owns the class as more than one driver may own a class. If nobody else owns it, then delete the class definition.

To determine if someone else owns the class, the following query is used:

"select * from WDMClassesOfDriver where ClassName = x and Driver != y”

If nothing is returned, then we know no other driver owns the class.

3. Deleting stranded classes

This is a maintenance function that deletes any classes that are not tied to drivers. This can be determined with the following queries:

First, “select * from WMIBinaryMofResource” to get a list of all current drivers in the system. Initialize the final query, “select * from WDMClassesOfDriver where Driver != “ while looping through the list of drivers from the first query. For each driver in the list, delete any old classes that do not have the matching high and low dates, accomplish this by calling the DeleteOldClasses function that was already described above.

Then, execute the query that was built up, for each class that is returned via this query, delete the instance that was returned, then get the driver and classname, if someone else does’t own this class (remember, more than one driver can own a class), then delete the class definition, otherwise leave it there.

Processing binary mofs via events

After the initial processing when the namespace is first opened, the provider registers for two events, by initializing the global CWDMEvent pointer, this is an instance of the internal event provider class. Once the pointer is successfully initialized, protected by critical sections, then the RegisterForWMIEvents function is called with the following GUIDS:

BINARY MOFS ADDED

B48D49A2-E777-11D0-A50C-00A0C9062910

BINARY MOFS DELETED
 B48D49A3-E777-11d0-A50C-00A0C9062910

Upon successful registration for this event, the GUID that was successfully is entered into the internal event list. These events are registered as LOCAL SYSTEM.

When an event is received, the GUID is compared with the internal list, if it is determined to b one of the above, the name block is parsed (for more information on the name and instance blocks, see the section regarding WNODES and parsing the data blocks).

The instance name residing in the name block contains two strings, the first string is the image path, the second is the resource path. If both strings are filled out, we know we are dealing with a binary mof that is located in a driver, where we must locate the driver and extract the specified mof. If just the resource name is filled out, then we know we are given a guid to query instances for.

If we have received a BINARY MOFS DELETED event, then we delete all classes tied to that resource, and the instance in WMIBinaryMofResource.

If we have received a BINARY_MOFS_ADDED event, then we send it to the same processing as above, once we have extracted the binary mof.

The WDM APIs (expensive and not-so-expensive calls regarding Handle Maps)

Calls to the WDM APIs are wrapped by the classes CWDMStandardShell, CWDMHiPerfShell, and WDMDataBlock. WDM deals only in GUIDS, so the class qualifier of GUID must be read in order to obtain the GUID to send to the WDM layer.

This wrapper classes require a handle map of which there are two types, one handle map (WMIHandleMap) deals with requests coming via the instance, event, method, class provider, the other handle map (WMIHiPerfHandleMap) deals only with hi perf handles. The purpose of the handle map is to keep the expensive handles open until the provider is unloaded or, as in the case of the hi perf classes, the class is no longer wanted.

The handle map is kept with the parent class, either the CWDM_Prov, CWDM_Event or CWDM_Perf and access is always protected by critical section. Since the provider uses per-user initialization, each user will get their own handle map.

When using a regular WMIHandleMap, and a request comes through, the handle map is checked to see if a handle for that guid is already open, if it is, it is reused, if it isn’t, then the WmiQueryGuidInformation api is called to determine if the handle is expensive or not (a WMIGUIDINFORMATION parameter is returned). If it is expensive, then the handle is saved in the list and a flag is set, so it won’t be closed. The following information is saved about each handle:

HANDLE WMIHandle The handle returned by the WDM api WmiOpenBlock

GUID Guid The GUID of the class used in WmiOpenBlock

ULONG uDesiredAccess A combination of the below access flags

LONG RefCount For future use….

