



































Windows NT Group


32-Bit Configuration Manager Application Programming Interface�



� TOC \o "1-3" �1. Overview	� GOTOBUTTON _Toc364568172  � PAGEREF _Toc364568172 �1��


2. The Configuration Manager APIs	� GOTOBUTTON _Toc364568173  � PAGEREF _Toc364568173 �2��


2.1 Data Structures	� GOTOBUTTON _Toc364568174  � PAGEREF _Toc364568174 �2��


2.1.1 Memory Resource	� GOTOBUTTON _Toc364568175  � PAGEREF _Toc364568175 �2��


2.1.2 I/O Port Resource	� GOTOBUTTON _Toc364568176  � PAGEREF _Toc364568176 �4��


2.1.3 DMA Resource	� GOTOBUTTON _Toc364568177  � PAGEREF _Toc364568177 �6��


2.1.4 Interrupt Resource	� GOTOBUTTON _Toc364568178  � PAGEREF _Toc364568178 �8��


2.1.5 Class-Specific Resource	� GOTOBUTTON _Toc364568179  � PAGEREF _Toc364568179 �10��


2.1.6 Hardware Profile Information	� GOTOBUTTON _Toc364568180  � PAGEREF _Toc364568180 �11��


2.1.7 Miscellaneous	� GOTOBUTTON _Toc364568181  � PAGEREF _Toc364568181 �12��


2.2 Routines	� GOTOBUTTON _Toc364568182  � PAGEREF _Toc364568182 �14��


2.2.1 CM_Add_Empty_Log_Conf	� GOTOBUTTON _Toc364568183  � PAGEREF _Toc364568183 �14��


2.2.4 CM_Add_Res_Des	� GOTOBUTTON _Toc364568184  � PAGEREF _Toc364568184 �17��


2.2.13 CM_Free_Log_Conf	� GOTOBUTTON _Toc364568185  � PAGEREF _Toc364568185 �18��


2.2.15 CM_Free_Res_Des	� GOTOBUTTON _Toc364568186  � PAGEREF _Toc364568186 �19��


2.2.16 CM_Get_Child	� GOTOBUTTON _Toc364568187  � PAGEREF _Toc364568187 �20��


2.2.18 CM_Get_Device_ID	� GOTOBUTTON _Toc364568188  � PAGEREF _Toc364568188 �21��


2.2.19 CM_Get_Device_ID_Size	� GOTOBUTTON _Toc364568189  � PAGEREF _Toc364568189 �22��


2.2.20 CM_Get_DevNode_Status	� GOTOBUTTON _Toc364568190  � PAGEREF _Toc364568190 �23��


2.2.21 CM_Get_First_Log_Conf	� GOTOBUTTON _Toc364568191  � PAGEREF _Toc364568191 �24��


2.2.23 CM_Get_Hardware_Profile_Info	� GOTOBUTTON _Toc364568192  � PAGEREF _Toc364568192 �26��


2.2.24 CM_Get_HW_Prof_Flags	� GOTOBUTTON _Toc364568193  � PAGEREF _Toc364568193 �27��


2.2.25 CM_Get_Next_Log_Conf	� GOTOBUTTON _Toc364568194  � PAGEREF _Toc364568194 �28��


2.2.26 CM_Get_Next_Res_Des	� GOTOBUTTON _Toc364568195  � PAGEREF _Toc364568195 �29��


2.2.27 CM_Get_Parent	� GOTOBUTTON _Toc364568196  � PAGEREF _Toc364568196 �30��


2.2.28 CM_Get_Res_Des_Data	� GOTOBUTTON _Toc364568197  � PAGEREF _Toc364568197 �31��


2.2.29 CM_Get_Res_Des_Data_Size	� GOTOBUTTON _Toc364568198  � PAGEREF _Toc364568198 �32��


2.2.30 CM_Get_Sibling	� GOTOBUTTON _Toc364568199  � PAGEREF _Toc364568199 �33��


2.2.31 CM_Get_Version	� GOTOBUTTON _Toc364568200  � PAGEREF _Toc364568200 �34��


2.2.34 CM_Locate_DevNode	� GOTOBUTTON _Toc364568201  � PAGEREF _Toc364568201 �34��


2.2.36 CM_Modify_Res_Des	� GOTOBUTTON _Toc364568202  � PAGEREF _Toc364568202 �36��


2.2.48 CM_Set_HW_Prof_Flags	� GOTOBUTTON _Toc364568203  � PAGEREF _Toc364568203 �37��


2.3 New Routines	� GOTOBUTTON _Toc364568204  � PAGEREF _Toc364568204 �38��


2.3.1 CM_Get_DevNode_Registry_Property	� GOTOBUTTON _Toc364568205  � PAGEREF _Toc364568205 �38��


2.3.2 CM_Set_DevNode_Registry_Property	� GOTOBUTTON _Toc364568206  � PAGEREF _Toc364568206 �40��


2.3.3 CM_Open_DevNode_Key	� GOTOBUTTON _Toc364568207  � PAGEREF _Toc364568207 �42��


2.3.4 CM_Delete_DevNode_Key	� GOTOBUTTON _Toc364568208  � PAGEREF _Toc364568208 �44��


2.3.5 CM_Open_Class_Key	� GOTOBUTTON _Toc364568209  � PAGEREF _Toc364568209 �45��


2.3.6 CM_Enumerate_Classes	� GOTOBUTTON _Toc364568210  � PAGEREF _Toc364568210 �47��


2.3.7 CM_Get_Class_Name	� GOTOBUTTON _Toc364568211  � PAGEREF _Toc364568211 �48��


2.3.8 CM_Enumerate_Enumerators	� GOTOBUTTON _Toc364568212  � PAGEREF _Toc364568212 �49��


2.3.9 CM_Get_Device_ID_List	� GOTOBUTTON _Toc364568213  � PAGEREF _Toc364568213 �50��


2.3.10 CM_Get_Device_ID_List_Size	� GOTOBUTTON _Toc364568214  � PAGEREF _Toc364568214 �51��


2.3.12 CM_Connect_Machine	� GOTOBUTTON _Toc364568215  � PAGEREF _Toc364568215 �53��


2.3.13 CM_Disconnect_Machine	� GOTOBUTTON _Toc364568216  � PAGEREF _Toc364568216 �54��


2.3.14 CM_Free_Log_Conf_Handle	� GOTOBUTTON _Toc364568217  � PAGEREF _Toc364568217 �54��


2.3.15 CM_Free_Res_Des_Handle	� GOTOBUTTON _Toc364568218  � PAGEREF _Toc364568218 �55��


2.3.16 CM_Detect_Resource_Conflict	� GOTOBUTTON _Toc364568219  � PAGEREF _Toc364568219 �55��


��
1. Overview


This document describes the 32-bit implementation of the Configuration Manager APIs.  These APIs provide routines to control and configure devices in a Plug & Play environment.  In Windows 95, the Configuration Manager is a VxD, and it exposes these routines as services to both ring 0 and ring 3 components.  In Windows NT, however, these routines will expose functionality from the user-mode Plug&Play manager, thus are exclusively user-mode APIs.


The API set presented here is the common subset of APIs that will be shared by a future version of Windows 95 as well as Windows NT.  Windows 95 provides additional CM APIs today in their 16-bit implementation, some of which they may provide in their 32-bit version as well.  These Win95-specific routines will return CR_CALL_NOT_IMPLEMENTED under Windows NT.


The structures and routines have been kept as close to their 16-bit counterparts as possible--only expanding the fields and parameters where necessary.  In certain cases, parameters were expanded even larger to represent the larger capacity of Windows NT (e.g. memory ranges are 64-bit).


One other important point to note regards synchronization.  In the current (16-bit) implementation, there exist CM APIs that lock the Configuration Manager, thus ensuring that the machine’s state doesn’t change while someone is in the middle of configuration, enumeration, etc.  Such global locking mechanisms are incompatible with Windows NT goals of concurrency, robustness, etc., so these APIs will not be implemented on Windows NT.  Atomicity will be ensured within a single CM call, but no assumptions can be made about the consistency of state from one call to the next.  Applications will have to be prepared to deal with the situation where, for example, they are enumerating all sibling device instances and, when halfway through, receive a CR_NO_SUCH_DEVNODE, because the parent device instance was removed.  This is analogous to the way registry enumeration must be handled (e.g., calling RegQueryInfoKey returns that there are 5 subkeys of the specified key, but subsequent attempts at enumerating them fail because someone else has deleted them in the meantime).  Indeed, it should be noted that Windows 95 relies on the registry for the storage of much of its Plug & Play configuration information, and therefore is still vulnerable to some extent to asynchronous changes happening that change the system’s state, even while CM_Lock is held.


The 32-bit Configuration Manager routines are defined to support both the Unicode and ANSI string set (as with other Win32 routines, the corresponding Unicode or ANSI version of the routine is called based on whether UNICODE is defined or not). The Unicode versions will return CR_CALL_NOT_IMPLEMENTED on Windows 95.


The Windows NT implementation of these routines is remotable to remote machines via a set of extended configuration manager routines (CM_xxx_Ex). A caller can connect to a remote machine by calling CM_Connect_Machine. The handle returned in that call can then be passed to other extended Configuration manager routines. This feature is only implemented on Windows NT.


