info subject
NT Logical Volume Management Specification

RAIDspec.doc

Author: Norbert Kusters, Cristian Teodorescu, Catharine van Ingen, Felipe Cabrera

Send Comments about this document to the above

Version 2.2

3 February 1999

Distribution: Microsoft Internal Distribution

© Copyright Microsoft Corporation, 1998. All Rights Reserved.

Microsoft Confidential

Note: This documentation is an early release of the final product documentation. It is meant to accompany software that is still in development. Some of the information in this documentation may be inaccurate or may not be an accurate representation of the functionality of the final retail product. Microsoft assumes no responsibility for any damages that might occur either directly or indirectly from these inaccuracies.

DRAFT

61.
Introduction

1.1
No-Care Logical Volume Management
6
1.2
Free-From-Care System
7
1.3
Glossary
7
2.
Behavioral Model
9
2.1
Architectural Model
9
2.1.1
Disks, disk extents, and volume extents
10
2.1.2
Volume attributes
11
2.1.3
Logical volume construction
12
2.1.4
Automagic logical volume configuration
14
2.1.5
Stacking: maps and stripes
15
2.1.6
Stacking: plexing
16
2.1.7
Diskpacks
16
2.1.8
Logical volume management and Wolfpack
18
3.
Provider Interface
20
3.1
Provider Attributes
21
3.1.1
QueryProviderControllerID
21
3.1.2
QueryProviderID
21
3.1.3
QueryProviderName
22
3.1.4
QueryProviderType
22
3.1.5
Provider-Specific Extensions
22
3.1.6
QueryDefaults
23
3.1.7
QueryParameters
23
3.2
Asynchronous operations
23
3.2.1
CancelOperation
23
3.2.2
CompleteOperation
24
3.3
Logical Volume Types and Attributes
24
3.4
Automagic Binding
25
3.4.1
BindVolume
26
3.4.2
UnbindVolume
27
3.4.3
ResizeBindVolume
27
3.5
Volume Stacking
27
3.5.1
StripeVolume
27
3.5.2
UnstripeVolume
28
3.5.3
MapVolume
28
3.5.4
UnmapVolume
28
3.6
Volume Plexing
29
3.6.1
AddPlex
29
3.6.2
RemovePlex
29
3.7
Diskpack and Platter Management
29
3.7.1
Create Pack
30
3.7.2
DeletePack
30
3.7.3
AddDisksToPack
30
3.7.4
EvacuateDisks
30
3.7.5
FreeDisksFromPack
31
3.7.6
ReplaceDisk
31
3.7.7
InhabitDisks
31
3.7.8
Create Platter
32
3.7.9
ImportPlatter
32
3.7.10
ExportPlatter
32
3.7.11
MigratePlatter
32
3.7.12
MoveVolumesOntoPlatter
33
3.7.13
MoveVolumesOffPlatter
33
3.7.14
ForgetPlatter
34
3.8
Logical Volume Topology Queries
34
3.8.1
QueryDisks
34
3.8.2
QueryVolumes
34
3.8.3
QueryVolumeDeviceObject
34
3.8.4
QueryVolumeDiskExtents
35
3.8.5
QueryVolumeDiskNumber
35
3.8.6
QueryVolumeExtents
35
3.8.7
QueryVolumePlexes
35
3.8.8
QueryVolumeProvider
36
3.9
DiskPack and Platter Queries
36
3.9.1
QueryPacks
36
3.9.2
QueryPlatters
36
3.9.3
QueryVolumePack
36
3.9.4
QueryDiskPack
36
3.9.5
QueryPackProvider
37
3.10
Logical Volume Attributes
37
3.10.1
QueryVolumeAttributes
37
3.10.2
QueryVolumeSize
37
3.10.3
QueryVolumeType
37
3.10.4
QueryVolumeState
38
3.10.5
QueryVolumeLbnRemap
38
3.10.6
QueryVolumeRebuildPriority
38
3.10.7
ForceVolumeHealthy
38
3.10.8
ForceVolumeInitialize
38
3.10.9
ForceVolumeRebuild
38
3.10.10
SetVolumeLbnRemap
39
3.10.11
SetVolumeRebuildPriority
39
3.10.12
SetVolumeExtensions
39
3.11
Disk Attributes
39
3.11.1
QueryDiskSize
39
3.11.2
QueryDiskConnection
39
3.11.3
QueryDiskDeviceObject
40
3.11.4
QueryDiskStatus
40
3.11.5
SetDiskHotSpare
40
3.11.6
QueryDiskProvider
40
3.12
Hardware Controllers and Physical Topology
41
3.12.1
QueryControllerParameters
41
3.12.2
QueryControllerAttributes
41
3.12.3
QueryControllerDeviceObject
42
3.12.4
QueryControllerPath
42
3.12.5
QueryControllerLbnRemap
42
3.12.6
ForceControllerHealthy
42
3.12.7
ForceControllerInitialize
42
3.12.8
ForceControllerRebuild
43
3.12.9
ForceControllerPath
43
3.12.10
SetControllerExtensions
43
3.12.11
QueryDiskExtensions
43
3.12.12
QueryDiskParameters
43
3.12.13
QueryDiskAttributes
43
3.12.14
QueryControllerDisks
44
3.13
Simple Maintenance Operations
44
3.13.1
StartDiskMaintenance
44
3.13.2
StopDiskMaintenance
45
3.13.3
PulseDiskMaintenance
45
3.13.4
StartControllerMaintenance
45
3.13.5
StopControllerMaintenance
45
3.13.6
PulseControllerMaintenance
45
3.14
Controller Maintenance Operations
46
3.14.1
QueryMaintenanceElement
48
3.14.2
SetMaintenanceControl
48
3.14.3
QueryMaintenanceStatus
48
3.14.4
SetMaintenanceThresholds
49
3.14.5
QueryMaintenanceThresholds
49
3.15
Provider Support
49
3.15.1
AutomagicToDirectBinding
49
3.15.2
SCSISendDiagnostic
49
3.15.3
SCSIReceiveDiagnostic
50
3.16
Performance Monitoring
50
3.16.1
ClearPerformanceCounter
51
3.16.2
DisablePerformanceCounter
51
3.16.3
EnablePerformanceCounter
51
3.16.4
QueryPerformanceCounters
51
3.16.5
QueryPerformanceData
51
3.16.6
QueryPerformanceCounterStatus
52
3.16.7
StartPerformanceMonitor
52
3.16.8
StopPerformanceMonitor
52
3.17
Error Monitoring
52
4.
Client Interface
53
4.1
ILVM Public Data and Methods
54
4.1.1
BindVolume
54
4.1.2
StripeVolume
54
4.1.3
MapVolume
55
4.1.4
Create Pack
55
4.1.5
QueryDisks
55
4.1.6
QueryPacks
56
4.1.7
QueryProviders
56
4.1.8
QueryVolumes
56
4.1.9
ClearPerformanceCounter
56
4.1.10
QueryPerformanceAttributes
56
4.1.11
StartPerformanceMonitor
57
4.1.12
StopPerformanceMonitor
57
4.2
ILVMProvider Public Data and Methods
57
4.2.1
EvacuateDisks
57
4.2.2
InhabitDisks
58
4.2.3
QueryControllers
58
4.2.4
QueryDisks
58
4.2.5
QueryID
58
4.2.6
QueryLUNs
58
4.2.7
QueryName
59
4.2.8
QueryPacks
59
4.2.9
QueryVolumes
59
4.2.10
QueryType
59
4.3
IVolume Public Data and Methods
59
4.3.1
Delete
59
4.3.2
Extend
60
4.3.3
Shrink
60
4.3.4
AddPlex
60
4.3.5
RemovePlex
61
4.3.6
ForceHealthy
61
4.3.7
ForceInitialize
61
4.3.8
ForceRebuild
61
4.3.9
SetExtensions
61
4.3.10
SetLbnRemap
62
4.3.11
SetRebuildPriority
62
4.3.12
QueryAttributes
62
4.3.13
QueryControllers
62
4.3.14
QueryDiskExtents
62
4.3.15
QueryDiskNumber
62
4.3.16
QueryExtents
63
4.3.17
QueryID
63
4.3.18
QueryLbnRemap
63
4.3.19
QueryPack
63
4.3.20
QueryPlatter
64
4.3.21
QueryPlexes
64
4.3.22
QueryProvider
64
4.3.23
QuerySize
64
4.3.24
QueryState
64
4.3.25
QueryType
64
4.3.26
QueryVolumeUsingPlex
65
4.3.27
QueryVolumesUsingVolume
65
4.3.28
StartMaintenance
65
4.3.29
StopMaintenance
65
4.3.30
PulseMaintenance
65
4.3.31
ClearPerformanceCounter
66
4.3.32
DisablePerformanceCounter
66
4.3.33
EnablePerformanceCounter
66
4.3.34
QueryPerformanceCounters
66
4.3.35
QueryPerformanceData
66
4.3.36
QueryPerformanceCounterStatus
67
4.3.37
StartPerformanceMonitor
67
4.3.38
StopPerformanceMonitor
67
4.4
IPack Public Data and Methods
67
4.4.1
Delete
67
4.4.2
AddDisks
67
4.4.3
CreatePack
68
4.4.4
FreeDisks
68
4.4.5
QueryDisks
68
4.4.6
QueryID
68
4.4.7
QueryPlatters
68
4.4.8
QueryProvider
69
4.4.9
QueryVolumes
69
4.5
IPlatter Public Data and Methods
69
4.5.1
Delete
69
4.5.2
Export
69
4.5.3
Import
69
4.5.4
Migrate
70
4.5.5
MoveVolumesOff
70
4.5.6
MoveVolumesOnto
71
4.5.7
QueryDisks
71
4.5.8
QueryPack
71
4.5.9
QueryProvider
71
4.5.10
QueryVolumes
71
4.6
IDisk Public Data and Methods
72
4.6.1
ReplaceDisk
72
4.6.2
SetHotSpare
72
4.6.3
QueryConnection
73
4.6.4
QueryController
73
4.6.5
QueryExtensions
73
4.6.6
QueryID
73
4.6.7
QueryParameters
73
4.6.8
QueryPack
73
4.6.9
QueryPlatter
74
4.6.10
QueryProvider
74
4.6.11
QuerySize
74
4.6.12
QueryStatus
74
4.6.13
QueryVolumesUsingDisk
74
4.7
IController Public Data and Methods
75
4.7.1
ForceHealthy
75
4.7.2
ForceInitialize
75
4.7.3
ForcePath
75
4.7.4
ForceRebuild
76
4.7.5
SetExtensions
76
4.7.6
QueryAttributes
76
4.7.7
QueryDisks
76
4.7.8
QueryID
76
4.7.9
QueryLbnRemap
76
4.7.10
QueryPath
77
4.7.11
QueryProvider
77
4.8
CIM Public Data and Methods
77
5.
NT callbacks
78
5.1.1
EvacuateVolumeExtent
78
5.1.2
InhabitVolumeExtent
78
5.1.3
SynchVolumeContents
78
5.1.4
UpdateWolfpackLVM
78
5.1.5
GetWolfpackLVM
78
6.
Vendor interactions and issues
78
6.1.1
Veritas
79
6.1.2
Minimalist hardware provider
79
6.1.3
Automagic enterprise hardware provider
79
7.
References
80
8.
Issues
80
8.1
Open
80
8.2
Closed
81
9.
Revision History
81

1. Introduction

The Logical Volume Management API provides a vendor-neutral and technology-neutral interface for the management of logical volumes. Management operations include operations such as binding, topology discovery and tracking, volume status and fault tracking, and performance monitoring. The same client API can be used to manage hardware controller-based and host-based logical volume providers. This has several benefits:

· Common configuration management applications can be built. Customers manage heterogeneous storage systems and migrate data across different hardware configurations over time. A single interface for scripting or GUI should simplify those activities.

· Common monitoring applications can be built. The API includes both performance monitoring and error monitoring methods and defines a common subscription model for both.

· Volume management stacking operation policy is defined. The API enforces limits on configurations eliminating many theoretically possible but either silly or ineffectual configurations. The policy acts as a guideline to simplify configuration planning.

· The playing field for storage management applications is leveled. Such applications often encapsulate much operational policy; encouraging multiple vendors to address these policy needs is goodness.

We recognize three different types of storage subsystem environments. Each presents different requirements for logical volume management.

1. No-care subsystems. Laptops and other systems with one or a few disks have little or only transitory need for logical volume services beyond simple disk partitioning. Logical volume management can simplify storage management tasks but must not act as a tax on these systems.