The access flags used are these:

WMIGUID_QUERY- Read access only to the WDM api layer

This permission is used for calls generated from CreateInstanceEnumAsync, CreateRefresher,

CreateRefreshableObject, CreateRefreshableEnum,Refresh,StopRefreshing, QueryInstances,

GetObjectAsync

WMIGUID_NOTIFICATION | WMIGUID_QUERY – Read access and event access

This permission is used for calls generated from ProvideEvents, NewQuery, CancelQuery, AccessCheck,

WMIEventCallback, ExecQueryAsync

WMIGUID_QUERY|WMIGUID_EXECUTE- Read access only to the WDM api layer

This permission is used for calls generated from the binary mof processing and ExecMethodAsync

WMIGUID_SET|WMIGUID_QUERY – Read/Write access to the WDM api layer

This permission is used for calls generated from PutInstanceAsync

When using the WMIHiPerfHandleMap, all handles are automatically expensive, thereby cutting down processing time by not trying to determine if the handle is expensive or not, and assumes all access is WMIGUID_QUERY. The handle is still checked and reused if possible. The following information is saved about each handle:

Need to document this after testing is completed.

Handles are closed (via WmiCloseBlock) in the following conditions:

· If the handle was never designated as expensive to begin with, the handle is closed when the wrapper class destructs, usually after the status has been sent back to the core and the return code is returned.

· If the provider is unloaded, all handle maps, in their destructors, will loop through the remaining handles and close each of them.

· When a Hi Perf class is no longer needed.

The WDM apis are documented in the WDM DDK, but here is a very brief overview.

In general, a call to WMIOpenBlock with the guid of the class is used to obtain a handle, the handle is used in all of the subsequent apis, after receiving the results in the form of WNODES, the handle is closed with WmiCloseBlock.

To register for events, use WmiNotificationRegistration with the appropriate guid (handles not used here), and provide the entry point as a parameter, which WDM will call back into when the event triggers. The first time an event is registered, the flag must be passed as NOTIFICATION_CALLBACK_DIRECT, there after, subsequent requests for the same GUID must pass the flag NOTIFICATION_CHECK_ACCESS.

To cancel events, use WmiNotificationRegistration, with the appropriate guid (handles are not used here).

To see if a handle is expensive, call WmiQueryGuidInformation.

To set a single property, call WmiSetSingleItem.

To execute a method, call WmiExecuteMethod.

To get a list of instances, call WmiQueryAllData.

To get a specific object, call WmiQuerySingleInstance.

To write an instance, call WmiSetSingleInstance.

To get a list of Hi Perf instances, call WmiQueryAllDataMultiple.

To get a list of Hi Perf specific instances, call WmiQuerySingleInstanceMultiple.

The query/object path is parsed using CObjectPathParser to get the class name, path or instance name.

Return codes from these WDM Apis are mapped as follows:

	 WDM error return code
	WBEM return code

	ERROR_WMI_GUID_NOT_FOUND ERROR_NOT_SUPPORTED ERROR_INVALID_FUNCTION ERROR_WMI_SERVER_UNAVAILABLE

ERROR_WMI_INSTANCE_NOT_FOUND

ERROR_WMI_GUID_DISCONNECTED
	WBEM_E_NOT_SUPPORTED

	S_OK

NO_DATA_AVAILABLE
	S_OK

	ERROR_INVALID_HANDLE
	WBEM_E_NOT_AVAILABLE

	ERROR_WMI_DP_FAILED
	WBEM_E_INVALID_OPERATION

	ERROR_WMI_READ_ONLY
	WBEM_E_READ_ONLY

	ERROR_INVALID_PARAMETER
	WBEM_E_INVALID_PARAMETER

	ERROR_INVALID_DATA
	WBEM_E_INVALID_PARAMETER

	ERROR_ACCESS_DENIED

ERROR_INVALID_PRIMARY_GROUP

ERROR_INVALID_OWNER
	WBEM_E_ACCESS_DENIED

	All other errors
	WBEM_E_FAILED

Parsing WNODES and Mapping Data Types

The WDM layer returns all data in the form of WNODES. Whenever an error occurs, these WNODES and the raw data of the complete blocks, are dumped to the WMIPROV.log so the driver writer may see what was wrong in the WNODE construction.