2. The Configuration Manager APIs


2.1 Data Structures


2.1.1 Memory Resource


The following flags specify attributes for a memory range.  Each bit flag is identified with a constant bitmask, and two additional constants are associated with it specifying the values generated by AND’ing the attribute value with the bitmask.


fMD_MemoryType (0x1) ——Bitmask for flag indicating whether the memory range may be written to.  The two possible values are:


fMD_ROM (0x0) ——Memory range is read-only


fMD_RAM (0x1) ——Memory range may be written to


fMD_32_24 (0x2) ——Bitmask for flag indicating whether the memory range is 24 or 32-bit.  Under Windows NT, this flag will always specify 32-bit memory.  The two possible values are:


fMD_24 (0x0) ——Memory range is 24-bit (e.g., ISA PnP).  This flag will never be set on Windows NT.


fMD_32 (0x2) ——Memory range is 32-bit


fMD_Prefetchable (0x4) ——Bitmask for flag indicating whether the memory range is prefetchable (i.e., does it support read-ahead caching?).  The two possible values are:


fMD_PrefetchDisallowed (0x0) ——Memory range is not prefetchable


fMD_PrefetchAllowed (0x4) ——Memory range is prefetchable


fMD_Readable (0x8) ——Bitmask for flag indicating whether the memory range may be read.  The two possible values are:


fMD_ReadAllowed (0x0) ——Memory range is readable


fMD_ReadDisallowed (0x8) —— Memory range is write-only


fMD_CombinedWrite (0x10) ——Bitmask for flag indicating whether the memory range supports combined-write (i.e., write-behind) caching.  The two possible values are:


fMD_CombinedWriteDisallowed (0x0) ——Memory range does not support combined-write caching


fMD_CombinedWriteAllowed (0x10) ——Memory range supports combined-write caching





typedef struct Mem_Range_s {


	DWORDLONG MR_Align;


	ULONG MR_nBytes;


	DWORDLONG MR_Min;


	DWORDLONG MR_Max;


	DWORD MR_Flags;


	DWORD MR_Reserved;


} MEM_RANGE, *PMEM_RANGE;





MEM_RANGE Structure:





MR_Align ——Specifies the mask for the base alignment.


MR_nBytes ——Specifies the number of bytes required.


MR_Min ——Specifies the minimum address of the range.


MR_Max ——Specifies the maximum address of the range.


MR_Flags ——Specifies flags describing the range.  May be a combination of the fMD flags described above





typedef struct Mem_Des_s {


	DWORD MD_Count;


	DWORD MD_Type;


	DWORDLONG MD_Alloc_Base;


	DWORDLONG MD_Alloc_End;


	DWORD MD_Flags;


	DWORD MD_Reserved;


} MEM_DES, *PMEM_DES;





MEM_DES Structure:





MD_Count ——Specifies the number of MEM_RANGE structs in the MEM_RESOURCE structure that this struct is contained in.


MD_Type ——Specifies the size, in bytes, of the MEM_RANGE structure (used for versioning).  This should be set to MType_Range.


MD_Alloc_Base ——Specifies the base memory address of the range that was allocated.


MD_Alloc_End ——Specifies the end of the allocated memory range.


MD_Flags ——Specifies flags describing the allocated range.  May be a combination of the fMD flags described above.





typedef struct Mem_Resource_s {


	MEM_DES MEM_Header;


	MEM_RANGE MEM_Data[ANYSIZE_ARRAY];


} MEM_RESOURCE, *PMEM_RESOURCE;





MEM_RESOURCE Structure:





MEM_Header ——Specifies information about the memory range list, as well as the currently allocated memory range.


MEM_Data ——Contains the list of memory ranges.  The count of memory ranges in this array is given by the MD_Count field in the MEM_Header.





2.1.2 I/O Port Resource


The following flags specify attributes for a IO port range.  Each bit flag is identified with a constant bitmask, and two additional constants are associated with it specifying the values generated by AND’ing the attribute value with the bitmask.


fIOD_PortType (0x1) ——Bitmask for flag indicating whether the port is memory or IO.  The two possible values are:


fIOD_Memory (0x0) ——The Port resource is memory


fIOD_IO (0x1) ——The Port resource is IO











typedef struct IO_Range_s {


	DWORDLONG IOR_Align;


	DWORD IOR_nPorts;


	DWORDLONG IOR_Min;


	DWORDLONG IOR_Max;


	DWORD IOR_RangeFlags;


	DWORDLONG IOR_Alias;


} IO_RANGE, *PIO_RANGE;





IO_RANGE Structure:





IOR_Align ——Specifies the mask for the base alignment


IOR_nPorts ——Specifies the number of ports


IOR_Min ——Specifies the minimum port address


IOR_Max ——Specifies the maximum port address


IOR_RangeFlags ——Specifies flags for this port range


IOR_Alias ——Specifies a multiplier that generates all aliases for the port(s).  This number is right-shifted by 8 bits, removing the least-significant byte (thus forcing it to always be zero), so the real multiplier is IOR_Alias * 256.  The minimum alias is 4.


Remarks:





The Alias mask provide additional flexibility in specifying how the address is handled. It provides a convenient method for specifying what port aliases a card responds to. An alias is a port address that is responded to as if it were another address.  The following table illustrates the most common alias values:


0x00	Specifies that the card supports 16-bit decode


0x04	Specifies that the card supports 10-bit decode (i.e., 3f2, 7f2, ...)


0x10	Specifies that the card supports 12-bit decode (i.e., 3f2, 13f2, ...)


0xFF	This is a special value, it specifies positive decode for a PCI device.


E.g., an ISA card may decode 10 bits and require port 03C0h. It would need to specify an Alias offset of 04h. For convenience, the alias field can be set to zero indicate no aliases are required.





typedef struct IO_Des_s {


	DWORD IOD_Count;


	DWORD IOD_Type;


	DWORDLONG IOD_Alloc_Base;


	DWORDLONG IOD_Alloc_End;


	DWORD IOD_DesFlags;


} IO_DES, *PIO_DES;





IO_DES Structure:





IOD_Count ——Specifies the number of IO_RANGE structs in the IO_RESOURCE structure that this struct is contained in.


IOD_Type ——Specifies the size, in bytes, of the IO_RANGE structure (used for versioning).  This should be set to IOType_Range.


IOD_Alloc_Base ——Specifies the base of the allocated port range.


IOD_Alloc_End ——Specifies the end of the allocated port range.


IOD_DesFlags ——Specifies flags relating to the allocated port range


typedef struct IO_Resource_s {


	IO_DES IO_Header;


	IO_RANGE IO_Data[ANYSIZE_ARRAY];


} IO_RESOURCE, *PIO_RESOURCE;





IO_RESOURCE Structure:





IO_Header ——Specifies information about the I/O port range list, as well as the currently allocated I/O port range.


IO_Data ——Contains the list of I/O port ranges.  The count of I/O port ranges in this array is given by the IOD_Count field in the IO_Header.


2.1.3 DMA Resource


The following flags specify attributes for a DMA resource range.  Each bit flag is identified with a constant bitmask, and additional constants are associated with it specifying the values generated by AND’ing the attribute value with the bitmask.


mDD_Width (0x3) ——Bitmask for flags indicating the width of the DMA channel (byte, word, or dword).  The three possible values are:


fDD_BYTE (0x0) ——8-bit DMA channel


fDD_WORD (0x1) ——16-bit DMA channel


fDD_DWORD (0x2) ——32-bit DMA channel





typedef struct DMA_Range_s {


	ULONG DR_Min;


	ULONG DR_Max;


	ULONG DR_Flags;


} DMA_RANGE, *PDMA_RANGE;





DMA_RANGE Structure:





DR_Min ——Specifies the minimum DMA port in the range


DR_Max ——Specifies the maximum DMA port in the range


DR_Flags ——Specifies flags describing the range.  May be one of the fDD flags described above.  This value must be the same as the DD_Flags value in the corresponding DMA_DES structure.





typedef struct DMA_Des_s {


	DWORD DD_Count;


	DWORD DD_Type;


	DWORD DD_Flags;


	ULONG DD_Alloc_Chan;


} DMA_DES, *PDMA_DES;





DMA_DES Structure:





DD_Count ——Specifies the number of DMA_RANGE structs in the DMA_RESOURCE structure that this struct is contained in.  If this value is 0, then the DD_Req_Mask must be used to determine the possible DMA channels.


DD_Type ——Specifies the size, in bytes, of the DMA_RANGE structure (used for versioning).  This should be set to DType_Range.


DD_Flags ——Specifies flags describing the DMA channel.  May be one of the fDD flags described above.


DD_Alloc_Chan ——Specifies the DMA channel that was allocated.


typedef struct DMA_Resource_s {


	DMA_DES DMA_Header;


	DMA_RANGE DMA_Data[ANYSIZE_ARRAY];


} DMA_RESOURCE, *PDMA_RESOURCE;





DMA_RESOURCE Structure:





DMA_Header ——Specifies information about the DMA channel range list, as well as the currently allocated DMA channel.


DMA_Data ——Contains the list of DMA channel ranges.  The count of DMA channel ranges in this array is given by the DD_Count field in the DMA_Header.





2.1.4 Interrupt Resource


The following flags specify attributes for an interrupt resource range.  Each bit flag is identified with a constant bitmask, and additional constants are associated with it specifying the values generated by AND’ing the attribute value with the bitmask.


mIRQD_Share (0x1) ——Bitmask for flag indicating whether the IRQ may be shared.  The two possible values are:


fIRQD_Exclusive (0x0) ——The IRQ may not be shared


fIRQD_Share (0x1) ——The IRQ may be shared


mIRQD_Edge_Level (0x2) ——Bitmask for flag indicating whether the IRQ is edge- or level-sensitive.  The two possible values are:


fIRQD_Level (0x0) ——The IRQ is level-sensitive.


fIRQD_Edge (0x2) ——The IRQ is edge-sensitive.





typedef struct IRQ_Range_s {


	ULONG IRQR_Min;


	ULONG IRQR_Max;


	ULONG IRQR_Flags;


} IRQ_RANGE, *PIRQ_RANGE;





IRQ_RANGE Structure:





IRQR_Min ——Specifies the minimum IRQ in the range


IRQR_Max ——Specifies the maximum IRQ in the range


IRQR_Flags ——Specifies flags describing the range.  May be one of the fIRQD flags described above.  This value must be the same as the IRQD_Flags value in the corresponding IRQ_DES structure.





typedef struct IRQ_Des_s {


	DWORD IRQD_Count;


	DWORD IRQD_Type;


	DWORD IRQD_Flags;


	ULONG IRQD_Alloc_Num;


	ULONG IRQD_Affinity;


} IRQ_DES, *PIRQ_DES;





IRQ_DES Structure:





IRQD_Count ——Specifies the number of IRQ_RANGE structs in the IRQ_RESOURCE structure that this struct is contained in.  If this value is 0, then the IRQD_Req_Mask must be used to determine the possible IRQs.