2. Free-from-care subsystems. These systems benefit from logical volume management particularly when that management is transparent. Describing data storage desires as “really, really safe” rather than “3-way mirror set” simplifies storage management for the non-technical manager of a small office system. Self-managing storage can also simplify the operation of larger sites by automating fault handling. Free-from-care subsystems represent the bulk of our market and the design center of the LVM API. Our vendor (software and hardware) partners can add value by simplifying management while maximizing data availability and storage performance.

3. Big-magilla subsystems. Very large or complex enterprise configurations present additional site-specific or application-specific requirements. 100 TB of storage will always require more attention than configuring 100 GB and sites often tune the storage subsystem for a single application which may run only infrequently. (An example is the monthly batch reporting job on an order taking transaction system.) Moreover, system managers of these operations are used to the idea of very controlled, hands-on, storage configuration. We want to avoid anything which prevents us from scaling up to these systems and we want to make sure that it is possible for these customers to discover what the storage subsystem is doing at all times.

The LVM design center is the free-from-care subsystem of moderate size in a domain or cluster of moderate size. Moderate for early Windows 2000 is on the order of 8 disks and 4 machines; your mileage will vary.

1.1 No-Care Logical Volume Management

Online media migration moves data between physical disks simply without required system downtime. Logical volume management is both more robust and more flexible.

Consider the case of wanting to replace an old, small, slow system drive with a new, large, fast drive. For simplicity, assume that the system volume occupies the entire old drive. Online migration begins by creating a partition on the new drive equal in size to the old drive. That partition is then (temporarily) mirrored to the old drive. Once the two mirrors have been synchronized, the mirror set can be broken by removing the –old- drive. The new system volume is on the new drive. That volume can then be extended – giving more space for software installation. No system reboot was necessary and no reinstallation of software required since there was no change in system drive letter. Note that the removed old volume may be reformatted or used for a snapshot backup.

The need for logical volume management in no-care systems is transitory. IO requests need be intercepted by the logical volume runtime only while the mirror set is present or the volume is being extended. After the operation completes, the system volume may revert to a simple DOS partition volume once more. The system should not be burdened with the overhead of the logical volume runtime.

1.2 Free-From-Care System

The “dentist office cluster” provides a good example of logical volume management in a free-from-care system. This simple cluster consists of two Wolfpack nodes operating in either a “warm spare” mode, one active and one standby system, or “both active”, each node supporting a different application. Each node has a private system disk. Any application necessary for failover reside on one or more application disks.

In the “warm spare” mode, the application drives are managed as a single collection. At any time, only one node owns all application drives. As in non-clustered systems, logical application volumes may automatically extended and contracted as application needs change and dynamically tuned for performance or data safety. In clustered systems, logical volume management also hides the physical topology of the system. A “really safe data” application volume could be a mirror set consisting of two dual-connected SCSI drives or two IDE drives (one per node served via NetDevice). In this latter case, online migration of a processor node also causes online-migration of the storage contained in the box.

1.3 Glossary

· Automagic configuration – provider includes a set of rules for choosing logical block remapping based on simple attributes. Automagic providers may also dynamically alter the mapping for performance or fault management.
· Big-magilla system – very large or complex enterprise class storage system.
· Binding hints – information given to an automagic volume provider to help that provider select a logical block mapping. Hints include information as to the desired fault tolerance, physical atomicity, and intended IO access pattern.
· Configuration data - describes the mapping of physical resources to logical volumes.
· Directed configuration – provider is explicitly provided with rules for choosing logical block remapping.
· Disk – physical storage media with a one spindle (i.e. not a hardware RAID volume set).
· Disk platter – a subset of a diskpack used for exporting or importing volumes from a diskpack.
· Diskpack – a collection of logical volumes and underlying disks. A diskpack is the unit of transitive closure for a volume.
· Export – Move a disk platter and all volumes contained on that platter out of one diskpack.
· Exposed to NT – a volume which has an associated volume name (drive letter). The volume can be made available to a file system or other data store.
· Free agent drive – a disk drive which is not a member of a disk pack. Free agent drives cannot contain logical volumes which are exposed to NT.
· Free-from-care system – small office or larger storage subsystem in which the details of logical volume management are transparent.
· Friendly volume export – The exported platter contains one or more volumes in addition to those initially specified for export.
· Health – volume fault management status. A volume may be initializing, healthy, compromised, unhealthy, or rebuilding.
· Hot-spotting – temporary plexing of a volume or collection of volume extents.
· Import – Move a disk platter and all volumes contained on that platter into one diskpack.
· LBN – Logical Block Number; addressable unit of storage data.
· Logical block mapping – relationship between the logical blocks exposed to the logical volume provider to those exposed by the same provider.

· Logical disk – result of automagic or directed configuration. The lowest stacking level volume configured.

· Logical volume provider – software which exposes logical volumes. A provider includes runtime services, configuration data, and management services.
· Logical Unit – physically addressable storage unit. Includes both simple disks and hardware RAID volume set.
· Management service – software which executes only infrequently to perform volume configuration, monitoring or fault handling.
· Mapped volume – a simple linearly logical block mapping which concatenates volumes to expose a single larger volume to NT as a drive letter or mount point.
· Mirrored volume – logical volume which maintains two or more identical data copies. Also termed RAID 1.
· No-care-system – small systems which have only transitory use of logical volume management for media migration or archiving.
· Parity striped volume – logical volume which maintains parity check information as well as data. The exact mapping and protection scheme is vendor-specific. Includes RAID 3, 4, 5, 6.
· Plexed volume – dynamic mirror volume. Plexing is used to create a copy of a volume rather than to provide fault tolerance. The mirror is added to the volume with the intent of removal after the contents have been synchronized.
· Runtime service – software which executes on a per-IO request basis.
· Simple disk – disk which is not connected to a hardware RAID controller. Often called “JBOD” or just a bunch of disks.
· Stacked volume – volume has been constructed by more than one logical block mapping operation. An example is a stripe set of mirror volumes. Stacking includes stripping, mapping, and plexing.
· Striped volume set – a logical block mapping which distributes contiguous logical volume extents across multiple volumes. Also termed RAID 0.
· Unfriendly volume export – The exported platter contains only those volumes specified for export.
· Volume – generic term for a number of disk extents bound into a virtually contiguous range of logical blocks. Volume can also be software shorthand for a mapped volume (i.e. NT drive letter or mount point).

· Volume configuration stability – whether volume logical to physical mapping is undergoing change. A volume may be stable, extending, shrinking, plexing, or remapping.
· Volume extent – a contiguous range of logical blocks contained on a volume. Volume extents are the smallest managed logical volume unit.
· Volume status – current use of a volume by the system. A volume may be unused, hot spare, mapped, used, or unknown.

2. Behavioral Model

A logical volume is a software construct consisting of some number of disk extents bound into a virtually contiguous range of logical blocks. This binding may increase the fault tolerance, performance, or capacity characteristics of a single disk drive.

Binding software may execute in the host, in dedicated external hardware, or in a combination of both. This software, or logical volume provider, consists of:

1. Runtime services that execute on a per IO request. This component maps the logical blocks exposed by the provider into blocks presented to the next lower layer and converts each IO request into one or more IO requests.

2. Configuration data that identifies the physical resources comprising the logical volume. This information must be non-volatile to allow volumes to survive power outages. Any changes to the data must be managed to prevent volume corruption in the event of media failures, interconnect failures, and volume export/import between systems.

3. Management services which perform all management tasks such as volume configuration (binding, unbinding, hot sparing), performance monitoring, and dynamic event handling.

This LVM API is concerned only with management services. The runtime and configuration data used by the provider are the province of the provider, although the management services place requirements on the implementation. Similarly, other storage subsystem management software, such as NTFS, backup utilities, diskperf, or SCSI monitors, are outside the scope of this document and in addition to the software described herein.

2.1 Architectural Model

[image: image1.wmf]Automagical

configuration

Disk

Striping

Mapping

(concatenation)

Plex

Plex

An architectural overview of logical volume management appears below. The LVM API defines the interfaces on either side of the common logical volume management layer. The application client interface is used by logical volume management applications. Each logical volume provider (hardware or software) implements the LVM API. Providers may include vendor-specific rules to optimize binding configurations, monitor and dynamically tune performance, automatically handle faults, or any other vendor-specific added functionality.

Hardware logical volume providers include an intelligent controller communicating between one or more hosts and one or more disks. The logical volume runtime executes on the controller and is transparent to the host IO subsystem. The controller exposes a logical unit to host-based IO software. A logical unit is the physical address of the associated logical volume. Volume configuration, fault handling, and performance management functions may be split between the controller and vendor-specific host-based software. For example, volume configuration initiated by a host request may be carried out remotely by the hardware controller. At a minimum, the host-based provider software converts the LVM API methods to industry standard or vendor-specific protocol requests to the controller. Each hardware controller has a unique logical volume provider.

Software logical volume providers are strictly host-based and do not include hardware support. NT currently supports two software logical volume providers: ftdisk and Veritas.

The Common LVM Layer presents the application client a unified view across the multiple hardware and/or software logical volume providers. The Common LVM Layer multiplexes and aggregates requests across providers. The layer performs common policy enforcement checking such as deciding if unbinding a logical volume (and losing all data contained on the volume) should proceed. The layer also implements provider service routines such as file system data flush.

The protocol used between logical volume providers, hardware RAID controllers and physical disks is outside this specification. Use of SCSI-3 SCC[1] or SES[2] commands is anticipated, however, for providers which use SCSI.

2.1.1 Disks, disk extents, and volume extents

Extents are the smallest unit of space allocation and binding. A disk extent is a contiguous range of logical blocks as exposed by the disk. A volume extent is a contiguous range of logical blocks as exposed by a logical volume.
 Volumes may be constructed of disk extents or volume extents. Volumes constructed of volume extents are said to be stacked.

Extent address translation is the responsibility of the disk drive or logical volume provider managing the extent. Almost all disk drives today do a simple redirection for bad block replacement; a given logical block may or may not have an immutable mapping to a given physical block. Disk drives may evolve more complex translations over time, such as replicating hot logical blocks for performance. Logical volume providers already provide more complex translations and those translations are not always simply explainable. For example, the detailed mapping of “RAID5” volumes varies with implementation.

The size of an extent as reported by the disk or logical volume provider is equal to the total space available to an application using that extent. In other words, the size of a disk sector is 512 bytes, regardless of the actual encoding overhead on the media.

The LVM API imposes a size quantum on disk and volume extent allocations. This simplifies space management when dynamically resizing volumes. The LVM API consumer specifies a desired volume size; the logical volume provider rounds up that size to the nearest quantum multiple. A successful volume resize operation results in a volume at least as large as that requested. Extents are allocated and bound to a logical volume in a single atomic (durable and all or nothing) operation.

Hot sparing is the substitution of one disk drive for a failing or failed drive. When a disk fails, the hot spare is substituted and any affected parity RAID or mirror volumes are rebuilt. Hot sparing may be automatic, performed dynamically by logical volume provider, or manual, requiring operator intervention. Disk drives reserved for hot sparing may not be otherwise bound. If a failed disk contained a non-fault tolerant logical volume, data will be lost. If the hot-spare disk is larger than the failed disk, any overage is unused until explicitly declared available for binding. Once the hot spare has been used for volume recovery, the disk is no longer a hot spare. In other words, one 4 GB drive cannot act as two 2 GB hot spares. A provider may or may not support dynamic hot sparing – this is a policy implementation decision for the provider.

2.1.2 Volume attributes

Associated with each logical volume is a collection of attributes describing the current status of that volume. The attributes include information as to the use of the volume by the file system, fault exposure and recovery, and configuration stability.

Volume status describes the use of the volume. The volume may be:

· Unused: known to be present, but not bound to any logical volume nor reserved as a hot spare

· Hot Spare: reserved for use as a hot spare

· Mapped: bound to a logical volume which is in use by NT and available for application use

· Offline: mapped, but not made available to applications

· Used: bound to a logical volume which is not in use by NT

· Unknown: having a valid volume identifier, but not currently present in the configuration

The health of a volume describes its fault exposure. As shown in the figure below, the volume may be:

· [image: image2.wmf]Big-magilla aps for

controlled binding,

performance and state

change monitoring

Free-from-care apps for

automagic binding and

montoring

Software logical volume

provider

Hardware logical volume

provider

Physical disk(s)

Common logical volume managment layer

Initializing: rediscovering volume configuration

· Healthy: containing or able to contain valid data

· Compromised: a fault tolerant volume missing one or more disk or volume extents; for example, a mirror set with only one mirror currently available

· Unhealthy: a non-fault tolerant volume missing one or more disk or volume extents; data contained on unhealthy volumes must not be accessed

· Rebuilding: a previously compromised fault tolerant volume resynchronizing all volume extent data.