There are two types of WNODES, WNODE_SINGLE_INSTANCE and WNODE_ALL_DATA. The single Wnode, as the name implies, contains a single instance, while the PWNODE contains one or more. Each of these WNODES contains a WNODE_HEADER, which contains such information as the total size of the buffer we are parsing, etc. It is of vital importance to make sure we never step out of the WNDOE, use IsBadReadPtr to check every address before accessing it, make sure that we are never asked to read outside of the block.

Each WNODE contains a WNODE_HEADER. The provider uses this information in the following way:

	WNODE Field
	How it is used

	BufferSize
	This is used to calculate the max address we are allowed to read from, this max address is used every time we are given a size of bytes to read, to make sure we never step outside the block.

	ProviderId
	Ignored, but logged

	Version
	The WDM Version – used in the WmiSetSingleItem call.

	Linkage
	The offset of the next WNODE. If there is a value here, after all current instances in the current WNODE are read, this offset is applied to the beginning of the buffer, to find the address of the next WNODE_HEADER, and the whole process starts again.

	TimeStamp.LowPart
	Ignored, but logged

	TimeStamp.HighPart
	Ignored, but logged

	Guid
	Guid of the class

	Flags
	WNODE_FLAG_FIXED_INSTANCE_SIZE – this simply lets us know we are dealing with fixed instances.

WNODE_FLAG_TOO_SMALL - This is tested whenever we successfully get a WNODE, always read the header to see if this flag is set, if it is, then requery with a bigger buffer. This must be done in addition to testing the return code for ERROR_INSUFFICIENT_BUFFER

The provider uses the WNODE_ALL_DATA information in the following way:

	WNODE Field
	How it is used

	DataBlockOffset
	The pointer to the data block

	InstanceCount
	How many instances are in the WNODE

	OffsetInstanceNameOffsets
	The pointer to the beginning of the name block

	FixedInstanceSize
	If we are working with a fixed instance, then use this field to get the size.

	OffsetInstanceData

LengthInstanceData
	If we are NOT working with a fixed instance, then we use these two fields to find where the instance is located and how big it is.

The provider uses the WNODE_SINGLE_INSTANCE information in the following way:

	WNODE Field
	How it is used

	DataBlockOffset
	The pointer to the data block

	InstanceIndex
	Ignored, but logged

	OffsetInstanceName
	The pointer to the beginning of the name block

	SizeDataBlock
	Since we always know this is a single instance, we are always dealing with fixed instances.

 DumpByte(b1,pTmp,i,nCount);

 DumpByte(b2,pTmp,i,nCount);

 DumpByte(b3,pTmp,i,nCount);

Getting Ready to Process a Data Block

Data blocks can either be of fixed instance size or dynamic instance size, so before we read the data block, we must determine what type of data ptr we are working with and adjust it accordingly.

All data within the data blocks is naturally aligned. After we read one of the blocks and are asked to read another one, we might have to adjust the data block pointer for the next instance, as all instances are always aligned on 8 bytes, and we might not have ended on an 8 byte boundary.

If we are working with a fixed instance, the first time we come through, simply set the data pointer to the value specified in the WNODE. If it is NOT the first time, then we must adjust the data pointer for the fixed instance size and make sure we are aligned on an 8 byte boundary before we continue.

This is accomplished by always keeping an accumulative size of the block (how many total bytes we have processed so far of the last data block) . We can simply test if the accumulative size is smaller than the fixed instance size, the data pointer is incremented by (fixed instance size – accumulative size). Then, make sure the data is aligned on an 8 byte boundary.

If we are dealing with a dynamic instance, the accumulative size of the block is set to 0. The OffsetInstanceData field of the WNODE is an array of ULONGS that specifies the offets to the data blocks for each instance. There is an array of InstanceCount ULONGS followed by data blocks.