IRQD_Type ——Specifies the size, in bytes, of the IRQ_RANGE structure (used for versioning).  This should be set to IRQType_Range.  If this value is zero, then the IRQ_RANGE list must not be used, and the IRQD_Req_Mask must be used instead to determine possible IRQs.


IRQD_Flags ——Specifies flags describing the IRQ.  May be one of the fIRQD flags described above.


IRQD_Alloc_Num ——Specifies the IRQ that was allocated.


IRQD_Affinity ——Specifies the affinity of the IRQ (a value of 0xFFFFFFFF means the interrupt can be serviced by any available processor)








typedef struct IRQ_Resource_s {


	IRQ_DES IRQ_Header;


	IRQ_RANGE IRQ_Data[ANYSIZE_ARRAY];


} IRQ_RESOURCE, *PIRQ_RESOURCE;





IRQ_RESOURCE Structure:





IRQ_Header ——Specifies information about the IRQ range list, as well as the currently allocated IRQ.


IRQ_Data ——Contains the list of IRQ ranges.  The count of IRQ ranges in this array is given by the IRQD_Count field in the IRQ_Header.





2.1.5 Class-Specific Resource


There may only be one class-specific resource in a particular logical configuration.  This resource is ignored by all arbitrators, Device Manager, etc.


#define GUID_STRING_LEN (39)	// always 38 chars + terminating NULL





typedef struct CS_Des_s {


	DWORD CSD_SignatureLength;


	DWORD CSD_LegacyDataOffset;


	DWORD CSD_LegacyDataSize;


	DWORD CSD_Flags;


	GUID CSD_ClassGuid;


	BYTE CSD_Signature[ANYSIZE_ARRAY];


} CS_DES, *PCS_DES;





CS_DES Structure:





CSD_SignatureLength ——Specifies the size, in bytes, of the class-specific Plug&Play device signature stored at the beginning of the CSD_Signature buffer.


CSD_LegacyDataOffset ——Specifies the offset, in bytes, from the beginning of the CSD_Signature buffer where the legacy class-specific data begins.  For Windows NT, this data represents the existing contents of the CmResourceTypeDeviceSpecific partial resource descriptor in a CM_RESOURCE_LIST.


CSD_LegacyDataSize ——Specifies the size, in bytes, of the legacy data.


CSD_Flags ——No flags are currently defined for this resource type.


CSD_ClassGuid ——Specifies the class GUID for this signature.


CSD_Signature ——Variable-length buffer including the Plug&Play device signature and/or legacy class-specific data.  The format of both of these buffers is dependent upon the class specified by CSD_ClassGuid.





typedef struct CS_Resource_s {


	CS_DES CS_Header;


} CS_RESOURCE, *PCS_RESOURCE;





CS_RESOURCE Structure:





CS_Header ——Specifies class-specific information about the device associated with this logical configuration.





2.1.6 Hardware Profile Information


typedef struct HWProfileInfo_s {


	ULONG HWPI_ulHWProfile;


	TCHAR HWPI_szFriendlyName[MAX_PROFILE_LEN];


	DWORD HWPI_dwFlags;


} HWPROFILEINFO, *PHWPROFILEINFO;





Hardware Profile Information Structure:





HWPI_ulHWProfile ——Handle of the hardware profile.


HWPI_szFriendlyName ——Friendly name of the hardware profile.


HWPI_dwFlags ——Flags relating to this hardware profile.  Currently, only bits 0 and 1 are used.  May be one of the following values:


Hardware Profile Information Flags:


CM_HWPI_NOT_DOCKABLE (0x00000000) ——This machine is not dockable.


CM_HWPI_UNDOCKED (0x00000001) ——This hardware profile is for a docked configuration.


CM_HWPI_DOCKED (0x00000002) ——This hardware profile is for an undocked configuration.





2.1.7 Miscellaneous


Standardized Return Value:


	typedef DWORD        RETURN_TYPE;


	typedef RETURN_TYPE  CONFIGRET;








Device Instance Handle�:


	typedef DWORD        DEVNODE;


	typedef DEVNODE     *PDEVNODE;








Device Instance Identifier�:


	typedef TCHAR       *DEVNODEID;





The device instance ID specifies the registry path, relative to the Enum key�, for a device instance.  For example:  Root\*PNP0500\0000.





Logical Configuration Handle:


	typedef DWORD        LOG_CONF;


	typedef LOG_CONF    *PLOG_CONF;








Resource Descriptor Handle:


	typedef DWORD        RES_DES;


	typedef RES_DES     *PRES_DES;





Remote Machine Handle:


	typedef HANDLE       HMACHINE;


	typedef HMACHINE    *PHMACHINE;





Resource ID:


	typedef ULONG        RESOURCEID;


	typedef RESOURCEID  *PRESOURCEID;





This data type may take one of the following values:��ResType_All (0x00000000) ——Return all resource types�ResType_None (0x00000000) ——Arbitration always succeeds�ResType_Mem (0x00000001) ——Physical address resource�ResType_IO (0x00000002) ——Physical I/O address resource�ResType_DMA (0x00000003) ——DMA channels resource�ResType_IRQ (0x00000004) ——IRQ resource�ResType_MAX (0x00000004) ——Maximum known ResType�ResType_Ignored_Bit (0x00008000) ——Ignore this resource�ResType_ClassSpecific (0x0000FFFF) ——Class-specific resource





Registry Key Open Disposition:


	typedef ULONG        REGDISPOSITION;





This data type may take one of the following values:��RegDisposition_OpenAlways (0x00000000) ——Open the key if it exists, otherwise, create the key. �RegDisposition_OpenExisting (0x00000001) ——Open the key only if it already exists.





Priority:


	typedef ULONG        PRIORITY;





This data type may take one of the following values:��LCPRI_FORCECONFIG (0x00000000) ——Coming from a forced config�LCPRI_BOOTCONFIG (0x00000001) ——Coming from a boot config�LCPRI_DESIRED (0x00002000) ——Preferable set (better performance)�LCPRI_NORMAL (0x00003000) ——Workable (acceptable performance)�LCPRI_LASTBESTCONFIG (0x00003FFF) ——CM only--do not use�LCPRI_SUBOPTIMAL (0x00005000) ——Not desired, but will work�LCPRI_LASTSOFTCONFIG (0x00007FFF) ——CM only--do not use�LCPRI_RESTART (0x00008000) ——Need to restart Windows��LCPRI_REBOOT (0x00009000) ——Need to reboot Windows�LCPRI_POWEROFF (0x0000A000) ——Need to shutdown/power-off the machine�LCPRI_HARDRECONFIG (0x0000C000) ——Need to change a jumper�LCPRI_HARDWIRED (0x0000E000) ——Cannot be changed�LCPRI_IMPOSSIBLE (0x0000F000) ——Impossible configuration�LCPRI_DISABLED (0x0000FFFF) ——Disabled configuration MAX_LCPRI (0x0000FFFF) ——Maximum known LC Priority





Range List Handle:


typedef DWORD              RANGE_LIST;


typedef RANGE_LIST        *PRANGE_LIST;








Range Element Handle:


typedef DWORD              RANGE_ELEMENT;


typedef RANGE_ELEMENT     *PRANGE_ELEMENT;





2.2 Routines


2.2.1 CM_Add_Empty_Log_Conf


This routine creates an empty logical configuration.  This configuration has no resource descriptor.


CONFIGRET


CM_Add_Empty_Log_Conf (


	OUT PLOG_CONF plcLogConf,


	IN DEVNODE dnDevNode,


	IN PRIORITY Priority,


	IN ULONG ulFlags


	);





Parameters:





plcLogConf ——Address of a variable that receives the handle of the logical configuration.


dnDevNode ——Handle of a device instance.  This handle is typically retrieved by a call to CM_Locate_DevNode.


Priority ——Specifies the priority of the logical configuration.  (See Section � REF MiscDataStructs \* MERGEFORMAT �2.1.� for list of possible Priority values.)


ulFlags ——Supplies flags relating to the logical configuration.  Must be either BASIC_LOG_CONF , BOOT_LOG_CONF, FILTERED_LOG_CONF, combined with either PRIORITY_EQUAL_FIRST or PRIORITY_EQUAL_LAST.


Logical Configuration Flags:


BASIC_LOG_CONF ——Specifies the requirements list


FILTERED_LOG_CONF ——Specifies the filtered requirements list


OVERRIDE_LOG_CONF ——Specifies the filtered requirements list that overrides the FILTERED_LOG_CONF and BASIC_LOG_CONF.


BOOT_LOG_CONF ——Specifies the boot configuration (only one of these may exist for a particular device instance.  Attempting to add a boot log config to a devnode that already has one fails with the error CR_INVALID_LOG_CONF)


FORCED_LOG_CONF ——Specifies a configuration that was specifically chosen (typically via an INF or a user).


ALLOC_LOG_CONF ——Specifies the configuration the device is currently using.





PRIORITY_EQUAL_FIRST ——Same priority, new one is first


PRIORITY_EQUAL_LAST ——Same priority, new one is last


Return Value:





If the function succeeds, the return value is CR_SUCCESS.


If the function fails, the return value is one of the following:  CR_INVALID_DEVNODE, CR_INVALID_LOG_CONF, CR_INVALID_FLAG, CR_INVALID_POINTER, CR_OUT_OF_MEMORY.


Remarks:





Calling this API may invalidate the logical configuration handles returned by the CM_Get_First_Log_Conf and CM_Get_Next_Log_Conf routines.  To continue enumerating logical configurations after adding a logical configuration, always call CM_Get_First_Log_Conf to start again from the beginning. 


When the logical configuration handle returned by CM_Add_Empty_Log_Conf is no longer needed, it should be freed by calling CM_Free_Log_Conf_Handle.