Volume configuration stability describes any current volume reconfiguration activity. Reconfiguration includes:

· Stable: no reconfiguration

· Extending: volume or disk extents are being added to the volume

· Shrinking: volume or disk extents are being removed from the volume

· Plexing: a volume plex is being added or removed from the volume; see 2.1.6.

· Remapping: volume or disk extents are being remapped to different physical locations.

2.1.3 Logical volume construction

Volumes may be constructed of disk extents or volume extents. Volumes constructed of volume extents are said to be stacked. As shown below, stacking operations include mapping, stripping, and plexing. Arbitrary stacking is not permitted.

[image: image3.wmf]Exposed

Initializing

Unhealthy

Healthy

Rebuilding

A logical volume provider may support one or more of three configuration models. These are:

1. Automagic

The provider includes a set of rules for configuring the volume based on attribute hints. The provider performs all disk space allocation, use or non-use of RAID, and parameter selection such as stripe chunk size. Automagic providers may include features such as automatic performance tuning. Support of this model allows a single operator interface to span multiple vendor providers. All logical volume providers are strongly urged to support this model.

2. Directed

The system administrator explicitly directs the logical volume provider. The system administrator has control over storage mappings, configuration types, and configuration parameters. Directed configuration is used when stacking volumes. Software logical volume providers must support the directed stacking operations; hardware logical volume providers may support the directed stacking operations.

3. Vendor-specific

Hardware logical volume providers may chose to support configuration only through a private interface or utility. It is expected that such vendors will offer significant specialized functionality in their controllers. An example of such functionality would be dual site failover replication within a pair of controllers. Vendor specific configuration should not be used in lieu of automagic or directed configuration.

Any logical volume provider may participate in stacking at any level. Examples of very common stacking operations include software striped mirror sets or hardware automagic configuration within a single controller and software striping across controllers. A less common example would be the EMC cross-cabinet mirroring via specialized hardware interconnect.

A logical volume is exposed to NT when an NT volume name is allocated and the volume becomes available to the file system or other data store. Exposing is a side effect of mapping; only mapped volumes are exposed. Mapping completes volume configuration and prepares the volume for dynamic resizing. Attempting to stack a mapped (exposed) volume will fail. This enforces a clean handoff of the volume – the provider has a guarantee that no useful data is present on the volume until exposed. A software logical volume provider generally does the final mapping.

Dynamic mirror plexes may be added to volumes. Unlike mirror set members, mirror plexes are transitory - dynamically added only to be subsequently removed. Adding a mirror plex to a volume does not change the guaranteed fault tolerance level of the volume. Specifically, an added plex will not be automatically replaced by a hot-spare drive if the added drive incurs a failure.

Exposed volumes and their contributors may be extended or contracted dynamically. Extents are always appended to or removed from the highest LBN of the volume. No modification of stripe, mirror, or RAID configuration parameters occurs as a side effect; for example, the stripe chunk size remains unchanged. The Common LVM Layer coordinates with the file system prior to shrinking or extending a volume to avoid data loss.

Failed or cancelled volume configuration operations do not have side affects. Configuration by a hardware provider may actually be a two-step process – configuring the controller followed by the volume formatting. Either phase may fail or be cancelled. In this case, any previous step appears to have been undone. For example, any allocated controller cache appears as deallocated. Performance optimizations such as postponing the undo of a time consuming operation are encouraged. The controller cache could remain allocated by the hardware, yet appear free above the hardware provider.

Deconfiguring a volume totally breaks the volume into constituent extents and optionally frees all controller resources. No portion of the volume remains and all data on the volume are lost.

2.1.4 Automagic logical volume configuration

Automagic logical volume providers have intelligence to select and monitor the storage under their care. The administrator is presented with a simple attribute oriented view of storage. The provider performs all disk extent mapping, disk space allocation and logical volume type selection. Automagic configuration is intended to provide free-from-care storage by providers with sophisticated configuration rules and/or in environments in which the system administrator is not an expert in logical volume management.

Automagic configuration is only performed on disks managed by the same logical volume provider. The logical volume provider associated with each hardware controller automagically constructs disks within that controller. Simple disks not connected to a hardware controller are automagically configured by a software logical volume provider. Note that the disks need not be homogeneous: a volume set could be configured with a RAM disk and a magnetic disk or two magnetic disks of different capacity or access bandwidths. The result of automagic configuration is a logical disk.

The system administrator may provide hints as to the intended use of the volume. These hints include information such as the intended access pattern and desired fault handling. Access pattern information characterizes the volume as intended for sequential reads or writes, whether the volume will be dominantly read only, and the intended optimal request size and alignment. Desired fault handling includes whether the volume should be fault tolerant, is able to be removed from the configuration, and whether to optimize for safety or performance if the volume undergoes fault recovery.

The provider uses any hints in good faith. The provider need not interpret all hints; for example, a provider could implement only a single parity RAID interleave size. In the event of conflicting hints, the provider may weight any hint over another. Providers may also expose additional binding parameters. In all cases, the provider must “do the right thing” and must dutifully report the actual configuration upon query. The binding operations should not fail but rather default to safe or default configurations.

Automagic volume providers may perform dynamic reconfiguration of a volume at any time. Automagic reconfiguration includes movement of logical volume extents and changing configuration parameters such as interleave. If the automagic provider retains the configuration hints, the provider may also change volume type, for example substituting a parity stripe volume for a mirror set. The administrator can disable reconfiguration, effectively freezing the volume configuration. Dynamic reconfiguration of a compromised volume must not lose any data contained on the volume. There are no data integrity or configuration integrity guarantees for dynamic reconfiguration of a volume until the volume is exposed to NT.

The automagic hints provided give relative control to the big-magilla administrator, even though detailed directed extent-by-extent placement is not supported. For example, the administrator can specify the disks to be used by a hardware controller to configure a parity stripe volume set or controller cache size dedicated to the volume.

The big-magilla administrator is provided with mechanisms to discover the actual configuration at all times and may freeze a configuration at any time by turning off automagic reconfiguration. Automagic dynamic reconfiguration may cause serious problems for in a big-magilla system which want to be tuned for rare but important pre-scheduled operations.

2.1.5 Stacking: maps and stripes

The LVM API enforces a hierarchy for logical volume stacking. As shown in 2.1.2, this hierarchy is:

· Mapped (concatenated) volumes

· Striped volumes

· Automagic volumes

· Disks

and the mapping layer is always present.

Stacking must proceed in sequence up the hierarchy and layers must not be revisited. For example, it is not possible to stripe a mapped volume – the desired volume must be constructed by mapping stripes. Similarly, it is not possible to stripe a stripe set. The imposed hierarchy provides a simple, yet sufficiently general, user model for logical volume services and limits the possibilities for theoretically valid, but foolish or ill-conceived, bindings.

Any combination of hardware or software logical volume provider(s) may be used. One and only one provider may be used at any given layer and some topological restrictions may apply. For example, it is possible to use hardware mapping to extend a software stripe set only if the stripe set is fully contained within a single hardware cabinet.

Extents must be of the same type to be striped. No such restriction applies to mapping. For example, attempting to (re) stripe a parity stripe volume and a mirror volume will fail while concatenating a RAM disk with an ordinary disk
or a stripe set with a parity stripe volume
 will succeed.

Volume stacking is directed. The system administrator has relatively explicit control over logical volume construction. The API for stacking operations includes the list of volumes to be bound, desired binding type, and binding parameters.

· Striped volumes allocate monotonically increasing LBN ranges from each specified volume extent in the order specified. By default the number of extents on the list determines the number of stripes.

· Mapped volumes are constructed by concatenating volume extents in the order given.

The logical volume provider determines the exact size and location of the extents used.
 Note, of course, that a storage management application may chose to hide these details – effectively making the entire volume configuration process automagic.

Common stacking parameters such as chunk (interleave) size are defined. Logical volume providers may expose additional provider-specific parameters. Such extended parameters allow specification of related parameters such as cache MB devoted to this volume or quick format. In all cases, the provider must “do the right thing” when parameters are not specified for a stacking operation. The stacking operation must not fail but rather default to a safe configuration. Explicit specification of a nonsensical interleave will cause the stacking operation to fail. Nonsensical sizes include those unsupported by the provider or which cannot be made an integral divisor of the resulting volume size. Providers may support variable stripe chunk sizes or impose a fixed size.

Mapped volumes may be extended by growing the last (highest LBN) volume or by appending volumes. Shrinking a mapped volume occurs by contracting the last volume and/or removing volumes altogether.

Stripe sets are extended or contracted by resizing the contributing volumes. For example, extending a striped mirror set will cause each mirror to grow. Since all stripe sets are mapped, the exposed volume can also be extended by appending an additional stripe set. Note that there is no consistency checking in this case; the appended stripe set need not share the number of stripes or stripe interleave of the original set.

Dynamic reconfiguration of striped or mapped volumes is not defined. Striped and mapped volumes are not automagic, even if they appear to be so due to the activities of a smart storage management application.

2.1.6 Stacking: plexing

Dynamic mirror plexing is intended for backup snapshotting or online media replacement. Backup snapshotting should be done only to exposed volumes; this ensures that when the plex is subsequently removed, the file system on that volume is consistent. Online media migration, sometimes called hot-spotting
, binds the new disk(s) to an existing volume, synchronizes the volume contents, then removes the older disk(s).

Dynamic mirror plexes can only be added at the mapped or striped level. Automagic volume managers may transparently replicate extents at any time; those replicants remain transparent. Note that since all volumes are mapped, hardware volume managers may take advantage of hardware assists.

Directed dynamic plexing operations must be supported. By default, the last added plex is first removed. When adding a snapshot or migration plex, the added volume must be at least as large as the existing volume. If larger, any overage becomes unavailable for other use. In other words, to grow a volume onto a larger drive:

· add the larger drive as a plex

· remove older smaller plex

extend the volume to occupy the new plex

Dynamic mirror plexes must be of the same hierarchical level. For example, it is not possible to add a striped volume as a plex to a mirror volume.

2.1.7 Diskpacks

Software logical volume providers manage collections of logical disks in diskpacks. A logical disk may be a member of one and only one diskpack. A system may have any number of diskpacks. Logical units in a diskpack may have arbitrary attributes of performance, media, interconnect protocol or other characteristic.

Diskpacks impose scope on software volume configuration. The transitive closure for hardware providers is determined by physical factors; a hardware provider is free to configure automagic volumes on any disks contained within a RAID cabinet or behind associated hardware controller(s). The software provider may automagically configure logical disks only on simple disks which are members of the same diskpack.

All volumes are created in a diskpack and are always fully contained within one and only one diskpack. Simple disks must be added to a diskpack prior to instructing the associated software provider to automagically configure a logical disk using them.

Disks managed by a hardware provider are not added to diskpacks. A given logical disk may be a member of only one diskpack and the diskpack is passed to the hardware provider at configuration. A given hardware provider may manage volumes which are members of different diskpacks. Whether or not the underlying physical disks span diskpacks is a policy decision of the provider.

Any number of hardware providers may export logical disks to a single diskpack. For example, consider a volume constructed by concatenating a RAM disk with a volume constructed by software striping hardware parity stripe volumes. The diskpack includes disks from each hardware provider managing parity stripe volumes and the RAM disk..

Volumes may be exported from or imported to a diskpack. Volume import:export occurs by first moving the migrating volumes onto a platter and then migrating that platter between diskpacks. The platter must contain at least one volume and an integral number of simple disks and/or logical units. By default, an export causes any logical units to be isolated on physical disks by the associated hardware provider. In other words, export may ensure that a given disk does not span diskpacks. The exported volume(s) must be transitively closed on the platter at migration. Volume export may cause volume extent migration.

If the platter does not contain extents contributing to other (non-exporting) volumes,

· If the platter is the smallest number of disks and/or logical units that could contain the volume(s) and contains no extents contributing to other volumes, the platter is ready for migration. The exporting volumes are transitively closed on the smallest platter. An example is exporting a two-disk mirror volume in which each mirror occupies the entire drive.

· Otherwise, it may be desirable to compact the platter prior to migration. Compacting the platter involves migrating volume extents to evacuate the volume from one or more disks. For example, a mapped volume with volume extents on three different drives could be compacted onto a single drive prior to export.

If the platter contains extents contributing to other volumes,

· A friendly export may cause the other volumes to be exported as well. Friendly export may cause the platter to be expanded: all volumes exported must be transitively closed. For example, exporting a simple volume occupying only half of a disk drive might cause the migration of another volume occupying the other half of that drive.

· Otherwise, volume extents contributing to non-exporting volumes must be migrated from the platter.