The first then we do is see if the current pointer points to NULL, if it does, we know we don’t have a data block to read, so we are at the end. Otherwise, the ULONG the current data pointer points to is the instance size of the data block we are about to read. The next ULONG is the offset from the beginning of the buffer where the data block is, we are already guaranteed it is on an 8 byte boundary. We must calculate the address to point to by adding the offset to the beginning of the buffer. Since this is a common operation, use the following macro:

#define OffsetToPtr(Base, Offset) ((PBYTE)((PBYTE)Base + Offset))

Where Base is the pointer of the WNODE returned by the WDM api, and Offset is the offset we just read from the block.

Processing a Name Block

The name block contains the names of the instances. The name block is in a separate location from the data block, and is simply a list of strings – read as a WORD which specifies how many of the next bytes belongs to the string . Name blocks and Data blocks are positionally matched, if there are three names in the name block, then there are three data blocks to match, the first belongs with the first, and so on. If there is ever a mismatch, then error out immediately.

The address of the name block is calculated by adding the offset (already determined above based on the type of WNDOE) to the beginning of the WNODE, using OffsetToPtr macro. If we are dealing with an WNODE_ALL_DATA block, this must be incremented each time, as the name offset points to an array of ULONGS which is an array of offsets for each instance’s name.

Processing a Binary Mof Data Block

Binary mofs may be sent in data blocks, via events. This is documented in the following section:

Processing Binary Mofs and Managing the Namespace - Processing binary mofs via events

Binary Mofs do not have corresponding name blocks. One other note, the CRC is calculated by getting the InstanceSize from a WNODE_ALL_DATA, or SizeDataBlock from a WNODE_SINGLE_INSTANCE.

Processing a Data Block

Data blocks are read and written according to the WMIDATAID qualifiers. These provide the road map to reading/writing a data block. Before we even begin processinga data block, we have already gotten this information in the CWDMProcessClass object, and use this information to interpret the block.

Data blocks are also naturally aligned, every data type is aligned on its natural boundary, with the exception of embedded classes, these are aligned on the largest data type within the class.

Initializing the pointer to the data block is done differently, depending on what type of node we are dealing with.

If we are dealing with a WNODE_ALL_DATA fixed instance, the data pointer is simply calculated by adding the DataBlockOffset to the beginning of the WNODE, using OffsetToPtr.

If we are dealing with a WNODE_ALL_DATA dynamic instance, the data pointer is calculated by reading a ULONG at the OffseInstanceDataAndLength address, then the data pointer follows it. The ULONG is the size of the instance.

If we are dealing with a WNODE_SINGLE_INSTANCE, we know it is fixed, and the data pointer is initialized by adding the DataBlockOffset to the beginning of the WNODE.

Once the data pointer is initialized, the MaxPointer is set by adding the buffer size to the base WNODE pointer. This is to identify the maximum value we can safely read. By always comparing our pointers to this value and using IsBadReadPtr, we are assured to always stay within the block, if directed to read outside the block, then error out immediately. All reads must be checked before actually read.

The data block is parsed by simply looping through the list of properties provided by the CWDMProcessClass object, and reading the number of bytes for each property specified, following the data type rules in the following section. After the data is translated from WDM data types to CIM_TYPES, they are added to the wbem instance via the CWDMProcessClass interface, and the instance is returned to WMI.

There are two types of arrays in a WNODE, fixed and dynamic. Fixed arrays are specified by a qualifier of MAX on the property, and the array contains the number of elements specified in this qualifier – this information is already known at the time of reading the block. The size of dynamic arrays are specified by the property contained in the WMISIZEIS qualifier on the array property, the property specified in this qualfier must be read first in order to determin the number of elements to read for the array from the datablock.

Some properties have a qualifier of “MissingValue”, this is only supported for the following data types:

CIM_SINT8
CIM_SINT32
CIM_UINT32
CIM_UINT16
CIM_SINT64

CIM_UINT64
CIM_UINT8
CIM_BOOLEAN

If the value just read from the data block matches the “MissingValue” qualifier, then we need to set the property to NULL. This is also supported for arrays of the above data types.