Note: The CM_Add_Empty_Log_Config routine is used to create logical configurations of any valid Xxx_LOG_CONF type. When adding resource descriptors (by calling CM_Add_Res_Des), you also fill in one of the Xxx_RESOURCE structure fields. The Xxx_RESOURCE structure fields provide for describing both a specific resource (described in the Xxx_DES embedded structure) or a range of possible resources (described in one or more Xxx_RANGE embedded structures). The BASIC_LOG_CONF, FILTERED_LOG_CONF, and OVERRIDE_LOG_CONF logical configuration types describe a range of possible resource configurations. As such, the individual resource descriptors within those logical configurations will have one or more Xxx_RANGE structures filled out and the specific resource data fields of the Xxx_DES field will be ignored. Likewise, the ALLOC_LOG_CONF, BOOT_LOG_CONF, and FORCED_LOG_CONF logical configuration types describe a specific configuration. As such, the individual resource descriptors within those logical configurations will have a completely filled out Xxx_DES structure but will not contain any Xxx_RANGE structures (the count field in the Xxx_DES structure will be zero).








2.2.4 CM_Add_Res_Des


This routine adds a resource descriptor to a logical configuration.


CONFIGRET


CM_Add_Res_Des (


	OUT PRES_DES prdResDes, OPTIONAL


	IN LOG_CONF lcLogConf,


	IN RESOURCEID ResourceID,


	IN PVOID ResourceData,


	IN ULONG ResourceLen,


	IN ULONG ulFlags


	);





Parameters:





prdResDes ——Optionally specifies the address of a variable that receives a handle for the new resource descriptor.


lcLogConf ——Supplies the handle of the logical configuration to which the resource descriptor is added.


ResourceID ——Specifies the type of the resource.  Can be one of the ResType values defined in Section � REF MiscDataStructs \* MERGEFORMAT �2.1.�.


ResourceData ——Supplies the address of an IO_RESOURCE, MEM_RESOURCE, DMA_RESOURCE, IRQ_RESOURCE, or CS_RESOURCE structure, depending on the given resource type.


ResourceLen ——Supplies the size, in bytes, of the structure pointed to by ResourceData.


ulFlags ——Must be zero.


Return Value:





If the function succeeds, the return value is CR_SUCCESS.


If the function fails, the return value is one of the following:  CR_INVALID_FLAG, CR_INVALID_LOG_CONF, CR_INVALID_POINTER, CR_INVALID_RESOURCE_ID, or CR_OUT_OF_MEMORY.


Remarks:





When the resource descriptor handle returned by CM_Add_Res_Des is no longer needed, it should be freed by calling CM_Free_Res_Des_Handle.














2.2.13 CM_Free_Log_Conf


This routine frees a logical configuration and all resource descriptors associated with it.


CONFIGRET


CM_Free_Log_Conf (


	IN LOG_CONF lcLogConfToBeFreed,


	IN ULONG ulFlags


	);





Parameters:





lcLogConfToBeFreed ——Supplies the handle of the logical configuration to free.  This handle must have been previously returned from a call to CM_Add_Empty_Log_Conf.


ulFlags ——Must be zero.


Return Value:





If the function succeeds, the return value is CR_SUCCESS.


If the function fails, the return value is one of the following:  CR_INVALID_FLAG or CR_INVALID_LOG_CONF.


Remarks:





This API may invalidate the logical configuration handles returned by the CM_Get_First_Log_Conf and CM_Get_Next_Log_Conf APIs.  To continue enumerating logical configurations, always use the CM_Get_First_Log_Conf API to start again from the beginning.








2.2.15 CM_Free_Res_Des


This routine destroys a resource descriptor.


CONFIGRET


CM_Free_Res_Des (


	IN PRES_DES prdResDes,


	IN RES_DES rdResDes,


	IN ULONG ulFlags


	);





Parameters:





prdResDes ——Supplies the address of the variable that receives the handle of the previous resource descriptor.  If rdResDes is the handle of the first resource descriptor, this address receives the handle of the logical configuration.


rdResDes ——Supplies the handle of the resource descriptor to be destroyed.


ulFlags ——Must be zero.


Return Value:





If the function succeeds, the return value is CR_SUCCESS.


If the function fails, the return value is one of the following:  CR_INVALID_FLAG, CR_INVALID_POINTER, CR_INVALID_RES_DES, or CR_NO_MORE_RES_DES.


Remarks:





This API returns CR_NO_MORE_RES_DES if rdResDes specifies the last resource descriptor. If this API does return the previous resource descriptor, then that resource descriptor handle should be freed (by calling CM_Free_Res_Des_Handle) when it is no longer needed.








2.2.16 CM_Get_Child


This routine retrieves the first child of a given device instance.


CONFIGRET


CM_Get_Child (


	OUT PDEVNODE pdnDevNode,


	IN DEVNODE dnDevNode,


	IN ULONG ulFlags


	);





Parameters:





pdnDevNode ——Supplies the address of the variable that receives the handle of the device instance.


dnDevNode ——Supplies the handle of the parent device instance.


ulFlags ——Must be zero.


Return Value:





If the function succeeds, the return value is CR_SUCCESS.


If the function fails, the return value is one of the following:  CR_INVALID_DEVNODE, CR_INVALID_FLAG, CR_INVALID_POINTER, or CR_NO_SUCH_DEVNODE.





2.2.18 CM_Get_Device_ID


This routine retrieves the device identifier for a device instance.


CONFIGRET


CM_Get_Device_ID (


	IN DEVNODE dnDevNode,


	OUT PTCHAR Buffer,


	IN ULONG BufferLen,


	IN ULONG ulFlags


	);





Parameters:





dnDevNode ——Supplies the handle of the device instance for which to retrieve the device identifier.


Buffer ——Supplies the address of the buffer that receives the device identifier.  If this buffer is larger than the device identifier, the API appends a null-terminating character to the data.  If it is smaller than the device identifier, the API fills it with as much of the device identifier as will fit and returns CR_BUFFER_SMALL.


BufferLen ——Supplies the size, in characters, of the buffer for the device identifier.


ulFlags ——Must be zero.


Return Value:





If the function succeeds, the return value is CR_SUCCESS.


If the function fails, the return value is one of the following:  CR_BUFFER_SMALL, CR_INVALID_DEVNODE, CR_INVALID_FLAG, or CR_INVALID_POINTER.





2.2.19 CM_Get_Device_ID_Size


This routine retrieves the size of a device identifier from a device instance.


CONFIGRET


CM_Get_Device_ID_Size (


	OUT PULONG pulLen,


	IN DEVNODE dnDevNode,


	IN ULONG ulFlags


	);





Parameters:





pulLen ——Supplies the address of the variable that receives the size in characters, not including the terminating NULL, of the device identifier.  The API sets the variable to 0 if no identifier exists.  The size is always less than or equal to MAX_DEVICE_ID_LEN.


dnDevNode ——Supplies the handle of the device instance.


ulFlags ——Must be zero.


Return Value:





If the function succeeds, the return value is CR_SUCCESS.


If the function fails, the return value is one of the following:  CR_INVALID_DEVNODE, CR_INVALID_FLAG, or CR_INVALID_POINTER.


Remarks:





The device identifier for a device instance consists of the identifier of the enumerator immediately above this device in the hardware tree, the identifier of the device, and the instance number of the device.  For example, the device identifier for an Adaptec 1540c might be \isaenum\aha1540c\1.  Although in Windows 95, this string may be used as a key into the registry, the registry locations are different on Windows NT, and therefore this string should no longer be used for this purpose.


The device identifier is limited to MAX_DEVICE_ID_LEN characters.





2.2.20 CM_Get_DevNode_Status


This routine retrieves the status of a device instance.


CONFIGRET


CM_Get_DevNode_Status (


	OUT PULONG pulStatus,


	OUT PULONG pulProblemNumber,


	IN DEVNODE dnDevNode,


	IN ULONG ulFlags


	);





Parameters:





pulStatus ——Supplies the address of the variable that receives the status flag of the device instance.  Can be a combination of the following values:


Status Flags:


DN_HAS_PROBLEM ——The device installer is required to resolve conflicts.


DN_NEED_TO_ENUM ——The device instance may need reenumeration.


DN_ROOT_ENUMERATED ——The device instance was enumerated by the root.


DN_STARTED ——The device instance is currently configured.


DN_MOVED ——The device instance has been moved.


DN_DISABLEABLE ——The device instance may be reconfigured.


DN_REMOVABLE ——The device instance may be removed.


DN_WILL_BE_REMOVED ——The device instance is being removed.


pulProblemNumber ——Supplies the address of the variable that receives an identifier indicating the problem.  Can be one of the following values:


Problem Values:


CM_PROB_DISABLED ——The device instance is disabled.


CM_PROB_NOT_CONFIGURED ——There is no configuration for this device.


CM_PROB_NEED_RESTART ——The problem requires a shutdown-restart.


CM_PROB_WILL_BE_REMOVED ——The device instance will be removed.


CM_PROB_FAILED_INSTALL ——The installation of this device instance was unsuccessful.


CM_PROB_FAILED_START ——The driver for this device instance failed to start


CM_PROB_REINSTALL ——This device instance needs to be installed


CM_PROB_MOVED —— The device instance has been moved.


dnDevNode ——Supplies the handle of the device instance for which to retrieve status.


ulFlags ——Must be zero.


Return Value:





If the function succeeds, the return value is CR_SUCCESS.


If the function fails, the return value is one of the following:  CR_INVALID_DEVNODE, CR_INVALID_FLAG, or CR_INVALID_POINTER.





2.2.21 CM_Get_First_Log_Conf


This routine returns a handle to the first logical configuration of the specified type in a device instance.


CONFIGRET


CM_Get_First_Log_Conf (


	OUT PLOG_CONF plcLogConf,


	IN DEVNODE dnDevNode,


	IN ULONG ulFlags


	);





Parameters:





plcLogConf ——Supplies the address of the variable that receives the handle of the logical configuration.


dnDevNode ——Supplies the handle of the device instance for which to retrieve the logical configuration.


ulFlags ——Configuration type.  Can be one of the following values:


Configuration Type Values:


ALLOC_LOG_CONF ——Retrieve the allocated configuration.


BASIC_LOG_CONF ——Retrieve the requirements list.


BOOT_LOG_CONF ——Retrieve the boot configuration.


The following additional configuration type is also defined for Windows 95:


FILTERED_LOG_CONF ——Retrieve the filtered requirements list.