Volume import to a pack adds all disks and/or logical units in the platter to the receiving pack. Loss of a disk from a platter during migration will cause the migration to fail unless manually overridden. This is an exception of the loose transitive closure behavior of packs, but protects against silent loss of data contained on any lost volumes.

Diskpack membership does not encompass any concept of majority or quorum. Diskpack membership is discovered, rather than imposed. Consider a diskpack containing three logical volumes contained on five disks. Inability to access any disk may cause loss of all volumes or no volumes. There is no requirement that at least two volumes or at least three disks be present at any time. The only requirement is that volumes must be transitively closed to used by the system. See 2.1.8 for more discussion of logical volume management in Wolfpack clusters.

The logical volume allocation extent size is common across a diskpack. Import of a platter may cause reconfiguration of the volumes contained on that platter if the exporting pack used a different extent size. See issues.

Simple disk drives not contained within a pack are free agent drives. Free agents can be used to provide a pool of resources which can be dynamically allocated to packs. An example is managing a pool of hot spare drives rather than allocating a hot spare per pack. Prior to configuration in a volume or hot spare, free agent disks must be added to a pack. Like disk pack membership, free agent resource management is the responsibility of storage management applications.

Automagic hardware providers do not have free agent drives. Such a provider manages a pool of storage. Disks may be reserved for use as hot spares. Any other disk may be used at any time at the discretion of the provider.

An exported platter retains association with the exporting pack until imported into the importing pack. Disks on a platter are never free agents or hot spares.

2.1.8 Logical volume management and Wolfpack

Logical volume topology queries in a cluster return those volumes owned by the local node and free agent drives owned by that node. To build up a complete picture of the storage attached to a cluster, the query must be executed on each node within the cluster. Note that all storage resources should be owned by a cluster node; unowned resources are unknown to the cluster and not eligible for use by cluster nodes.

Diskpacks, not disks or volumes, are the unit of logical volume failover between Wolfpack nodes. This ensures that volumes remain transitively closed while permitting automagic volume management. Wolfpack implements a shared nothing model; each disk is owned by one and only one cluster node. SCSI RESERVE/RELEASE or, when available, Persistent Reservations are used to enforce this model. This prevents an automagic software volume manager from violating the shared nothing rule. Hardware volume managers may circumvent this. Each logical volume exposed by a hardware RAID controller appears to NT as a single disk (SCSI lun) and is owned by one node. Note, however, that nothing prevents the controller from arbitrary sharing of physical drives between logical volumes

Logical volume managers expose mapped volumes to the NT MountManager upon discovery. The volume remains offline (unavailable to application software) until the MountManager requests that the volume be brought online. A software volume provider must not change volume health or configuration stability prior to bringing the volume online. In particular, software providers must not initiate volume rebuilds.

The MountManager makes the online request automatically in non-clustered systems; all volumes are brought online as soon as exposed. In clustered systems, the volume must be of interest to this node and sufficiently complete. Wolfpack exports a list of “interesting” or “onlineable” volumes to the MountManager. Resource groups are used to determine the ownership node for each diskpack; only the owner node indicates interest. That interest is pre-qualifying by ensuring that application IO can proceed without data corruption. For spanned and striped volumes, all volume segments must be present. For mirrors and parity stripe volumes, the volume may be compromised.

Software volume providers may use the cluster quorum data to provide a higher level of logical volume configuration sanity and robustness. For example, a software provider would use the cluster quorum data to detect that the only existing mirror is stale. This configuration check is done in response to the MountManager request to bring the volume online. If the volume is not sane, the provider declines the request to bring the volume online.

Wolfpack replicates the cluster quorum data on the cluster quorum devices. Quorum data must reside on a volume containing one and only one volume extent. The mapping between that extent and the physical disk address must remain constant. Thus, software logical volume providers must not automagically migrate the volume at any time and must report all hot-sparing or other disk replacement of quorum devices. Hardware logical volume providers may manage the extent automagically as long as the exposed controller interconnect address (SCSI lun) and logical block offset remain constant. This requirement is intended to protect Wolfpack against stale quorum data obtained via logical volume manager use of a stale mirror when there is one and only one cluster quorum data volume.

Each Wolfpack node has a private system device containing sufficient information to allow the node to safely join or form a cluster. That device may be managed by a logical volume manager and may be of any volume type. The system device is the only device other than the quorum devices accessed by a Wolfpack node prior to joining or forming a cluster.

All quorum volumes must be within the same diskpack. At any time, only one Wolfpack node owns all quorum devices. This simplifies quorum data updates – only one node actually performs the data writes. The node private system device(s) should be in a node-specific diskpack; the ownership node of these devices is fixed.

NetDevice is transparent to logical volume management providers. NetDevice is used to create a disk interconnect which is logically shared – IDE disks which are private to a given cluster node may be owned and solely accessed by another. From the point of view of logical volume management, NetDevice disks are simply disks.

The known correct quorum configuration data can be accessed any time after a Wolfpack node joins or forms a cluster. For each software-managed logical volume, this data includes the triplet:

· Cluster system ID – unique identifier of the cluster (assigned by Wolfpack)

· Logical volume ID – unique identifier of the volume (assigned by NT at volume creation)

· Logical volume configuration epoch – unique identifier of the last generational change to the volume (managed by logical volume provider)

Software logical volume providers must maintain a configuration epoch.
 Each completed volume configuration change causes that epoch to be incremented. Each change in epoch must be reported to the Wolfpack cluster services which then propagate that change to the quorum data. The quorum data must be used as a validity-check or tiebreaker on all subsequent logical volume discoveries. As stated earlier, software providers are expected to maintain volume configuration data on the managed disk drives. That configuration data is the province of the provider; only the correctness thereof is of concern to Wolfpack. Software volume providers may implement an internal quorum algorithm, but that algorithm must be subject to Wolfpack override.

Note the reporting of completed volume configuration changes extends to the local system device. Wolfpack will check the trustworthiness of the system boot cluster data as part of cluster formation. If the node has booted off a different or incorrect system boot device, only manual intervention will allow the node to join or form a cluster.

Hardware logical volume providers need not report configuration changes or maintain a configuration epoch. Hardware providers are assumed to take advantage of specialized hardware such as battery backed up RAM or dual controller voting. Hardware providers must only persist the volume ID for all configured volumes.

3. Provider Interface

As discussed, the Logical Volume Management API presents two different interfaces:

· the Provider Interface used by logical volume managers

· the Client Interface used by logical volume management applications

The objects presented by the client interface are richer and the Common LVM Layer implements additional methods to filter queries or direct actions; the intent is to simplify the client. The objects presented by the provider interface are aggregated; the intent is to simplify the implementation of the provider and pull as much common data structure manipulation code into the Common LVM Layer.

The interface methods can also be subset into three:

1. Configuration operations guiding logical volume creation, deletion, modification, and migration between systems.

2. Topology and state queries to allow discovery of the current configuration (including the physical disks which comprise a given volume and the type of volume) and volume status (such as recovering after disk failure). Topology queries allow determination of what an automagic provider actually did or is doing with the underlying physical resources. All queries apply to the local processor node resources only. To build a cluster-wide view, queries must be executed on each node in turn.

3. Maintenance and monitoring operations for fault management, performance monitoring, and common site maintenance (such as causing lights to blink on a given controller).
The order reflects the degree to which work has progressed. In true software design tradition, the last is currently fuzzy at best and remains as work.

The Provider Logical Volume Management API exposes only one object: the ILVMSpecificProvider. A provider exists for each hardware RAID cabinet and for each software volume manager present on a system.

The LVM API is a COM API. In addition to the methods described herein, the API also includes those necessary to present a COM interface. Any returned arrays are allocated by the provider or common layer using CoMemTaskAlloc and freed by the client.

Logical volumes, disks, diskpacks, and volume providers are identified by unique GUIDs. The Common LVM Layer initially allocates all GUIDs with the exception of those of providers or controllers. A TARGET may be either a volume or disk.

typedef GUID VOLUMEID;

typedef GUID PROVIDERID;

typedef GUID PACKID;

typedef GUID DISKID;

typedef GUID PLATTERID;

typedef GUID CONTROLLERID;

Default, wildcard, and error (unknown) values are defined for volumes, providers, and packs. These are:

#define ALL_VOLUMES (101)

#define ALL_PROVIDERS (103)

#define ALL_PACKS (105)

#define UNKNOWN_PROVIDER (113)

#define UNKNOWN_PACK (115)

#define UNKNOWN_PLATTER (117)

#define UNKNOWN_CONTROLLER (119)

#define NO_PROVIDER (123)

#define NO_PACK (125)

#define NO_PLATTER (127)

#define DEFAULT_PACK (1)

#define DEFAULT_PROVIDER (1)

#define SOFTWARE_PROVIDER (3)

#define HARDWARE_PROVIDER (5)

Logical volume configuration operations operate on allocations and report volume or disk extents.

typedef struct _TARGET {

 short Type; // target type

 [switch_is(Type)] union VALUE {

 [case(1)] DISKID Disk;

 [case(2)] VOLUMEID Volume;

 };

} TARGET, *PTARGET;

typedef struct _ALLOCATION {

 TARGET Target; // disk or volume

 DWORDLONG Length; // length in bytes

} ALLOCATION, *PALLOCATION;

typedef struct _EXTENT {

 TARGET Target; // disk or volume

 DWORDLONG Length; // length in bytes

 DWORDLONG StartingOffset; // offset from base of volume

} EXTENT, *PEXTENT;

3.1 Provider Attributes

3.1.1 QueryProviderControllerID

HRESULT

QueryProviderControllerID(

 OUT PCONTROLLERID* ControllerID

);

Returns the controller ID associated with this provider. Software providers return NULL.
3.1.2 QueryProviderID

HRESULT

QueryProviderID(

 OUT PPROVIDERID Id

);

Returns the unique identifier of the provider.
3.1.3 QueryProviderName

HRESULT

QueryProviderName(

 OUT PWSTR* lpszName,

 OUT PDWORD Instance

);

Returns the provider name and instantiation. Since each controller has a unique provider, when multiple identical controllers are present, the providers will each have the same name, but different instances.

3.1.4 QueryProviderType

HRESULT

QueryProviderType(

);

Return indicates whether the provider is a software or hardware provider. .
3.1.5 Provider-Specific Extensions

Logical volume providers may expose provider-specific configuration attributes and parameters. Applications using these provider-specific extensions are assumed to have knowledge of their meaning and interpretation of these.

Each attribute consists of a short name, longer descriptive (help) text, and a current value. Values are cast as 64-bit unsigned integers. Parameters add minimum, maximum, and default values for the current value. These structures allow a generic GUI interface to accommodate arbitrary provider extensions. Note that the provider must default any and all such extensions sensibly; specifying extended attribute values must not be required for successful volume configuration.

Each configuration operation includes an LVM_EXTENSIONS structure. This structure includes a count and array of LVM_VALUE extensions. The order of the values within the array is the same as that used by the LVM_ATTRIBUTE or LVM_PARAMETER array used by the provider for the specified VOLUME_TYPE.

The LVM configuration methods pass all extension structures unchanged and unchecked to the provider.

typedef ULONGLONG LVM_VALUE;

typedef PULONGLONG PLVM_VALUE;

typedef struct LVM_ATTRIBUTE {

 PWSTR ShortName; // Name

 PWSTR LongDescription; // Help text description (long)

 LVM_VALUE Value; // Current value

} LVM_ATTRIBUTE, *PLVM_ATTRIBUTE;

typedef struct _LVM_PARAMETER {

 LVM_ATTRIBUTE Attribute;

 LVM_VALUE MinimumValue;

 LVM_VALUE MaximumValue;

 LVM_VALUE DefaultValue;

} LVM_PARAMETER, *PLVM_PARAMETER;
#define ALL_ATTRIBUTES ("ALL_ATTRIBUTES") // Wild card for defaulting

3.1.6 QueryDefaults

HRESULT

QueryDefaults(

 IN VOLUME_TYPE VolumeType,

 OUT PLVM_VALUE* ExtensionArray,

 OUT PDWORD NumberOfExtensions

);

Returns the array of LVM_VALUE vendor-specific binding extended parameter values. The values returned are the current default values for the specified volume type

3.1.7 QueryParameters

HRESULT

QueryParameters(

 IN VOLUME_TYPE VolumeType,

 OUT PLVM_PARAMETER* ExtendedParameterArray,

 OUT PDWORD NumberOfExtendedParameters

);

Returns vendor-specific parameter array. Intended for use by a vendor-neutral GUI. The returned current and default values for each parameter are identical.

3.2 Asynchronous operations

Logical volume configuration and query operations may take considerable time. As such, all methods may be invoked asynchronously. Application completion handling follows the COM model.
 The application provides a callback routine and parameter. That callback routine is implemented as an instance of a ILVMComplete class which implements a single callback method. PCALLBACK is a pointer to an instance of this callback object. A NULL PCALLBACK will invokes the method synchronously.