For WNODE_ALL_DATA, after processing a complete WNODE, we need to check to see if there are any more. If dealing with dynamic WNODES, we need to check the WnodeHeader.Linkage field. If it is 0, then we are at the end of the list, otherwise, it specifies an offset we need to use to calculate the address of the next WNODE, using the OffsetToPtr macro. We then need to go to the address, and read the header for that WNODE, to see how many instances are in the WNODE, the new address of the name block and data blocks, etc.

Writing a Data Block

Data blocks are read and written according to the WMIDATAID qualifiers. These provide the road map to reading/writing a data block. WDM data types are not necessarily the same as CIM types, for example, the WDM BOOL is 1 byte. All data types must be converted before being written to the data block.

It is important to remember, when writing data types, for all data types that have NULL values, we must test to see if a MissingValue qualifier is present on the property, and if it is, we must write the value specified in that qualifier, instead of the NULL value.

All data types must be naturally aligned within the data block, and when writing an embedded class, the embedded class is aligned on the largest data type within the class.

Input and Output parameters for methods are also constructed as data blocks, following the same rules as the instance data block.

Writing a complete instance

When PutInstanceAsync is called, the context is checked for the value “__PUT_EXT_PROPERTIES". If it is not set, then we know to write the complete instance to a data block.
Writing a single property

When PutInstanceAsync is called, the context is checked for the value “__PUT_EXT_PROPERTIES". If this value exists, then we are to set the properties calling WmiSetSingleItem for each property that is in the list and writing a data block containing just the one property, instead of writing the complete instance to a data block.

Writing arrays of data types

There are two types of arrays in a WNODE, fixed and dynamic. Fixed arrays are specified by a qualifier of MAX on the property, and the array that is written must match the number of elements specified in this qualifier. The size of dynamic arrays are specified by the property contained in the WMIDATASIZE qualifier on the array property, the number of elements must be written to this property in the datablock at the specified place.

All data types must be naturally aligned within the data block, and when writing an array of embedded classes, the embedded class must be aligned on the largest data type within the class.

Data Type Mapping

The following is a table showing how the WDM data types differ from the CIM TYPES. The utility class CWMIDataTypeMap automatically converts the types for both reading and writing purposes. In general, the differences are as follows:

	WDM Type Used
	CIM Type

	SINT64
	CIM_STRING

	QWORD
	Unsigned __int64

	UINT64
	CIM_STRING

	A string:

WORD+

NUMBER OF BYTE SPECIFIED IN WORD
	CIM_STRING

	BYTE
	CIM_CHAR

CIM_UINT8

	DWORD
	CIM_SINT32

CIM_UINT32

CIM_UINT16

	DOUBLE
	CIM_REAL64

	BOOLEAN – ONE BYTE
	CIM_BOOLEAN

	SHORT
	CIM_SINT16

CIM_SINT8

CIM_CHAR16

	REAL
	CIM_REAL32

	50 BYTES
	CIM_DATETIME

Managing the Class/Access Objects and Communicating with the Core

The CWMIManagement class contains all of the information needed to communicate to the core, such as the IwbemServices, IwbemContext, IwbemObjectSink and HandleMap pointers.

Error handling is accomplished by logging information to the WMIPROV.LOG, and sending back extended error objects, containing such information as the specific error codes returned when a WDM api fails, or a list of privileges needed by the user if an access denied error code is returned from WDM.

If the provider is running in HiPerf mode, access to the class is handled via IWbemObjectAccess, and handles are used to access properties, otherwise, IWbemClassObject is used to access the properties of a class.

Regardless of which mode the provider is running in, the first thing that happens, once one of the shell classes is instantiated, the information of the class is stored in the CWDMProcessClass object. The CWDMProcessClass object sets the class name, gets the GUID (from the guid class qualifier), then gets the order of the WDM properties, by looping through all properties of the class and creating a list of all properties containing the WMIDATAID qualifier and in the order specified by these qualifiers. This is the mapping by which the data block is parsed. The following information is stored about each property:

pwcsPropertyName The name of the property

pwcsEmbeddedObject
 The name of the class, if it is an embedded object

ltype The CIMTYPE

nWMISize The size of bytes in WDM terms

 lHandle The handle, if we are using Hi Perf

 dwArraySize The max size of the array, whether by MAX or

 by WMISIZEIS

 fPutProperty If this property is writable.