Return Value:





If the function succeeds, the return value is CR_SUCCESS.


If the function fails, the return value is one of the following:  CR_INVALID_DEVNODE, CR_INVALID_FLAG, CR_INVALID_POINTER, or CR_NO_MORE_LOG_CONF.


Remarks:





The CM_Add_Empty_Log_Conf and CM_Free_Log_Conf APIs may invalidate the handle of the logical configuration returned by this API.  To enumerate logical configurations after adding or freeing a logical configuration, always call this API again to retrieve a valid handle.


When the logical configuration handle returned by CM_Get_First_Log_Conf is no longer needed, it should be freed by calling CM_Free_Log_Conf_Handle.











2.2.23 CM_Get_Hardware_Profile_Info


This routine returns information about a hardware profile.


CONFIGRET


CM_Get_Hardware_Profile_Info (


	IN ULONG ulIndex,


	OUT PHWPROFILEINFO pHWProfileInfo,


	IN ULONG ulFlags


	);





Parameters:





ulIndex ——Supplies the index of the hardware profile to retrieve information for.  Specifying 0xFFFFFFFF references the currently active hardware profile.


pHWProfileInfo ——Supplies the address of a HWPROFILEINFO structure that will receive information about the specified hardware profile.


ulFlags ——Must be zero.


Return Value:





If the function succeeds, the return value is CR_SUCCESS.


If the function fails, the return value is a CR error code.





2.2.24 CM_Get_HW_Prof_Flags


This routine retrieves the configuration-specific configuration flags for a device instance and hardware profile combination.


CONFIGRET


CM_Get_HW_Prof_Flags (


	IN DEVINSTID szDevNodeName,


	IN ULONG ulHardwareProfile,


	OUT PULONG pulValue,


	IN ULONG ulFlags


	);





Parameters:





szDevNodeName ——Supplies the address of a NULL-terminated string specifying the name of the device instance to query.


ulHardwareProfile ——Supplies the handle of the hardware profile to query.  If 0, the API queries the current hardware profile.


pulValue ——Supplies the address of the variable that receives the configuration-specific configuration (CSCONFIGFLAG_) flags.


ulFlags ——Must be zero.


Return Value:





If the function succeeds, the return value is CR_SUCCESS.


If the function fails, the return value is one of the following:  CR_INVALID_FLAG, CR_INVALID_POINTER, or CR_REGISTRY_ERROR.





2.2.25 CM_Get_Next_Log_Conf


This routine returns a handle to the next logical configuration following the given configuration.


CONFIGRET


CM_Get_Next_Log_Conf (


	OUT PLOG_CONF plcLogConf,


	IN LOG_CONF lcLogConf,


	IN ULONG ulFlags


	);





Parameters:





plcLogConf ——Supplies the address of the variable that receives the handle of the next logical configuration.


lcLogConf ——Supplies the handle of a logical configuration.  This handle must have been previously retrieved using either this API or the CM_Get_First_Log_Conf API.  Logical configurations are in priority order.


ulFlags ——Must be zero.


Return Value:





If the function succeeds, the return value is CR_SUCCESS.


If the function fails, the return value is one of the following:  CR_INVALID_FLAG, CR_INVALID_LOG_CONF, CR_INVALID_POINTER, or CR_NO_MORE_LOG_CONF.


Remarks:





This API returns CR_NO_MORE_LOG_CONF if the given handle was retrieved using the CM_Get_First_Log_Conf API with either the ALLOC_LOG_CONF or BOOT_LOG_CONF flag.  There is never more than one active boot logical configuration or currently-allocated logical configuration.


The CM_Add_Empty_Log_Conf and CM_Free_Log_Conf APIs may invalidate the logical configuration handle returned by this API.  To continue enumerating logical configuration after addding or freeing a logical configuration, always use the CM_Get_First_Log_Conf API to start again from the beginning.


When the logical configuration handle returned by CM_Get_Next_Log_Conf is no longer needed, it should be freed by calling CM_Free_Log_Conf_Handle.








2.2.26 CM_Get_Next_Res_Des


This routine returns the handle of the next resource descriptor in a logical configuration.


CONFIGRET


CM_Get_Next_Res_Des (


	OUT PRES_DES prdResDes,


	IN RES_DES rdResDes,


	IN RESOURCEID ForResource,


	OUT PRESOURCEID pResourceID,


	IN ULONG ulFlags


	);





Parameters:





prdResDes ——Supplies the address of the variable that receives the handle of the next resource descriptor.


rdResDes ——Supplies the handle of the current resource descriptor or the handle of a logical configuration.  (Both are 32-bit numbers--Configuration Manager can distinguish between them.)


ForResource ——Specifies the type of the resource to retrieve.  Can be one of the ResType values listed in Section � REF MiscDataStructs \* MERGEFORMAT �2.1.�.


pResourceID ——Supplies the address of the variable that receives the resource type, when ForResource specifies ResType_All.  (When ForResource is not ResType_All, this parameter can be NULL.)


ulFlags ——Must be zero.


Return Value:





If the function succeeds, the return value is CR_SUCCESS.


If the function fails, the return value is one of the following:  CR_INVALID_FLAG, CR_INVALID_POINTER, CR_INVALID_LOG_CONF, CR_INVALID_RES_DES, or CR_NO_MORE_RES_DES.


Remarks:





When the resource descriptor handle returned by CM_Get_Next_Res_Des is no longer needed, it should be freed by calling CM_Free_Res_Des_Handle





2.2.27 CM_Get_Parent


This routine retrieves the handle of the parent of a device instance.


CONFIGRET


CM_Get_Parent (


	OUT PDEVNODE pdnDevNode,


	IN DEVNODE dnDevNode,


	IN ULONG ulFlags


	);





Parameters:





pdnDevNode ——Supplies the address of the variable that receives a handle to the parent device instance.


dnDevNode ——Supplies the handle of the child device instance.


ulFlags ——Must be zero.


Return Value:





If the function succeeds, the return value is CR_SUCCESS.


If the function fails, the return value is one of the following:  CR_INVALID_DEVNODE, CR_INVALID_FLAG, CR_INVALID_POINTER, or CR_NO_SUCH_DEVNODE.





2.2.28 CM_Get_Res_Des_Data


This routine copies the data from a specified resource descriptor into a buffer.


CONFIGRET


CM_Get_Res_Des_Data (


	IN RES_DES rdResDes,


	OUT PVOID Buffer,


	IN ULONG BufferLen,


	IN ULONG ulFlags


	);





Parameters:





rdResDes ——Supplies the handle of the resource descriptor from which data is to be copied.


Buffer ——Supplies the address of the buffer that receives the data.


BufferLen ——Supplies the size of the buffer, in bytes.


ulFlags ——Must be zero.


Return Value:





If the function succeeds, the return value is CR_SUCCESS.


If the function fails, the return value is one of the following:  CR_BUFFER_SMALL, CR_INVALID_FLAG, CR_INVALID_POINTER, or CR_INVALID_RES_DES.


Remarks:





Use the CM_Get_Res_Des_Data_Size API to determine the buffer size needed to receive the data.  Alternately, set a size that is at least as large as the maximum possible size of the resource.  If the size given is too small, the data is truncated and the API returns CR_BUFFER_SMALL.





2.2.29 CM_Get_Res_Des_Data_Size


This routine retrieves the size of a resource descriptor, not including the resource descriptor header.


CONFIGRET


CM_Get_Res_Des_Data_Size (


	OUT PULONG pulSize,


	IN RES_DES rdResDes,


	IN ULONG ulFlags


	);





Parameters:





pulSize ——Supplies the address of the variable that receives the size, in bytes, of the resource descriptor data.


rdResDes ——Supplies the handle of the resource descriptor for which to retrieve the size.


ulFlags ——Must be zero.


Return Value:





If the function succeeds, the return value is CR_SUCCESS.


If the function fails, the return value is one of the following:  CR_INVALID_FLAG, CR_INVALID_POINTER, or CR_INVALID_RES_DES.





2.2.30 CM_Get_Sibling


This routine retrieves the sibling of a device instance.


CONFIGRET


CM_Get_Sibling (


	OUT PDEVNODE pdnDevNode,


	IN DEVNODE dnDevNode,


	IN ULONG ulFlags


	);





Parameters:





pdnDevNode ——Supplies the address of the variable that receives a handle to the sibling device  instance.


dnDevNode ——Supplies the handle of a device instance.


ulFlags ——Must be zero.


Return Value:





If the function succeeds, the return value is CR_SUCCESS.


If the function fails, the return value is one of the following:  CR_INVALID_DEVNODE, CR_INVALID_FLAG, CR_INVALID_POINTER, or CR_NO_SUCH_DEVNODE.


Remarks:





This API can be called in a loop to retrieve all the siblings of a device instance.  When the API returns CR_NO_SUCH_DEVNODE, there are no more siblings to enumerate.  In order to enumerate all children of  a device instance, this loop must start with the device instance retrieved by calling CM_Get_Child to get the first sibling.





2.2.31 CM_Get_Version


This routine retrieves the version number of the Configuration Manager APIs.


WORD


CM_Get_Version (


	VOID


	);





Parameters:





none


Return Value:





The function returns the major revision number in the high byte and the minor revision number in the low byte.


For example, version 4.0 of Configuration Manager returns 0x0400.











2.2.34 CM_Locate_DevNode


This routine retrieves the handle of the device instance that corresponds to a specified device identifier.


CONFIGRET


CM_Locate_DevNode (


	OUT PDEVNODE pdnDevNode,


	IN DEVNODEID pDeviceID,	OPTIONAL


	IN ULONG ulFlags


	);





Parameters:





pdnDevNode ——Supplies the address of the variable that receives the handle of a device instance.


pDeviceID ——Supplies the address of a null-terminated string specifying a device identifier.  If this parameter is NULL, the API retrieves a handle to the device instance at the root of the hardware tree.


ulFlags ——Supplies flags specifying options for locating the device instance.  May be a combination of the following values:


Create Device Instance Flags:


CM_LOCATE_DEVNODE_NORMAL ——Locate only device instances that are currently ‘live’ from the ConfigMgr’s point of view.