All callbacks passed to a provider belong to the common layer. The common layer always intercepts all provider callbacks and marshalls or aggregates them to the client application.

3.2.1 CancelOperation

HRESULT

CancelOperation(

 IN PVOLUMEID Volume

);

CancelOperation cancels any previously pended asynchronous volume configuration operation or configuration query.

3.2.2 CompleteOperation

HRESULT

CompleteOperation(

 IN PVOLUMEID Volume

);

CompleteOperation waits for the completion of a previously pended asynchronous volume configuration operation or configuration query.

3.3 Logical Volume Types and Attributes

Logical volume types are abstracted. While there are academic definitions for each RAID level, no two implementations are guaranteed to be the same. The first three types are used for automagic configuration requests only; the remaining types are returned when the results of such a configuration are queried. Thus, an automagic provider may configure a “mirror” volume in response to a binding request for a “fault tolerant” volume.

typedef enum _VOLUME_TYPE {

 Default,

 FaultTolerant,

 NotFaultTolerant,

 Simple,

 Span,

 Stripe,

 Mirror,

 Parity,

 Plex

} VOLUME_TYPE, *PVOLUME_TYPE;

The current condition of a logical volume and parameters affecting dynamic configuration of that volume are described by volume attributes including::

· Access by NT (VOLUME_STATUS)

· Fault recovery status (VOLUME_HEALTH)

· Configuration stability (VOLUME_JELLO)

· Disk pack membership (VOLUME_PACK)

· Whether or not the volume is plexed

· Whether or not the volume logical mapping is fixed or dynamic

· Relative rebuild priority (high-low)

typedef struct _VOLUME_ATTRIBUTES {

 VOLUME_STATUS Status;

 VOLUME_HEALTH Health;

 VOLUME_JELLO Jello;

 VOLUME_PACK Pack;

 BOOL Plexed;

 BOOL LbnRemapEnabled;

 BOOL Automagic;

 DWORDLONG ExtentSize;

 DWORD RebuildPriority;

} VOLUME_ATTRIBUTES, *PVOLUME_ATTRIBUTES;

typedef enum _VOLUME_STATUS {

 AnyStatus,

 UnknownStatus, // May not be present

 Unused, // Present, but not in use

 HotSpare, // Present, and reserved for hot sparing

 InUse, // Present, and stacked

 Mapped // Present, exposed to NT

} VOLUME_STATUS, *PVOLUME_STATUS;

typedef enum _VOLUME_HEALTH {

 AllHealth,

 UnknownHealth,

 Initializing,

 Healthy,

 Unhealthy,

 Compromised,

 Rebuilding

} VOLUME_HEALTH, *PVOLUME_HEALTH;

typedef enum _VOLUME_JELLO {

 AllJello,

 Stable,

 Reconfiguring,

 Plexing,

 Extending,

 Shrinking

} VOLUME_JELLO, *PVOLUME_JELLO;

typedef enum _VOLUME_PACK {

 AllPack,

 Normal,

 Exporting,

 Platter,

 ExportedPlatter,

 Importing

} VOLUME_PACK, *PVOLUME_PACK;

As discussed in 3.1.5, providers may expose provider-specific extensions. When extended attributes are returned, the returned array is chosen to be appropriate to the stacking level of the volume. In other words, querying a mapped automagic volume will return only the mapped extensions.

3.4 Automagic Binding

Automagic providers are given hints as to the intended use of the new volume. The provider uses those hints in good faith. The common BIND_HINTS structure is:

typedef struct _BIND_HINTS {

 DWORD Length; // structure size

 BOOL IsFaultTolerant;

 BOOL FastCrashRecoveryRequired;

 BOOL IsYankable; // No migration prior to media removal

 BOOL OptimizeForSequentialReads;

 BOOL OptimizeForSequentialWrites;

 BOOL IsMostlyReads;

 BOOL MigrationOk;

 DWORDLONG ExpectedMaximumSize;

 DWORD OptimalReadSize; // 0 indicate no optimal size

 PDWORD OptimalReadAlignment;

 DWORD OptimalWriteSize; // 0 indicate no optimal size

 PDWORD OptimalWriteAlignment;

 DWORD MaximumNumberOfSpindles; // 0 indicates no maximum

 DWORD InterleaveSize;

 DWORD RebuildPriority;

} BIND_HINTS, *PBIND_HINTS;

#define LOWEST_REBUILD_PRIORITY (0)

#define NORMAL_REBUILD_PRIORITY (8)

#define HIGHEST_REBUILD_PRIORITY (16)

Field
Interpretation

Length
Structure size in bytes

IsFaultTolerant
Use fault tolerant, mirror or parity stripe, volume

FastCrashRecoveryRequired
Bound the time required for volume recovery; support for fast recovery involves use of some sort of change log enabling the provider to recover the volume without comparing the entire contents.

IsYankable
Volume can be physically removed with minimal system disruption; occupy minimal number of spindles or removable media.

OptimizeForSequentialReads
Optimize for sequential read or sequential write pattern. If both are false, optimize for random IO.

OptimizeForSequentialWrites

IsMostlyReads
Optimize for read mostly pattern, for example by use of mirroring rather than parity striping.

MigrationOk
Volume extents can migrate automagically. If false, mapping of volume extents to disk extents to remain fixed after configuration with the exception of proactive actions avoiding disk failures.

ExpectedMaximumSize
Maximum size to which the volume is likely to grow. May be greater or less than VolumeSize.

OptimalReadSize
Optimal IO size (in bytes) and alignment with respect to the first logical block of the volume.

OptimalReadAlignment

OptimalWriteSize

OptimalWriteAlignment

MaximumNumberOfSpindles
Maximum number of disk spindles contributing to the volume. May be used to limit the number of stripe chunks in a stripe set.

InterleaveSize
Mirror or parity stripe chunk size. Number of contiguous logical blocks per disk extent prior to changing disk extents.

RebuildPriority
Relative priority (low:high) for rebuild. Low causes less system impact, but extents the period of exposure.

3.4.1 BindVolume

HRESULT

BindVolume(

 IN PVOLUMEID Volume,

 IN PPACKID Pack,

 IN DWORDLONG VolumeSize,

 IN VOLUME_TYPE VolumeType,

 IN PBIND_HINTS BindHints,

 IN PLVM_VALUE BindExtensions,

 IN PCALLBACK Callback,

);

BindVolume creates and initially configures an automagic volume. The only required parameter is VolumeSize; all others may be defaulted. The provider uses the BindHints and BindExtensions in good faith; these parameters are hints not requirements. BindExtensions are passed without check or change to the provider.

3.4.2 UnbindVolume

HRESULT

UnBindVolume(

 IN PVOLUMEID Volume,

 IN PCALLBACK Callback

);

Deletes and deconfigures the volume. All data are lost. All disk extents which contributed to the volume are freed for immediate reuse by the volume provider. The Common LVM Layer performs any coordination with NT prior to passing this request to the volume provider.

3.4.3 ResizeBindVolume

HRESULT

ResizeBindVolume(

 IN PVOLUMEID Volume,

 IN DWORDLONG NewVolumeSize,

 IN PCALLBACK Callback

);

An automagic volume can be grown or shrunk using this call. When growing a volume, the new volume must be at least as large as the specified new volume size. When shrinking a volume, the volume must be no smaller than the specified new volume size.

The Common LVM Layer uses this method to implement ILVMProvider :: ExtendVolume and ILVMProvider :: ShrinkVolume. For example, to extend a stripe set, the Common LVM Layer extends each of the contributing volumes.

While implementation of this method is optional, providers are recommended to support online volume growth.

No data is lost as a side effect of this call. Prior to shrinking a volume, Common LVM Layer must invoke the NT callback ResizeFileSystem. If the file system is unable to contract freeing the space, the Common LVM Layer aborts the resizing operation and never invokes this method.

3.5 Volume Stacking

Only software providers implement MapVolume and UnmapVolume.

3.5.1 StripeVolume

HRESULT

StripeVolume(

 IN PVOLUMEID Volume,

 IN PALLOCATION AllocationArray,

 IN DWORD NumberOfAllocations,

 IN LVM_VALUE InterleaveSize,

 IN PLVM_VALUE StripeExtensions,

 IN PCALLBACK Callback

);

Creates and configures a striped logical volume using extents from the specified logical volumes or disks. Stripe sets are constructed from equal length extents; equal size extents from each target (volume or disk) in the allocation array are consumed.

The number of elements of that array determines the number of stripes in the volume. The stripe chunk is determined by InterleaveSize; the chunk may be defaulted by specifying DEFAULT_INTERLEAVE (0).

The Common LVM Layer checks the AllocationArray for duplicate targets prior to invoking the provider. It is not possible to construct a stripe set using one and only one disk by specifying the disk twice.

3.5.2 UnstripeVolume

 HRESULT

 UnstripeVolume(

 IN PVOLUMEID Volume,

 IN PCALLBACK Callback

);

Deletes and deconfigures the stripe set volume. All data are lost. All volume or disk extents which contributed to the volume are freed for immediate reuse by the stacking volume provider. The Common LVM Layer performs any coordination with NT prior to passing this request to the volume provider.

3.5.3 MapVolume

HRESULT

MapVolume(

 IN PVOLUMEID Volume,

 OUT PLVM_VALUE DiskNumber,

 IN PALLOCATION AllocationArray,

 IN DWORD NumberOfAllocations,

 IN PLVM_VALUE MapExtensions,

 IN PCALLBACK Callback

);

Configures a mapped volume. Volume extents are allocated in the order specified by the allocation array and concatenated. The resulting mapped volume is exposed to NT and an NT disk number is assigned.

Implemented only by software volume providers.

3.5.4 UnmapVolume

HRESULT

UnMapVolume(

 IN PVOLUMEID Volume,

 IN PCALLBACK Callback

);

Deletes and deconfigures the mapped volume. This also removes the volume from NT use and the associated NT disk number is deleted. The Common LVM Layer performs any coordination with NT prior to passing this request to the volume provider.

Implemented only by software volume providers.

3.6 Volume Plexing

3.6.1 AddPlex

HRESULT

AddPlex(

 IN PVOLUMEID Volume,

 IN PVOLUMEID PlexVolume,

 IN PLVM_VALUE PlexExtensions,

 OUT PDWORD AddedPlexId,

 IN PCALLBACK Callback

);

Adds a plex to the specified volume. The completion routine is invoked after the added plex has been synchronized with the original volume. The Common LVM layer verifies that the PlexVolume is large enough prior to invoking the provider.

3.6.2 RemovePlex

HRESULT

RemovePlex(

 IN PVOLUMEID Volume,

 IN DWORD PlexId,

 OUT PPVOLUMEID RemovedVolume,

 OUT PDWORD RemovedPlexId,

 IN BOOL SyncFlag,

 IN PCALLBACK Callback

);

Removes a previously added plex from the specified volume. The Common LVM Layer optionally synchronizes the file system prior to causing the plex to be broken by the provider. After removal, the plex is no longer held in synchronization with the original volume.

3.7 Diskpack and Platter Management

Both hardware and software providers may participate in diskpack management. Software providers must implement some notion of diskpack either using the Wolfpack model as explained in 2.1.8 or otherwise. Hardware providers are recommended to simple diskpack support. Such allows management of volume mapping within a RAID cabinet; for example, if the cabinet is shared between systems, it may be desirable to isolate the physical disks accessed by the two systems.

The options for software and hardware providers are summarized in the table below. Basic diskpack support is required for all software providers and optional to hardware providers. Advanced support and migration support are optional to both. All methods of a support level must be implemented.

Method
Software Provider
Hardware Provider

CreatePack
Required
Basic support

DeletePack
Required
Basic support

AddDisksToPack
Required
N/A

EvacuateDisks
Advanced support
Advanced support

FreeDisksFromPack
Required
N/A

ReplaceDisk
Required
Required

InhabitDisks
Advanced support
Advanced support

ImportPlatter
Migration support
Migration support

ExportPlatter
Migration support
Migration support

MigratePlatter
Migration support
Migration support

MoveVolumesToPlatter
Migration support
Migration support

MoveVolumesFromPlatter
Migration support
Migration support

ForgetPlatter
Migration support
Migration support

3.7.1 Create Pack

HRESULT

CreatePack(

 IN PPACKID Pack,

 IN DWORDLONG ExtentSize,

 IN PWSTR lpszName,

 IN DWORD cchBufferLength

);

Creates a diskpack. The extent size must be a power of two disk sectors. If the extent size is not specified, the Common LVM Layer will use 1% of the largest disk drive known to be in the configuration. For example, the extent size would default to 128MB for configurations with 18GB drives.