A special note here, we must deal with WMIDATAIDs that legally start with a 0 or a 1. This must be kept in mind when looping through the list of properties, which is NOT returned in WMIDATAID order. In general, WMIDATAIDs generated by MOFCOMP for methods start with 0, where WMIDATAIDs provided by driver writers start with 1.

Only properties with WMIDATAID qualifiers will be stored in this mapping list, system properties, etc. are NOT included.

The CWDMProcessClass object basically is the interface for any actions that take place within the class, such as getting/setting properties, getting qualifier information, etc. It will use IWbemClassObject when running for the CWDMStandardShell (the normal provider actions) or will use IWbemObjectAccess when running for the CWDMHiPerfShell (the Hi perf provider actions).

The Standard and HiPerf Shells

The CWDMStandardShell is the public interface to provide standard access to WDM functionality. The WDMHiPerfShell is for hi performance functionality only. These are the only two interfaces exposed from the WDM Lib that the WMIPROV.DLL uses.

In the CWDMHiPerfShell, only the following data types will be supported: DWORD and QWORD. All other data types will cause the class to return WBEM_E_INVALID_OBJECT and the instance will not be added.

When the provider methods are invoked in the WMIPROV.DLL, it creates the appropriate shell, initializes it with the IwbemServices, IwbemContext, etc. pointers and calls the public high level functions to perform the requested action.

The shell constructors will set all the necessary pointers, but must be initialized with a class name to all of the information of the class it is dealing with before it may be used. If the class is not valid, the initialization will fail.

The CWDMStandardShell exposes the following interfaces:

HRESULT Initialize(WCHAR * wcsClass);

wcsClass The name of the class

This function initializes all of the information needed about the class, such as getting the guid to communicate with WDM and getting the mapping of the data block.

HRESULT ProcessAllInstances();

This function queries WDM for all of the instances for the class that has already been initialized (in response to CreateInstanceEnum).
HRESULT ProcessSingleInstance(WCHAR * wcsInstanceName);

 wcsInstanceName The RELPATH

This function queries WDM for the single instance specified (in response to GetObjectAsync).
HRESULT FillInAndSubmitWMIDataBlob(IWbemClassObject * pIClass, int

 nTypeOfPut, CVARIANT & vList);

pIClass The class to be written

nTypeOfPut A flag specifying PUT_WHOLE_INSTANCE or PUT_SINGLE_PROPERTY

VList If this is a PUT_SINGLE_PROPERTY, then this is the list

 Of properties to put individually.

This function writes either a property or an instance, depending on the value in nTypeOfPut (in response to PutInstanceAsync)
HRESULT ProcessEvent(WORD wBinaryMofType, PWNODE_HEADER WnodeHeader);

wBinaryMofType If this is a binary mof event, it specifies whether

 the mof is being added or deleted.

WnodeHeader The WNODE that was sent when the event triggered.

This function sends off the event it just received to be processed (in response to WDM calling the event callback function). Actions taken would be: mof added, mof deleted, an instance of a class parsed and sent into WMI.
HRESULT RegisterWMIEvent(WCHAR * wcsGuid, ULONG uContext, CLSID &

 Guid, BOOL fRegistered)

wcsGuid The character form of the guid of the class to register

uContext The address of the callback function

Guid The guid that was sent to WDM

fRegistered If this event was already registered before or not.