CM_LOCATE_DEVNODE_PHANTOM ——Allows a device instance handle to be returned for a device instance that is not currently ‘live’, but that does exist in the registry.  This may be used with other CM APIs that require a devnode handle, but for which there currently is none for a particular device (e.g., you want to set a device registry property for a device not currently present).  This flag does not allow you to locate phantom devnodes created by using CM_Create_DevNode with the CM_CREATE_DEVNODE_PHANTOM flag (such device instances are only accessible by the caller who holds the devnode handle returned from that API).


Return Value:





If the function succeeds, the return value is CR_SUCCESS.


If the function fails, the return value is one of the following:  CR_INVALID_DEVICE_ID, CR_INVALID_FLAG, CR_INVALID_POINTER, or CR_NO_SUCH_DEVNODE.








2.2.36 CM_Modify_Res_Des


This routine modifies a resource descriptor.


CONFIGRET


CM_Modify_Res_Des (


	OUT PRES_DES prdResDes,


	IN RES_DES rdResDes,


	IN RESOURCEID ResourceID,


	IN PVOID ResourceData,


	IN ULONG ResourceLen,


	IN ULONG ulFlags


	);





Parameters:





prdResDes ——Supplies the address of the variable that receives the handle of the modified resource descriptor.


rdResDes ——Supplies the handle of the resource descriptor to be modified.


ResourceID ——Specifies the type of resource to modify.  Can be one of the ResType values described in Section � REF MiscDataStructs \* MERGEFORMAT �2.1.�.


ResourceData ——Supplies the address of a resource data structure.


ResourceLen ——Supplies the size, in bytes, of the new resource data structure.  This size can be different from the size of the original resource data.


ulFlags ——Must be zero.


Return Value:





If the function succeeds, the return value is CR_SUCCESS.


If the function fails, the return value is one of the following:  CR_INVALID_FLAG, CR_INVALID_POINTER, CR_INVALID_RES_DES, or CR_OUT_OF_MEMORY.


Remarks:





This API retrieves a handle to the new resource descriptor.  This may or may not be the handle of the original resource descriptor.  The original resource descriptor handle is invalid after calling this API. When the new resource descriptor handle returned by CM_Modify_Res_Des is no longer needed, it should be freed by calling CM_Free_Res_Des_Handle.











2.2.48 CM_Set_HW_Prof_Flags


This routine sets the configuration-specific configuration flags for a device instance and hardware profile combination.


CONFIGRET


CM_Set_HW_Prof_Flags (


	IN DEVINSTID szDevNodeName,


	IN ULONG ulConfig,


	IN ULONG ulValue,


	IN ULONG ulFlags


	);





Parameters:





szDevNodeName ——Supplies the address of a null-terminated string that specifies the name of a device instance to modify


ulConfig ——Supplies the number of the hardware profile to modify.  If 0, the API modifies the current hardware profile.


ulValue ——Supplies the configuration flags value.  Can be a combination of these values:


Configuration-Specific Flags:


CSCONFIGFLAG_DISABLE ——Disable the device instance in this hardware profile.


CSCONFIGFLAG_DO_NOT_CREATE ——Do not allow this device instance to be created in this hardware profile.


ulFlags ——Must be zero.


Return Value:





If the function succeeds, the return value is CR_SUCCESS.


If the function fails, the return value is one of the following:  CR_INVALID_FLAG, CR_INVALID_POINTER, or CR_REGISTRY_ERROR.  (Windows 95 may also return CR_NOT_AT_APPY_TIME.)


Remarks:





If the CSCONFIGFLAG_DO_NOT_CREATE bit is set for an existing device instance in the current hardware profile, it will be removed.  If the CSCONFIGFLAG_DO_NOT_CREATE bit is cleared in the current hardware profile, the entire hardware tree will be reenumerated, so that the parent of the device instance has the chance to create the device instance if necessary.











2.3 New Routines


2.3.1 CM_Get_DevNode_Registry_Property


This routine retrieves the specified value from the device instance’s registry storage key.


CONFIGRET


CM_Get_DevNode_Registry_Property (


	IN DEVNODE dnDevNode,


	IN ULONG ulProperty,


	OUT PULONG pulRegDataType,	OPTIONAL


	OUT PVOID Buffer,		OPTIONAL


	IN OUT PULONG pulLength,


	IN ULONG ulFlags


	);





Parameters:





dnDevNode ——Supplies the handle of the device instance for which a property is to be retrieved.


ulProperty ——Supplies an ordinal specifying the property to be retrieved.  Can be one of the following values:


Registry Properties:


CM_DRP_DEVICEDESC —DeviceDesc property.


CM_DRP_HARDWAREID —HardwareID property.


CM_DRP_COMPATIBLEIDS —CompatibleIDs property.


CM_DRP_NTDEVICEPATHS —NtDevicePaths property.


CM_DRP_SERVICE —Service property.


CM_DRP_CONFIGURATION —Configuration property.


CM_DRP_CONFIGURATIONVECTOR —ConfigurationVector property.


CM_DRP_CLASS —Class property.


CM_DRP_CLASSGUID —ClassGUID property.


CM_DRP_DRIVER —Driver property.


CM_DRP_CONFIGFLAGS —ConfigFlags property.


CM_DRP_MFG —Mfg property.


pulRegDataType ——Optionally, supplies the address of a variable that will receive the registry data type for this property (i.e., the REG_* constants).


Buffer ——Supplies the address of the buffer that receives the registry data.  Can be NULL when simply retrieving data size.


pulLength ——Supplies the address of the variable that contains the size, in bytes, of the buffer.  The API replaces the initial size with the number of bytes of registry data copied to the buffer.  If the variable is initially zero, the API replaces it with the buffer size needed to receive all the registry data.  In this case, the Buffer parameter is ignored.


ulFlags ——Must be zero.


Return Value:





If the function succeeds, the return value is CR_SUCCESS.


If the function fails, the return value is one of the following: CR_INVALID_DEVNODE, CR_INVALID_PROPERTY, CR_INVALID_FLAG, CR_INVALID_POINTER, CR_NO_SUCH_VALUE, CR_REGISTRY_ERROR, or CR_BUFFER_SMALL.


Remarks:





This API replaces the 16-bit API, CM_Read_Registry_Value.  Direct access to the Plug & Play portions of the registry is prohibited in the 32-bit CM APIs, and access is only allowed via this API, as well as CM_Set_DevNode_Registry_Property.


To retrieve device/driver class-specific information, use CM_Open_DevNode_Key.





2.3.2 CM_Set_DevNode_Registry_Property


This routine sets the specified value in the device instance’s registry storage key.


CONFIGRET


CM_Set_DevNode_Registry_Property (


	IN DEVNODE dnDevNode,


	IN ULONG ulProperty,


	IN PVOID Buffer,		OPTIONAL


	IN ULONG ulLength,


	IN ULONG ulFlags


	);





Parameters:





dnDevNode ——Supplies the handle of the device instance for which a property is to be set.


ulProperty ——Supplies an ordinal specifying the property to be set.  Can be one of the following values:


Registry Properties:


CM_DRP_DEVICEDESC —DeviceDesc property (REG_SZ).


CM_DRP_HARDWAREID —HardwareID property (REG_MULTI_SZ).


CM_DRP_COMPATIBLEIDS —CompatibleIDs property (REG_MULTI_SZ).


CM_DRP_SERVICE —Service property (REG_SZ).


CM_DRP_CLASS —Class property (REG_SZ).


CM_DRP_CLASSGUID —ClassGUID property (REG_SZ).


CM_DRP_DRIVER —Driver property (REG_SZ).


CM_DRP_CONFIGFLAGS —ConfigFlags property (REG_DWORD).


CM_DRP_MFG —Mfg property (REG_SZ).


Buffer ——Supplies the address of the buffer that contains the registry data.  This data must be of the proper type for that property.


ulLength ——Supplies the number of bytes of registry data to write.


ulFlags ——Must be zero.


Return Value:





If the function succeeds, the return value is CR_SUCCESS.


If the function fails, the return value is one of the following: CR_INVALID_DEVNODE, CR_INVALID_PROPERTY, CR_INVALID_FLAG, CR_INVALID_POINTER, CR_REGISTRY_ERROR, CR_INVALID_DATA, or CR_BUFFER_SMALL.


Remarks:





This API replaces the 16-bit API, CM_Write_Registry_Value.  Direct access to the Plug & Play portions of the registry is prohibited in the 32-bit CM APIs, and access is only allowed via this API, as well as CM_Get_DevNode_Registry_Property.


To set device/driver class-specific information, use CM_Open_DevNode_Key.





2.3.3 CM_Open_DevNode_Key


This routine opens a registry storage key associated with a device instance.


CONFIGRET


CM_Open_DevNode_Key (


	IN DEVNODE dnDevNode,


	IN REGSAM samDesired,


	IN ULONG ulHardwareProfile,


	IN REGDISPOSITION Disposition,


	OUT PHKEY phkDevice,


	IN ULONG ulFlags


	);





Parameters:





dnDevNode ——Handle of a device instance.  This handle is typically retrieved by a call to CM_Locate_DevNode or CM_Create_DevNode.


samDesired ——Specifies an access mask that describes the desired security access for the key. This parameter can be a combination of the values used in calls to RegOpenKeyEx.


ulHardwareProfile ——Supplies the handle of the hardware profile to open the storage key under.  This parameter is only used if the CM_REGISTRY_CONFIG flag is specified in ulFlags.  If this parameter is 0, the API uses the current hardware profile.


Disposition ——Specifies how the registry key is to be opened.  May be one of the following values:


Registry Key Open Dispositions:


RegDisposition_OpenAlways —Open the key if it exists, otherwise, create the key.