3.7.2 DeletePack

HRESULT

DeletePack(

 IN PPACKID Pack,

 IN BOOL ForceFlag

);

Deletes a diskpack. If ForceFlag is specified as FALSE, the operation will fail if the pack still contains any logical volumes. Specifing ForceFlag as TRUE overrides this and causes to any logical volumes remaining in the pack to be lost.

3.7.3 AddDisksToPack

HRESULT

AddDisksToPack(

 IN PPACKID Pack,

 IN PDISKID DiskArray,

 IN DWORD ArraySize,

 IN BOOL SpareFlag

);

Adds disks to a pack. Any logical volume originally on the added disks is lost and not imported to the pack. Specifying SpareFlag as TRUE reserves the added disks as hotspares and does not allow them to be immediately inhabitable for automagic dynamic reconfiguration. To swap a free disk with a disk in a pack, use ReplaceDisk. Only simple disks managed by a software provider are added to a pack; logical units exported by a hardware provider are implicitly added to the pack by automagic binding.

3.7.4 EvacuateDisks

HRESULT

EvacuateDisks(

 IN PPACKID Pack,

 IN PDISKID DiskArray,

 IN DWORD ArraySize,

 IN PCALLBACK Callback

);

This routine moves any volume extents from the disk array to other disks in the diskpack. Note that to be eligible for removal, any volumes occupying a disk must have been evacuated. In other words, the disk must contain no live data. The disks remain evacuated until explicitly declared ready for inhabit, freeing from the pack, removal, or hot spare. This method may be used to inhabit simple disks or disks managed by a hardware provider; in the latter case, the PACKID is only advisory.

3.7.5 FreeDisksFromPack

HRESULT

FreeDisksFromPack(

 IN PPACKID Pack,

 IN PDISKID DiskArray,

 IN DWORD ArraySize,

 OUT PDISKID* RemovedDiskArray,

 OUT PDWORD NumberOfRemovedDisks

);

Removes disks from pack and makes them free agents. Note that to be eligible for removal, any volumes occupying a disk must have been evacuated. In other words, the disk must contain no live data. Only those disks evacuated will be returned in the RemovedDiskArray. Only simple disks managed by a software provider are added to or freed from a pack; logical units exported by a hardware provider are implicitly added to the pack by automagic binding.
3.7.6 ReplaceDisk

HRESULT

ReplaceDisk(

 IN PDISKID DiskToReplace,

 IN PDISKID NewDisk,

 IN BOOL StrictFlag,

 IN BOOL WaitFlag,

 IN PCALLBACK Callback

);

Substitutes one physical disk for another to allow media migration. Any contents of the replaced disk are migrated, although not necessarily to the new disk. Specifying StrictFlag to be TRUE causes strict replacement; all contents of the replaced disk are migrated to the new disk. If StrictFlag is true and the new disk is not large enough to hold the contents of the replaced disk, the operation will fail. At completion, the replaced disk is no longer in use and may be physically removed.

3.7.7 InhabitDisks

HRESULT

InhabitDisks(

 IN PDISKID DiskArray,

 IN DWORD ArraySize

);

Declares the disks available for automagic volume migration or other volume configuration operation. Note that InhabitDisks does not guarantee that the affected disks return to active use or again contain any previously configured logical volume. This method may be used to inhabit simple disks or disks managed by a hardware provider.

3.7.8 Create Platter

HRESULT

CreatePlatter(

 IN PPACKID Pack,

 IN PPLATTERID Platter

);

Creates a platter within the specified pack.

3.7.9 ImportPlatter

HRESULT

ImportPlatter(

 IN PPACKID Pack,

 IN PPLATTERID Platter,

 IN BOOL OverrideMissingDisks,

 IN PCALLBACK Callback

);

Imports all volumes and adds all disks contained on the platter to the pack. This operation may fail or cause reconfiguration of the existing volumes if the volume allocation extent of the platter differs from that of the receiving platter.

If one or more disks have been lost in the movement, volumes contained on the platter may not be transitively closed. Specifying OverrideMissingDisks will import any transitively closed volumes and add all disks. This may cause silent loss of volumes and/or data and should only be done with after careful consideration.

Successful import of a platter also causes deletion of that platter. The imported volumes join all other volumes in the pack.

3.7.10 ExportPlatter

HRESULT

ExportPlatter(

 IN PPLATTERID Platter,

 IN PCALLBACK Callback

);

Marks all disks on the platter ready for export. As a side effect, the disks contained in the platter are recorded such that when the platter is subsequently imported, the receiving pack can determine if all disks are present.

3.7.11 MigratePlatter

HRESULT

MigratePlatter(

 IN PPLATTERID Platter,

 IN PPACKID NewPack,

 IN PCALLBACK Callback

);

Atomically moves the platter between packs. Both packs must be present on the same processor node in a cluster.

3.7.12 MoveVolumesOntoPlatter

HRESULT

MoveVolumesOntoPlatter(

 IN PPLATTERID Platter,

 IN PVOLUMEID ArrayOfVolumes,

 IN DWORD ArrayOfVolumesSize,

 IN PDISKID ArrayOfDisks,

 IN DWORD ArrayOfDisksSize,

 IN BOOL CompactFlag,

 IN BOOL FriendlyFlag,

 IN PCALLBACK Callback

);

Prepares a platter for migration by moving one or more volumes to one or more disks. Specifying a disk array is optional; automagic volume managers may select disks for migration. Moving volumes to a platter may cause volume extent migration.

The FriendlyFlag controls whether or not additional volumes may by added to the platter as explained in 2.1.7. The CompactFlag controls whether or not volume extents are compacted onto disk drives prior to migration. Logical volume providers compact volumes in good faith – the number of drives is not guaranteed to be the absolute minimal. A hardware provider should ensure that all volumes on the platter are isolated from volumes which belong to a different diskpack when the CompactFlag is set.

Once completed, all affected logical volume providers may do no other automagic migration of volumes to or from the platter. No change in volume type is permitted.

3.7.13 MoveVolumesOffPlatter

HRESULT

MoveVolumesOffPlatter(

 IN PPLATTERID Platter,

 IN PVOLUMEID ArrayOfVolumes,

 IN DWORD ArrayOfVolumesSize,

 IN PDISKID ArrayOfDisks,

 IN DWORD ArrayOfDisksSize,

 IN PCALLBACK Callback

);

Explicitly moves volumes or evacuates disks and frees them from a platter. This routine is intended for use only for minor corrections to a friendly export which inadvertently includes a volume or disk.

The FriendlyFlag controls whether or not additional volumes may by added to the platter as explained in 2.1.7. The CompactFlag controls whether or not volume extents are compacted onto disk drives prior to migration. Logical volume providers compact volumes in good faith but the number of drives is not guaranteed to be the absolute minimal. A hardware provider should ensure that all volumes on the platter are isolated from volumes which belong to a different diskpack when the CompactFlag is set.

Once completed, all affected logical volume providers may do no other automagic migration of volumes to or from the platter. Removing a volume from platter causes that volume to rejoin the diskpack and may result in automagic reconfiguration of the volume if otherwise permitted.

3.7.14 ForgetPlatter

HRESULT

ForgetPlatter(

 IN PPLATTERID Platter

);

Cancels preparation of a platter for volume migration. Any volumes on the platter rejoin the disk pack and may migrate freely.

3.8 Logical Volume Topology Queries

These queries allow a storage management application to determine logical volume configuration. This allows determination of what an automagic provider actually did or is doing with the underlying physical resources.

All queries apply to the local processor node resources only. To build a cluster-wide view, queries must be executed on each node in turn.

3.8.1 QueryDisks

HRESULT

QueryDisks(

 OUT PDISKID* ArrayOfDisks,

 OUT PDWORD NumberOfDisks

);

Return all disks managed by the provider.

3.8.2 QueryVolumes

HRESULT

QueryVolumes(

 OUT PVOLUMEID* ArrayOfVolumes,

 OUT PDWORD NumberOfVolumes

);

Return all volumes known to the provider. Ignores any stacking hierarchy.

3.8.3 QueryVolumeDeviceObject

HRESULT

QueryVolumeDeviceObject(

 IN PVOLUMEID Volume,

 OUT PWSTR* lpszName,

 OUT PDWORD cchBufferLength

);

Returns the NT device object name associated with a hardware RAID volume. The disk IO subsystem treats these volumes as physical disks. The information returned gives that mapping.

Implemented by hardware providers only.

3.8.4 QueryVolumeDiskExtents

HRESULT

QueryVolumeDiskExtents(

 IN PVOLUMEID Volume,

 IN BOOL IncludePlex,

 OUT PVOLUME_TYPE Type,

 OUT PEXTENT* ArrayOfExtents,

 OUT PDWORD NumberOfExtents

);

Returns all disk extents contributing to the volume. The Common LVM Layer recursively queries the provider at each stacking layer to build the simple physical view of the resources consumed by the volume. Setting IncludePlex to TRUE optionally includes existing plexes.

3.8.5 QueryVolumeDiskNumber

HRESULT

QueryVolumeDiskNumber(

 IN PVOLUMEID Volume,

 OUT PDWORD DiskNumber,

 OUT PBOOL VolumeIsMapped

);

Returns the NT disk number (if any) associated with this volume. If the volume is a mapped volume, the disk number was created at volume configuration. If the volume is not a mapped volume, but the volume contributes extents to a mapped volume, the NT disk number is that of the mapped volume. If the volume is not mapped, there is no NT disk number.

Implemented by software providers only.

3.8.6 QueryVolumeExtents

HRESULT

QueryVolumeExtents(

 IN PVOLUMEID Volume,

 OUT PVOLUME_TYPE Type,

 OUT PEXTENT* ArrayOfExtents,

 OUT PDWORD NumberOfExtents

);

Returns all volumes contributing one or more extents to this volume. Only one level of the stacking hierarchy is traversed. The Common LVM Layer recursively queries the provider at each stacking level to build up a complete view.

3.8.7 QueryVolumeLUN

HRESULT

QueryVolumeLUN(

 IN PVOLUMEID Volume,

 OUT PDWORD Lun

);

Returns the LUNS (logical unit) associated with this volume, if any. The Lun is returned as –1 if the volume does not correspond to a logical unit.

3.8.8 QueryVolumePlexes

HRESULT

QueryVolumePlexes(

 IN PVOLUMEID Volume,

 OUT PVOLUMEID* VolumeArray,

 OUT PDWORD NumberOfPlexes

);

Finds all plexes of the specified volume. The returned volume array contains plexes in plexId order.

3.8.9 QueryVolumeProvider

HRESULT

QueryVolumeProvider(

 IN PVOLUMEID Volume

);

Indicates that this provider manages the specified volume.

3.9 DiskPack and Platter Queries

Diskpack and platter queries are implemented by those providers implementing diskpacks.

3.9.1 QueryPacks

HRESULT

QueryPacks(

 OUT PPACKID* PackArray,

 OUT PDWORD NumberOfPacks

);

Returns all disk packs managed by the provider.

3.9.2 QueryPlatters

HRESULT

QueryPlatters(

 IN PPACKID Pack,

 OUT PPLATTERID* PlatterArray,

 OUT PDWORD NumberOfPlatters

);

Returns all disk platters in the specified pack.

3.9.3 QueryVolumePack

HRESULT

QueryVolumePack(

 IN PVOLUMEID Volume,

 OUT PPACKID Pack,

 OUT PPLATTERID Platter

);

Returns the pack and platter (if any) which contains the volume. If the volume is not on a platter, the platter is returned as NO_PLATTER.

3.9.4 QueryDiskPack

HRESULT

QueryDiskPack(

 IN PDISKID Disk,

 OUT PPACKID Pack,

 OUT PPLATTERID Platter

);

Returns the pack and platter (if any) which contains the disk. If the disk is not on a platter, the platter is returned as NO_PLATTER.

3.9.5 QueryPackProvider

HRESULT

QueryPackProvider(

 IN PPACKID Pack

);

Indicates that this provider manages the specified pack.

3.10 Logical Volume Attributes

 The Common LVM Layer caches the volumes managed by a given provider and invokes the correct provider for all volume queries.

Hardware providers which do not implement diskpacks ignore any PACKID parameters.

3.10.1 QueryVolumeAttributes

HRESULT

QueryVolumeAttributes(

 IN PVOLUMEID Volume,

 OUT PVOLUME_TYPE VolumeType,

 OUT PVOLUME_ATTRIBUTES VolumeAttributes,

 OUT PLVM_VALUES* BindValueArray,

 OUT PDWORD NumberOfBindValue

);

Returns volume type, pack, size, and attributes.