This function is called when the provider registers for events, either as local system, for binary mofs added and deleted or when the consumer of the WDMEvent Provider has sent a new query (in response to NewQuery).
HRESULT ExecuteMethod(WCHAR * wcsInstance,

 WCHAR * MethodInstanceName,

 IWbemClassObject * pParentClass,

 IWbemClassObject * pInClassData,

 IWbemClassObject * pInClass,

 IWbemClassObject * pOutClass)

WcsInstance The instance name of the object to execute the method on

MethodInstanceName The name of the method to execute

PparentClass The class of the object we are executing the method on

PinClassData The instance of the input data

PinClass The input class definition

POutClass The output class definition
This function is called when the provider wishes to execute a method on a specific WDM instance. The method is executed, any instances of the output class are sent to WMI. (in response to ExecMethodAsync)
BOOL CancelWMIEventRegistration(GUID gGuid , ULONG uContext)

gguid The guid of the event to cancel

uContext The address of the EventCallback function

This function is called when the provider wishes to cancel registration for an event, either when the provider unloads and it is canceling the binary mof added/deleted events, or in response to a consumer request (in response to CancelQuery)
HRESULT SetErrorMessage(HRESULT hr)

A utility function that sets information in the extended error object, if needed, and returns the status and hr to WMI.

The CWDMHiPerfShell exposes the following interfaces:

HRESULT QueryAllHiPerfData()

This function queries WDM for a complete list of instances (in response to QueryInstances). Calls WmiQueryAllDataMultiple.
HRESULT HiPerfQuerySingleInstances(long lNumObjects,

 IWbemObjectAccess** apObj)

This function queries WDM for the specified objects, calls WmiQueryAllDataMultiple.
HRESULT AddAccessObjectToRefresher(IWbemObjectAccess *pAccess,

 IWbemObjectAccess ** ppRefreshable,

 LONG * plId)

This function adds the IWbemObjectAccess object to the HiPerfHandle map and returns a unqiue id.
HRESULT AddEnumeratorObjectToRefresher(IWbemHiPerfEnum* pHiPerfEnum,

 long* plId)

This function adds the IWbemHiPerfEnum object to the HiPerfHandle map and returns a unqiue id.
HRESULT RemoveObjectFromHandleMap(long lHiPerfId)

This function removes an object from the hi perf handle map that matches the specific id, this could either be an enumerator or an instance. If it is the last one, then the WDM handle is removed from the regular handle map and the WDM handle is closed. (this is in response to StopRefreshing)
HRESULT RefreshCompleteList()

This function queries WDM for a complete list of instances (in response to Refresh) that are tied to a specific refresher.
HRESULT SetErrorMessage(HRESULT hr)

A utility function that sets information in the extended error object, if needed, and returns the status and hr to WMI.

12. The WMI MOF (wmi.mof)

The WMI.MOF will be updated to include the Hi Perf provider as follows:

//***

// © 1998-1999 Microsoft Corporation. All rights reserved.

//***

#pragma autorecover

#pragma classflags("forceupdate")

//***

//***
Creates namespace for WMI

//***

#pragma namespace ("\\\\.\\Root")

instance of __Namespace

{

 Name = "WMI";

};

//***

//***
Changes focus to new namespace

//***

#pragma namespace ("\\\\.\\Root\\WMI")

// HiPerfProvider:

instance of __Win32Provider as $PPerf

{

 Name="WDMHiPerf ";

 CLSID=" {F5280F80-0D8C-4fb7-B60D-CEB99AB45DBC}";

 PerUserInitialization = "TRUE";

};

instance of __InstanceProviderRegistration

{

 Provider = $PPerf;

 SupportsGet = TRUE;

 SupportsEnumeration = TRUE;

};

CWDMStandardShell

CWDMHiPerfDataBlock

CWDMStandardDataBlock

CWMI_Prov:

Hi perf provider

[WMIHiPerfHandleMap]

CWMI_Prov:

Instance, method, class provider.

[WMIHandleMap]

CWDMHiPerfShell

CWMI_IDOrder

CWMIManagement

CWMI_Event

The event provider

[WMIHandleMap]

CWDMProcessClass

CWMI_Prov

The instance, method, class, and hi perf provider.

3/17/2000
Microsoft Confidential
Page 26