RegDisposition_OpenExisting —Open the key if it exists, otherwise, fail with CR_NO_SUCH_REGISTRY_KEY.


phkDevice ——Supplies the address of the variable that receives an opened handle to the specified key.  When access to this key is completed, it must be closed via RegCloseKey.


ulFlags ——Specifies what type of storage key should be opened.  Can be a combination of these values:


Registry Key Type Flags:


CM_REGISTRY_HARDWARE (0x00000000) —Open a key for storing driver-independent information relating to the device instance.  On Windows NT, the full path to such a storage key is of the form:


		HKLM\SYSTEM\CurrentControlSet\Enum�		\<Enumerator>�			\<DeviceID>�				\<InstanceID>�					\Device Parameters


CM_REGISTRY_SOFTWARE (0x00000001) —Open a key for storing driver-specific information relating to the device instance.  On Windows NT, the full path is to such a storage key is of the form:


		HKLM\SYSTEM\CurrentControlSet\Control\Class�		\<DevNodeClass>�			\<ClassInstanceOrdinal>


CM_REGISTRY_USER (0x00000100) —Open the key under HKEY_CURRENT_USER instead of HKEY_LOCAL_MACHINE.  This flag may not be used with CM_REGISTRY_CONFIG.  There is no analogous kernel-mode API on NT to get at per-user device configuration storage, since this concept does not apply to device drivers (no user may be logged on, etc.).  However, this flag is provided, for consistency with Win95, and because it is foreseeable that it could be useful to Win32 services that interact with the Plug&Play model.


CM_REGISTRY_CONFIG (0x00000200) —Open the key under a hardware profile branch instead of HKEY_LOCAL_MACHINE.  If this flag is specified, then ulHardwareProfile supplies the handle of the hardware profile to be used.  This flag may not be used with CM_REGISTRY_USER.


Return Value:





If the function succeeds, the return value is CR_SUCCESS.


If the function fails, the return value is one of the following: CR_INVALID_DEVNODE, CR_NO_SUCH_REGISTRY_KEY, CR_INVALID_FLAG, CR_INVALID_POINTER, or CR_REGISTRY_ERROR


Remarks:





This API replaces the 16-bit APIs, CM_Read_Registry_Value and CM_Write_Registry_Value, for storing class-specific configuration information for a device instance.  This API cannot be used to set Plug&Play device instance properties, as these properties are located in a separate location in the registry that is accessible only via CM_Get_Device_Registry_Property, and CM_Set_Device_Registry_Property.





2.3.4 CM_Delete_DevNode_Key


This routine deletes a registry storage key associated with a device instance.


CONFIGRET


CM_Delete_DevNode_Key (


	IN DEVNODE dnDevNode,


	IN ULONG ulHardwareProfile,


	IN ULONG ulFlags


	);





Parameters:





dnDevNode ——Handle of a device instance.  This handle is typically retrieved by a call to CM_Locate_DevNode or CM_Create_DevNode.


ulHardwareProfile ——Supplies the handle of the hardware profile to delete the storage key under.  This parameter is only used if the CM_REGISTRY_CONFIG flag is specified in ulFlags.  If this parameter is 0, the API uses the current hardware profile.  If this parameter is 0xFFFFFFFF, then the specified storage key(s) for all hardware profiles is(are) deleted.


ulFlags ——Specifies what type(s) of storage key(s) should be deleted.  Can be a combination of these values:


Registry Key Type Flags:


CM_REGISTRY_HARDWARE (0x00000000) —Delete the key for storing driver-independent information relating to the device instance.  (Windows 95 doesn’t provide a separate location for user-accessible storage here--it simply uses the devnode key itself.  Therefore, this flag is a no-op for them.)


CM_REGISTRY_SOFTWARE (0x00000001) —Delete the key for storing driver-specific information relating to the device instance.


CM_REGISTRY_USER (0x00000100) —Delete the specified key(s) under HKEY_CURRENT_USER instead of HKEY_LOCAL_MACHINE.  This flag may not be used with CM_REGISTRY_CONFIG.


CM_REGISTRY_CONFIG (0x00000200) —Delete the specified key(s) under a hardware profile branch instead of HKEY_LOCAL_MACHINE.  If this flag is specified, then ulHardwareProfile supplies the handle of the hardware profile to be used.  This flag may not be used with CM_REGISTRY_USER.


Return Value:





If the function succeeds, the return value is CR_SUCCESS.


If the function fails, the return value is one of the following: CR_INVALID_DEVNODE, CR_INVALID_FLAG, or CR_REGISTRY_ERROR


Remarks:





To delete all possible storage keys associated with a device instance, CM_Delete_DevNode_Key must be called with each of the following flag combinations:


CM_REGISTRY_HARDWARE


CM_REGISTRY_SOFTWARE


CM_REGISTRY_HARDWARE | CM_REGISTRY_USER


CM_REGISTRY_SOFTWARE | CM_REGISTRY_USER


CM_REGISTRY_HARDWARE | CM_REGISTRY_CONFIG	// ulHardwareProfile = 0xFFFFFFFF


CM_REGISTRY_SOFTWARE | CM_REGISTRY_CONFIG	// ulHardwareProfile = 0xFFFFFFFF





2.3.5 CM_Open_Class_Key


This routine opens the class registry key, and optionally, a specific class’s subkey.


CONFIGRET


CM_Open_Class_Key (


	IN LPGUID ClassGuid,	OPTIONAL


	IN REGSAM samDesired,


	IN REGDISPOSITION Disposition,


	OUT PHKEY phkClass,


	IN ULONG ulFlags


	);





Parameters:





ClassGuid ——Optionally, supplies the address of a class GUID representing the class subkey to be opened.


samDesired ——Specifies an access mask that describes the desired security access for the key. This parameter can be a combination of the values used in calls to RegOpenKeyEx.


Disposition ——Specifies how the registry key is to be opened.  May be one of the following values:


Registry Key Open Dispositions:


RegDisposition_OpenAlways —Open the key if it exists, otherwise, create the key.


RegDisposition_OpenExisting —Open the key if it exists, otherwise, fail with CR_NO_SUCH_REGISTRY_KEY.


phkClass ——Supplies the address of the variable that receives an opened handle to the specified key.  When access to this key is completed, it must be closed via RegCloseKey.


ulFlags ——Must be zero.


Return Value:





If the function succeeds, the return value is CR_SUCCESS.


If the function fails, the return value is one of the following:CR_NO_SUCH_REGISTRY_KEY, CR_INVALID_FLAG, CR_INVALID_POINTER, or CR_REGISTRY_ERROR


Remarks:





This API is provided for use by the 32-bit Setup APIs.  Since the location of the class branch is different between Windows 95 and Windows NT, this API is present in the Config Manager APIs to provide access to the key via a position-independent interface.





2.3.6 CM_Enumerate_Classes


This routine enumerates the installed classes in the system.  It retrieves the GUID for a single class each time it is called.


CONFIGRET


CM_Enumerate_Classes (


	IN ULONG ulClassIndex,


	OUT LPGUID ClassGuid,


	IN ULONG ulFlags


	);





Parameters:





ulClassIndex ——Supplies the index of the class to retrieve the class GUID for.


ClassGuid ——Supplies the address of the variable that receives the GUID for the class whose index is specified by ulClassIndex.


ulFlags ——Must be zero.


Return Value:





If the function succeeds, the return value is CR_SUCCESS.


If the function fails, the return value is one of the following:  CR_INVALID_FLAG, CR_INVALID_POINTER, CR_INVALID_DATA, CR_NO_SUCH_VALUE, or CR_REGISTRY_ERROR


Remarks:





To enumerate installed classes, an application should initially call the CM_Enumerate_Classes function with the ulClassIndex parameter set to zero. The application should then increment the ulClassIndex parameter and call CM_Enumerate_Classes until there are no more classes (until the function returns CR_NO_SUCH_VALUE). 


It is possible to receive a CR_INVALID_DATA error while enumerating installed classes.  This may happen if the registry key represented by the specified index is determined to be an invalid class key.  Such keys should be ignored during enumeration.





2.3.7 CM_Get_Class_Name


This routine retrieves the class name associated with the specified class GUID.


CONFIGRET


CM_Get_Class_Name (


	IN LPGUID ClassGuid,


	OUT PTCHAR Buffer,


	IN OUT PULONG pulLength,


	IN ULONG ulFlags


	);





Parameters:





ClassGuid ——Supplies a pointer to the class GUID whose name is to be retrieved.


Buffer ——Supplies the address of the character buffer that receives the class name corresponding to the specified GUID.


pulLength ——Supplies the address of the variable that contains the length, in characters, of the Buffer.  Upon return, this variable will contain the number of characters (including terminating NULL) written to Buffer (if the supplied buffer isn’t large enough, then the routine will fail with CR_BUFFER_SMALL, and this value will indicate how large the buffer needs to be in order to succeed).


ulFlags ——Must be zero.


Return Value:





If the function succeeds, the return value is CR_SUCCESS.


If the function fails, the return value is one of the following:  CR_INVALID_FLAG, CR_INVALID_POINTER, CR_BUFFER_SMALL, or CR_REGISTRY_ERROR





2.3.8 CM_Enumerate_Enumerators


This routine enumerates the enumerator subkeys under the Enum branch (e.g., Root, PCI, etc.).  These names should not be used to access the registry directly, but may be used as input to the CM_Get_Device_ID_List routine.


CONFIGRET


CM_Enumerate_Enumerators (


	IN ULONG ulEnumIndex,


	OUT PTCHAR Buffer,


	IN OUT PULONG pulLength,


	IN ULONG ulFlags


	);





Parameters:





ulEnumIndex ——Supplies the index of the enumerator subkey name to retrieve.


Buffer ——Supplies the address of the character buffer that receives the enumerator subkey name whose index is specified by ulEnumIndex.


pulLength ——Supplies the address of the variable that contains the length, in characters, of the Buffer.  Upon return, this variable will contain the number of characters (including terminating NULL) written to Buffer (if the supplied buffer isn’t large enough, then the routine will fail with CR_BUFFER_SMALL, and this value will indicate how large the buffer needs to be in order to succeed).


ulFlags ——Must be zero.


Return Value:





If the function succeeds, the return value is CR_SUCCESS.