3.10.2 QueryVolumeSize

HRESULT

QueryVolumeSize(

 IN PVOLUMEID Volume,

 OUT PDWORDLONG VolumeSize

);

Returns volume size.

3.10.3 QueryVolumeType

HRESULT

QueryVolumeType(

 IN PVOLUMEID Volume,

 OUT PVOLUME_TYPE Type

);

Returns volume type. See 4.1 for the definition of VOLUME_TYPE; Default, FaultTolerant, NotFaultTolerant are not returned as a result of this query.

3.10.4 QueryVolumeState

HRESULT

QueryVolumeState(

 IN PVOLUMEID Volume,

 OUT PVOLUME_STATUS Status,

 OUT PVOLUME_HEALTH Health,

 OUT PVOLUME_JELLO Jello

);

Returns volume status, health, and jello. Only software providers indicate Mapped status.

3.10.5 QueryVolumeLbnRemap

HRESULT

QueryVolumeLbnRemap(

 IN PVOLUMEID Volume,

 OUT PBOOL Enable

);

Returns whether or not the volume may currently be dynamically reconfigured. If LBN (logical block number) remapping is enabled, the provider may migrate volume extents at will. Note that the returned enable applies only to the specified volume; if the volume is stacked, the constituent volumes may be differently enabled.

3.10.6 QueryVolumeRebuildPriority

HRESULT

QueryVolumeRebuildPriority(

 IN PVOLUMEID Volume,

 OUT PBOOL Enable

);

Returns the rebuild priority of the volume.

3.10.7 ForceVolumeHealthy

HRESULT

ForceVolumeHeathy(

 IN PVOLUMEID Volume

);

Forces volume to be healthy. Allows possibly dangerous override in the event of catastrophic disk failures.

3.10.8 ForceVolumeInitialize

HRESULT

ForceVolumeInitialize(

 IN PVOLUMEID Volume

);

Forces volume to be reinitialized. All data may be lost. Allows possibly dangerous override in the event of catastrophic disk failures.

3.10.9 ForceVolumeRebuild

HRESULT

ForceVolumeRebuild(

 IN PVOLUMEID Volume

);

Forces volume to be rebuilt. Allows possibly dangerous override in the event of catastrophic disk failures.

3.10.10 SetVolumeLbnRemap

HRESULT

SetVolumeLbnRemap(

 IN PVOLUMEID Volume,

 IN BOOL Enable

);

Enables or disables automagic remapping by the logical volume provider. Disabling LBN remapping freezes the current logical to physical topology of the volume.

3.10.11 SetVolumeRebuildPriority

HRESULT

SetVolumeRebuildPriority(

 IN PVOLUMEID Volume,

 IN DWORD Priority

);

Sets the relative rebuild priority for the volume.

3.10.12 SetVolumeExtensions

HRESULT

SetVolumeExtensions(

 IN PVOLUMEID Volume,

 IN BOOL Override,

 IN PLVM_VALUE BindExtensionArray

);

Sets provider-specific extended attributes for the volume.

3.11 Disk Attributes

3.11.1 QueryDiskSize

HRESULT

QueryDiskSize(

 IN DISKID Disk,

 OUT PDWORDLONG DiskSize

);

Returns size in bytes of the specified disk.

3.11.2 QueryDiskConnection

HRESULT

QueryDiskConnection(

 IN DISKID Disk,

 OUT PDISK_CONNECT_TYPE ConnectionType

);

Returns abstracted physical connection to disk. Connection types are given by:

typedef enum _DISK_CONNECTION_TYPE {

 UnknownConnection,

 Local, // local connection only (eg IDE)

 DualConnect, // dual connected (eg SCSI)

 NetworkConnect, // multiply shared (eg FCAL)

 DualControllerConnect, // behind an dual intelligent controller

 NetworkControllerConnect, // behind a multiply shared controller

 Served // remote served (eg NetDevice)

} DISK_CONNECT_TYPE, *PDISK_CONNECT_TYPE;

3.11.3 QueryDiskDeviceObject

HRESULT

QueryDiskDeviceObject(

 IN PDISKID Disk,

 OUT PWSTR* lpszName,

 OUT PDWORD cchBufferLength

);

Returns the NT device object name associated with the specified disk.

3.11.4 QueryDiskStatus

HRESULT

QueryDiskStatus(

 IN DISKID Disk,

 OUT PVOLUME_STATUS Status

);

Returns current access by NT. Disk access is the same as volume access (VOLUME_STATUS).

3.11.5 SetDiskHotSpare

HRESULT

SetDiskHotSpare(

 IN DISKID Disk,

 IN BOOL Enable

);

Declares disk to be used as a hot spare. If the disk current contributes to one or more logical volumes, this call will fail. The volumes must be first moved using ReplaceDisk (4.6.1).

3.11.6 QueryDiskProvider

HRESULT

QueryDiskProvider(

 IN PDISKID Disk,

 OUT PBOOL Mine

);

Indicates that this provider manages the specified disk.

3.12 Hardware Controllers and Physical Topology

This portion of the LVM API exports an abstract view of the physical topology and hardware resources of the storage subsystem. The intent is not to supplant WMI, WEBM, CIM, but rather present an interesting and abstracted subset of information managed by them. The LVM API says nothing about the internal implementation mechanism(s).

The current condition of a hardware controller and the volumes behind that controller parameters are described by attributes. Providers may extend these attributes similar to extended binding attributes.

· Current controller in active use and path to that controller

· Battery backup support

· Physical topology behind controller (number of disks and disk paths)

· Controller capabilities such as logical block remapping, variable volume rebuild support

· Controller physical attributes such as cache size and firmware revision

typedef struct _CONTROLLER_ATTRIBUTES {

 DWORD ControllerNumber;

 DWORD ActivePath;

 DWORD TotalPaths;

 DWORD TotalControllers;

 DWORD BatteryBackupHours;

 DWORD TotalBatteryBackupHours;

 DWORD DiskPaths;

 DWORD DisksPerPath;

 DWORD MinimumRebuildPriority;

 DWORD MaximumRebuildPriority;

 BOOL LbnRemapCapable;

 BOOL LbnRemapEnabled;

 DWORDLONG TotalCacheBytes;

 DWORDLONG FirmwareVersion;

 DWORDLONG DiskExtentSize; // if imposed

} CONTROLLER_ATTRIBUTES, *PCONTROLLER_ATTRIBUTES;

#define INVALID_DISK_NUMBER (-1)

#define INVALID_PATH_NUMBER (-1)

Controller methods are implemented only by hardware providers.

3.12.1 QueryControllerParameters

HRESULT

QueryControllerParameters(

 OUT PLVM_PARAMETER* ExtendedParameterArray,

 OUT PDWORD NumberOfExtendedParameters

);

Returns vendor-specific parameter array. Intended for use by a vendor-neutral GUI.

3.12.2 QueryControllerAttributes

HRESULT

QueryControllerAttributes(

 OUT PBOOL Online,

 OUT PVOLUME_HEALTH ControllerHealth,

 OUT PCONTROLLER_ATTRIBUTES ControllerAttributes,

 OUT PLVM_VALUE* ControllerExtensionArray,

 OUT PDWORD NumberOfControllerExtensions

);

Returns controller type, associated provider, any packs to which the controller contributes disks, whether the controller is currently online, controller health and attributes. Controller health follows VOLUME_HEALTH.

3.12.3 QueryControllerDeviceObject

HRESULT

QueryControllerDeviceObject(

 OUT PWSTR* lpszName,

 OUT PDWORD cchBufferLength

);

Returns the NT device object name associated with the controller.

3.12.4 QueryControllerPath

HRESULT

QueryControllerPath(

 OUT PDWORD PrimaryPath,

 OUT PDWORD SecondaryPath,

 OUT PDWORD ActivePath

);

Returns primary, secondary, and currently active paths for a dual pathed controller.

3.12.5 QueryControllerLbnRemap

HRESULT

QueryControllerLbnRemap(

 OUT PBOOL Capable,

 OUT PBOOL Enable

);

Returns whether or not the controller is capable of dynamic volume reconfiguration and whether or not the controller is currently allowed to do so. If LBN remapping is enabled, the provider may migrate volume extents at will.

3.12.6 ForceControllerHealthy

HRESULT

ForceControllerHeathy(

);

Forces controller to be healthy. Allows possibly dangerous override in the event of catastrophic controller or disk failures.

3.12.7 ForceControllerInitialize

HRESULT

ForceControllerInitialize(

);

Forces controller to reinitialize. Must not affect current volumes configured behind the controller.

3.12.8 ForceControllerRebuild

HRESULT

ForceControllerRebuild(

);

Forces all volumes configured behind the controller to be rebuilt. Allows possibly dangerous override in the event of catastrophic controller or disk failures.

3.12.9 ForceControllerPath

HRESULT

ForceControllerPath(

 IN DWORD ActivePath

);

Forces active controller path to specified path.

3.12.10 SetControllerExtensions

HRESULT

SetControllerExtensions(

 IN BOOL Override,

 IN PLVM_VALUE ConrollerExtensionArray,

 IN DWORD ControllerExtensionArraySize

);

Sets provider-specific extended attributes for the controller.

3.12.11 QueryDiskExtensions

HRESULT

QueryDiskExtensions(

 IN PDISKID Disk,

 OUT PLVM_VALUE* DiskExtensionArray,

 OUT PDWORD NumberOfDiskExtensions

);

Returns vendor-specific disk parameter array.

3.12.12 QueryDiskParameters

HRESULT

QueryDiskParameters(

 IN PDISKID Disk,

 OUT PLVM_PARAMETER* ExtendedParameterArray,

 OUT PDWORD NumberOfExtendedParameters

);

Returns the array of LVM_VALUE vendor-specific disk extended parameter values.

3.12.13 QueryDiskAttributes

HRESULT

QueryDiskAttributes(

 IN PDISKID Disk,

 OUT PLVM_VALUE* DiskExtensionArray,

 OUT PDWORD NumberOfDiskExtensions

);

Returns associated provider, pack (if any), abstracted connection type, controller, size, status, and vendor-specific extensions for the specified disk.

3.12.14 QueryControllerDisks

HRESULT

QueryControllerDisks(

 OUT PDISKID ArrayOfDisks,

 OUT PDWORD NumberOfDisks

);

Returns an array of disks attached to the specified controller. The array is exactly DiskPaths by DisksPerPath; where DiskPaths and DisksPerPath are controller attributes. If no disk is present at the location, the DISKID array entry is returned as INVALID_DISK. If the array is not sufficiently large, an error is returned and all array contents are suspect.

3.13 Simple Maintenance Operations

Client interface does any and all CIM conversion. Need a better name for these to distinguish from the controller methods.

Simple maintenance operations are intended target identification or sanity checks. These methods allow simple access to a useful subset of site maintenance operations such as flashing a light on a disk drive.

typedef enum _MAINTENANCE_OPERATION {

 NoOperation,

 BlinkLight,

 BeepAlarm,

 SpinDown,

 SpinUp,

 Ping

} MAINTENANCE_OPERATION, *PMAINTENANCE_OPERATION;

These operations may be directed to a controller or disk. The Common LVM Layer translates client maintenance operations targeted to a volume to the appropriate disks. For simple disks not behind a hardware controller, the ILVMCommonSupport object also implements these methods.

Specifying nonsensical operations or operations unsupported by the target or logical volume provider will cause the operation to fail with no side effects. Only hardware providers implement the controller maintenance methods.

3.13.1 StartDiskMaintenance

HRESULT

StartDiskMaintenance(

 IN PDISKID Disk,

 IN MAINTENANCE_OPERATION Operation

);

Initiate specified hardware maintenance operation. The operation will repeat until stopped. If the target is a logical volume, the

3.13.2 StopDiskMaintenance

HRESULT

StopDiskMaintenance(

 IN PDISKID Disk,

 IN MAINTENANCE_OPERATION Operation

);

Stop or cancel specified hardware maintenance operation. This stops any repeated operations such as blinking a light.

3.13.3 PulseDiskMaintenance

HRESULT

PulseDiskMaintenance(

 IN PDISKID Disk,

 IN MAINTENANCE_OPERATION Operation,

 IN DWORD Count

);

Repeat specified hardware maintenance operation a specified number of times.

3.13.4 StartControllerMaintenance

HRESULT

StartControllerMaintenance(

 IN MAINTENANCE_OPERATION Operation

);

Initiate specified hardware maintenance operation. The operation will repeat until stopped

3.13.5 StopControllerMaintenance

HRESULT

StopControllerMaintenance(

 IN MAINTENANCE_OPERATION Operation

);

Stop or cancel specified hardware maintenance operation. This stops any repeated operations such as blinking a light.