If the function fails, the return value is one of the following:  CR_INVALID_FLAG, CR_INVALID_POINTER, CR_BUFFER_SMALL, CR_NO_SUCH_VALUE, or CR_REGISTRY_ERROR


Remarks:





To enumerate enumerator subkey names, an application should initially call the CM_Enumerate_Enumerators function with the ulEnumIndex parameter set to zero. The application should then increment the ulEnumIndex parameter and call CM_Enumerate_Enumerators until there are no more subkeys (until the function returns CR_NO_SUCH_VALUE).





2.3.9 CM_Get_Device_ID_List


This routine retrieves a list of all device IDs (device instance names) stored in the system, optionally filtered based upon the specified criteria.


CONFIGRET


CM_Get_Device_ID_List (


	IN PCTSTR pszFilter,	OPTIONAL


	OUT PTCHAR Buffer,


	IN ULONG BufferLen,


	IN ULONG ulFlags


	);





Parameters:





pszFilter ——Optionally, supplies a string that is used to filter the set of device IDs being returned.  The interpretation of this string is dependent upon the value of ulFlags, described below.


Buffer ——Supplies the address of the character buffer that receives the device ID list.  Each device ID is null-terminated, with an extra NULL at the end.


BufferLen ——Supplies the size, in characters, of the Buffer.  This size may be ascertained by calling CM_Get_Device_ID_List_Size.


ulFlags ——Specifies how the pszFilter string should be used to filter the set of device instances returned.  May be one of the following values:


Device ID List Filter Flags:


CM_GETIDLIST_FILTER_NONE (0x00000000) —Don’t do any filtering on the device ID list being returned.  If the flag is specified, then pszFilter is ignored.


CM_GETIDLIST_FILTER_ENUMERATOR (0x00000001) —Only return device IDs existing under the pszFilter branch of the hardware tree.  In this context, pszFilter can either be an enumerator name (as retrieved from CM_Enumerate_Enumerators), or a device ID, minus the instance ID (e.g., Root\*PNP0500).


CM_GETIDLIST_FILTER_SERVICE (0x00000002) —Only return device IDs that are controlled by the service whose name is specified in pszFilter.  For example, specifying a pszFilter of “atdisk” with this filter flag would return only those device instances that are controlled by the atdisk driver.  This flag is not implemented on Windows 95.


Return Value:





If the function succeeds, the return value is CR_SUCCESS.


If the function fails, the return value is one of the following: CR_NO_SUCH_REGISTRY_KEY, CR_INVALID_FLAG, CR_INVALID_POINTER, CR_BUFFER_SMALL, or CR_REGISTRY_ERROR





2.3.10 CM_Get_Device_ID_List_Size


This routine retrieves the size, in characters, of a list of device identifiers.  It may be used to supply the buffer size necessary for a call to CM_Get_Device_ID_List.


CONFIGRET


CM_Get_Device_ID_List_Size (


	OUT PULONG pulLen,


	IN PCTSTR pszFilter,	OPTIONAL


	IN ULONG ulFlags


	);





Parameters:





pulLen ——Supplies the address of the variable that receives the size, in characters, required to store a list of all device identifiers (possibly limited to those existing under the pszEnumerator subkey described below).  The size reflects a list of null-terminated device identifiers, with an extra null at the end.  For efficiency, this number represents an upper bound on the size required, and the actual list size may be slightly smaller.


pszFilter ——Optionally, supplies a string that is used to filter the set of device IDs that make up the list whose size is being returned.  The interpretation of this string is dependent upon the value of ulFlags, described below.


ulFlags ——Specifies how the pszFilter string should be used to filter the set of device instances comprising the list whose size is to be returned.  May be one of the following values:


Device ID List Filter Flags:


CM_GETIDLIST_FILTER_NONE (0x00000000) —Don’t do any filtering on the device ID list being returned.  If the flag is specified, then pszFilter is ignored.


CM_GETIDLIST_FILTER_ENUMERATOR (0x00000001) —Only include device IDs existing under the pszFilter branch of the hardware tree.  In this context, pszFilter can either be an enumerator name (as retrieved from CM_Enumerate_Enumerators), or a device ID, minus the instance ID (e.g., Root\*PNP0500).


CM_GETIDLIST_FILTER_SERVICE (0x00000002) —Only include device IDs that are controlled by the service whose name is specified in pszFilter.  For example, specifying a pszFilter of “atdisk” with this filter flag would return only those device instances that are controlled by the atdisk driver.  This flag is not implemented on Windows 95.


Return Value:





If the function succeeds, the return value is CR_SUCCESS.


If the function fails, the return value is one of the following: CR_NO_SUCH_REGISTRY_KEY, CR_INVALID_FLAG, CR_INVALID_POINTER, or CR_REGISTRY_ERROR


2.3.12 CM_Connect_Machine


This routine establishes a connection to a machine.  The machine handle can then be used on subsequent calls to extended Configuration Manager routines to provide remotable API support.


CONFIGRET


CM_Connect_Machine (


	IN PCWSTR pszMachineName,


	OUT PHMACHINE phMachine


	);





Parameters:





pszMachineName ——Supplies a string that contains the UNC name of the machine to connect to.


phMachine ——Supplies the address of a variable of type HMACHINE that will return the handle for the connection to the machine specified in pszMachineName.  This machine handle should be used as the last parameter in subsequent calls to the extended (remotable) Configuration Manager routines (such as CM_Locate_DevNode_Ex).


Return Value:





If the function succeeds, the return value is CR_SUCCESS.


If the function fails, the return value is one of the following: CR_INVALID_POINTER, CR_OUT_OF_MEMORY, CR_INVALID_MACHINENAME, or CR_FAILURE.


Remarks:





When you are done calling Configuration Manager routines on the specified machine, you should call CM_Disconnet_Machine to free up internal resources allocated for that connection.  Most of the Configuration Manager routines have extended versions.  In each case, the extended version of the CM routine is simply appended with the _Ex extension and takes an HMACHINE parameter as an additional parameter (always the last parameter). Also note that the following three additional error codes may be returned for any of the extended CM routines: CR_REMOTE_COMM_FAILURE, CR_MACHINE_UNAVAILABLE, or CR_NO_CM_SERVICES.


2.3.13 CM_Disconnect_Machine


This routine closes a machine handle that was opened by a call to CM_Connect_Machine.  Once communication with a remote machine using the CM routines is completed, the caller should call CM_Disconnect_Machine to free up resources that were allocated for that connection.


CONFIGRET


CM_Disconnect_Machine (


	IN HMACHINE hMachine


	);





Parameters:





hMachine ——Supplies the machine handle that was returned from a previous call to CM_Connect_Machine.


Return Value:





If the function succeeds, the return value is CR_SUCCESS.


If the function fails, the return value is one of the following: CR_INVALID_POINTER or CR_FAILURE.








2.3.14 CM_Free_Log_Conf_Handle


This routine frees a logical configuration handle that was previously retreived by a call to CM_Add_Empty_Log_Conf, CM_Get_First_Log_Conf, or CM_Get_Next_Log_Conf.


CONFIGRET


CM_Free_Log_Conf_Handle(


            IN  LOG_CONF  lcLogConf


            );





Parameters:





lcLogConf ——Supplies the logical configuration handle to be freed.


Return Value:





If the function succeeds, the return value is CR_SUCCESS.


If the function fails, the return value is one of the following: CR_INVALID_LOG_CONF or CR_FAILURE.





2.3.15 CM_Free_Res_Des_Handle


This routine frees a resource descriptor handle that was previously retrieved by a call to CM_Add_Res_Des, CM_Free_Res_Des, CM_Get_Next_Res_Des, or CM_Modify_Res_Des.


CONFIGRET


CM_Free_Res_Des_Handle(


            IN  RES_DES  rdResDes


            );





Parameters:





rdResDes  ——Supplies the resource descriptor handle to be freed.


Return Value:





If the function succeeds, the return value is CR_SUCCESS.


If the function fails, the return value is one of the following: CR_INVALID_RES_DES or CR_FAILURE.


2.3.16 CM_Detect_Resource_Conflict


This routine determines whether the specified set of resources is already in use by some other device.


CONFIGRET


CM_Detect_Resource_Conflict (


         IN  DEVINST    dnDevInst,


         IN  RESOURCEID ResourceID,         OPTIONAL


         IN  PCVOID     ResourceData,       OPTIONAL


         IN  ULONG      ResourceLen,        OPTIONAL


         OUT PBOOL      pbConflictDetected,


         IN  ULONG      ulFlags,


	);





Parameters:


	dnDevInst - Handle of a device instance. This handle is typically retrieved by a call to CM_Locate_DevNode.


	ResourceID - Specifies the type of resource to modify. ResType_ClassSpecific is not a valid resource type for this call.


	ResourceData  - Supplies the address of a resource data structure.


	ResourceLen - Supplies the size, in bytes, of the resource data structure.


	pbConflictDetect - Pointer to a boolean value that is returned by this call. If the returned value is FALSE, then no conflict was detected. If the the return value is TRUE, then a conflict was detected. If CM_Detect_Resource_Conflict does not return CR_SUCCESS, then the value of pbConflictDetected is unknown and should not be used.


	ulFlags - Not used, must be zero.


Return Value:


If the function succeeds, the return value is CR_SUCCESS.


If the function fails, the return value is one of the following: 


CR_INVALID_DEVNODE, CR_INVALID_LOG_CONF, CR_INVALID_FLAG, CR_INVALID_POINTER, CR_INVALID_RESOURCEID, CR_INVALID_DATA.


� This name is retained for compatibility with the Windows 95 16-bit Configuration Manager APIs.  Windows NT does not use devnodes, so this data type must be viewed as simply an opaque handle to a device instance.  (In fact, Windows NT will define macros DEVINST and PDEVINST that will be used internally instead of the DEVNODE typedefs.)


� This name is retained for compatibility with the 16-bit CM APIs.  Windows NT will define a macro DEVINSTID that will be used internally instead of the DEVNODEID typedef.


� For Windows 95, this key is HKLM\Enum; on Windows NT, it is HKLM\System\CurrentControlSet\Enum.  No assumptions should be made about where this key is located.


� For Windows NT, this is the same as LCPRI_REBOOT.





Document Name	�





32-Bit Configuration Manager Application Programming Interface	�

















Document Name	�





Microsoft Corporation Company Confidential