3.13.6 PulseControllerMaintenance

HRESULT

PulseControllerMaintenance(

 IN MAINTENANCE_OPERATION Operation,

 IN DWORD Count

);

Repeat specified hardware maintenance operation a specified number of times.

3.14 Controller Maintenance Operations

Controller maintenance operations allow detailed inquiries of RAID controller and disk hardware status, including setting hardware alarm thresholds. This model follows the SCSI-3 SES protocol. The client interface does any and all CIM conversion.

Only hardware providers which do not implement the standard SES protocol must implement these methods. The Common LVM Layer ILVMCommonSupport object implements these methods using the standard SES protocol.

Specifying nonsensical operations or operations unsupported by the target or logical volume provider will cause the operation to fail with no side effects.

The common controller maintenance definitions follow the SCSI SES diagnostic page definitions. Each structure maps directly to bytes 1:3 of the unsigned longword payload returned in the SCSI CDB element list.

The controller optionally implements one or more of the following maintenance elements. Multiple instances of each type may be present; for example, multiple fans to allow individual fan failure. Each instance is identified by an ordinal index. The collection of all instances can be controlled or an ensemble status obtained by using the overall index.

#define OVERALL_ELEMENT (-1)

 typedef enum _MAINTENANCE_ELEMENT {

 All,

 Device,

 PowerSupply,

 Cooling,

 Temperature,

 DoorLock,

 AudibleAlarm,

 ControllerElectronics,

 ConfigurationElectronics,

 NonvolatileCache,

 UninterruptiblePowerSupply,

 Display,

 Keypad,

 ExternalPort,

 Language,

 CommunicationsPort,

 Voltage,

 Current,

 TargetPort,

 InitiatorPort

} MAINTENANCE_ELEMENT, *PMAINTENANCE_ELEMENT;

typedef struct _ELEMENT_INSTANCE {

 MAINTENANCE_ELEMENT Element;

 DWORD Index;

} ELEMENT_INSTANCE, *PELEMENT_INSTANCE;

Maintenance control and status operations associate an instance of an element to a control request, status return, or threshold. Status and Control DWORDS can be typecast to element-specific structures. Examples of those structures follow.

typedef struct _DEVICE_CONTROL {

 unsigned short BypassBEnabled : 1;

 unsigned short BypassAEnabled : 1;

 unsigned short EnableBypassB : 1;

 unsigned short EnableBypassA : 1;

 unsigned short DeviceOff : 1;

 unsigned short RequestFault : 1;

 unsigned short FaultSensed : 1;

 unsigned short rsv7;

 unsigned short Report : 1;

 unsigned short Ident : 1;

 unsigned short Remove : 1;

 unsigned short Insert : 1;

 unsigned short rsv12 : 2;

 unsigned short NoRemoval : 1;

 unsigned short rsv15 : 1;

} DEVICE_CONTROL, *PDEVICE_CONTROL;

typedef struct _POWER_CONTROL {

 unsigned short rsv0 : 4;

 unsigned short RequestOn : 1;

 unsigned short Failed : 1;

 unsigned short rsv7 : 1;

 unsigned short rsv8 : 8;

} POWER_CONTROL, *PPOWER_CONTROL;

typedef struct _VOLTAGE_CONTROL {

 unsigned short DCFail : 1;

 unsigned short ACFail : 1;

 unsigned short OverTempWarn : 1;

 unsigned short OverTempFail : 1;

 unsigned short Off : 1;

 unsigned short RequestOn : 1;

 unsigned short Fail : 1;

 unsigned short rsv8 : 1;

 unsigned short DCOverCurrent : 1;

 unsigned short DCUnderVoltage : 1;

 unsigned short DCOvervoltage : 1;

 unsigned short rsv12 : 4;

} VOLTAGE_CONTROL, *PVOLTAGE_CONTROL;

typedef struct _FAN_CONTROL {

 unsigned short Speed : 3;

 unsigned short rsv3 : 1;

 unsigned short RequestOn : 1;

 unsigned short Failed : 1;

 unsigned short rsv7 : 1;

 unsigned short rsv8 : 8;

} FAN_CONTROL, *PFAN_CONTROL;

typedef struct _TEMPERATURE_CONTROL {

 unsigned short UnderTempWarning : 1;

 unsigned short UnderTempFailure : 1;

 unsigned short OverTempWarning : 1;

 unsigned short OverTempFailure : 1;

 unsigned short rsv4 : 4;

 unsigned short Temperature : 8;

} TEMPERATURE_CONTROL, *PTEMPERATURE_CONTROL;

typedef struct _DOOR_CONTROL {

 unsigned short Unlock : 1;

 unsigned short rsv4 : 7;

 unsigned short rsv8 : 8;

} DOOR_CONTROL, *PTEMPERATURE_CONTROL;

typedef struct _ALARM_CONTROL {

 unsigned short ToneControl : 4;

 unsigned short Remind : 1;

 unsigned short rsv5 : 1;

 unsigned short Mute : 1;

 unsigned short rsv7 : 4;

 unsigned short rsv8 : 8;

} ALARM_CONTROL, *PALARM_CONTROL;

typedef struct _ELECTRONICS_CONTROL {

 unsigned short rsv0 : 8;

 unsigned short Report : 1;

 unsigned short rsv9 : 7;

} ELECTRONICS_CONTROL, *PELECTRONICS_CONTROL;

typedef struct _UPS_CONTROL {

 unsigned short BatteryPredictedFailure : 1;

 unsigned short BatteryFailed : 1;

 unsigned short rsv2 : 6;

 unsigned short InterfaceFailed : 1;

 unsigned short OutageWarn : 1;

 unsigned short UPSFailed : 1;

 unsigned short DCFail : 1;

 unsigned short ACFail : 1;

 unsigned short ACQual : 1;

 unsigned short ACHigh : 1;

 unsigned short ACLow : 1;

} UPS_CONTROL, *PUPS_CONTROL;

typedef struct _VOLTAGE_SENSOR_CONTROL {

 unsigned short CriticalUnder : 1;

 unsigned short CriticalOver : 1;

 unsigned short WarningUnder : 1;

 unsigned short WarningOver : 1;

 unsigned short rsv4 : 4;

} VOLTAGE_SENSOR_CONTROL, *PVOLTAGE_SENSOR_CONTROL;

Threshold values are defined only for temperature sensors, uninterruptible power supply battery life, voltage sensors, and current sensors.

#define NO_THRESHOLD (0)

typedef struct _THRESHOLD {

 short HighCritical;

 short HighWarning;

 short LowWarning;

 short LowCritical;

} THRESHOLD, *PTHRESHOLD;

3.14.1 QueryMaintenanceElement

HRESULT

QueryMaintenanceElements (

 OUT PELEMENT_INSTANCE* ElementArray,

 OUT PDWORD NumberOfElements

);

Returns the supported maintenance targets and instances supported by the controller. The maintenance element type and number of each populate the returned element array.

3.14.2 SetMaintenanceControl

HRESULT

SetMaintenanceControl (

 IN PELEMENT_INSTANCE ElementArray,

 IN PDWORD ControlArray,

 IN DWORD NumberOfElements

);

Requests maintenance control operations. Each element of the DWORD array corresponds to one maintenance control operation to be applied to the specified ELEMENT_INSTANCE. If multiple operations are attempted simultaneously, some or all may fail. To determine the resulting controller status, use QueryMaintenanceStatus.

3.14.3 QueryMaintenanceStatus

 HRESULT

QueryMaintenanceStatus(

 IN PELEMENT_INSTANCE ElementArray,

 OUT PDWORD* StatusArray,

 IN DWORD NumberOfElements

);

Requests return of maintenance status. For each ELEMENT_INSTANCE array entry, a DWORD status is returned.

3.14.4 SetMaintenanceThresholds

HRESULT

SetMaintenanceThresholds(

 IN PELEMENT_INSTANCE ElementArray,

 IN PTHRESHOLD ThresholdArray,

 IN DWORD NumberOfElements

);

Requests maintenance threshold change operations. For each ELEMENT_INSTANCE array entry, the corresponding array entry in THRESHOLD describes the control operation requested. If multiple operations are attempted simultaneously, some or all may fail. Only Temperature, UninterruptiblePowerSupply, Voltage, and Current elements may be specified.

3.14.5 QueryMaintenanceThresholds

HRESULT

QueryMaintenanceThresholds(

 IN PELEMENT_INSTANCE ElementArray,

 OUT PTHRESHOLD* ThresholdArray,

 IN DWORD NumberOfElements

);

Requests return of maintenance thresholds. For each ELEMENT_INSTANCE array entry, the corresponding array entry in THRESHOLD describes the current threshold. Only Temperature, UninterruptiblePowerSupply, Voltage, and Current elements may be specified.

3.15 Provider Support

This section enumerates the methods exported by the common multiplexing layer for (optional) use by logical volume providers. These methods are externalized by the ILVMCommonSupport object.

3.15.1 AutomagicToDirectBinding

This TBD routine takes automagic hints and translates them to directed binding suggestions. Intended for use by very low end hardware volume managers wanting only very minimal “automagic” functionality. The provider passes along the automagic hints and a list of possible (free) disk or volume extents. The returned directed binding suggestions include type of volume (RAID level) and list of target volume extents to be used.

3.15.2 SCSISendDiagnostic

This TBD routine wrappers the SCSI passthrough IOCTL and transmits a SCSI SEND DIAGNOSTIC command.

3.15.3 SCSIReceiveDiagnostic

This TBD routine wrappers the SCSI passthrough IOCTL and transmits a SCSI RECEIVE DIAGNOSTIC STATUS command.

3.16 Performance Monitoring

Performance modeling is a wild statement of intent only at this time. Common performance counters are currently undefined; see issues. How/if/when we should actually proceed is a good question.
LVM providers are encouraged to expose performance tuning and monitors to LVM applications (or human). LVM providers must implement these methods, but there are only minimal requirements on that implementation. Software providers are assumed to use the WDM kernel mode infrastructure.

An LVM provider could chose to implement a proprietary automagic performance tuner and expose only the required performance tuning or monitoring. An LVM provider could also chose to be transparent and expose all sorts of tuning knobs and lots of performance monitoring, but take no provider-specific actions.

All performance tuning parameters are assumed to be LVM provider-specific. Parameters are described by LVM_ATTRIBUTEs and may be queried and set.

The model for performance monitoring is:

· Performance monitoring is implemented by counters.

· All counter values are 64-bit unsigned LVM_VALUEs.

· A trace is only a collection of counters over time.

· Counters are described with by an LVM_ATTRIBUTE.

· The LVM API enumerates a minimum set of common counters and LVM providers are encouraged to implement these.

· Each LVM provider may expose additional provider-specific performance counter array elements. The LVM_ATTRIBUTE description allows an LVM application/human to display/understand any performance data obtained.

· Counters are aggregated into a single array. The common counters form the first elements of that array.

· The counter array index forms a handle for each counter.

· Counters are enabled, disabled, and cleared.

· Counters are repeatedly polled to construct an array of data results. Polling returns an array of (counter index, value) tuples for enabled counters only.

typedef union {

 short Type; // target type

 [switch_is(Type)] union VALUE {

 [case(1)] DISKID Disk;

 [case(2)] VOLUMEID Volume;

 [case(3)] CONTROLLERID Controller;

 };

} PERFORMANCEID, PPERFORMANCEID;

3.16.1 ClearPerformanceCounter

HRESULT

ClearPerformanceCounter(

 IN PPERFORMANCEID Target,

 IN PDWORD CounterIndexArray,

 IN DWORD CounterIndexArraySize,

 IN BOOL ClearAll

);

Clears (sets to zero) specified performance counters.

3.16.2 DisablePerformanceCounter

HRESULT

DisablePerformanceCounter(

 IN PPERFORMANCEID Target,

 IN PDWORD CounterIndexArray,

 IN DWORD CounterIndexArraySize,

 IN BOOL DisableAll

);

Disables specified performance counters.

3.16.3 EnablePerformanceCounter

HRESULT

EnablePerformanceCounter(

 IN PPERFORMANCEID Target,

 IN PDWORD CounterIndexArray,

 IN DWORD CounterIndexArraySize,

 IN BOOL EnableAll

);

Enables specified performance counters.

3.16.4 QueryPerformanceCounters

HRESULT

QueryPerformanceCounters(

 IN PPERFORMANCEID Target,

 OUT PLVM_ATTRIBUTE* CommonAttributeArray,

 OUT PDWORD NumberOfCommonAttributes,

 OUT PLVM_ATTRIBUTE* ExtendedAttributeArray,

 OUT PDWORD NumberOfExtendedAttributes

);

Returns common and vendor-specific performance attribute arrays.

3.16.5 QueryPerformanceData

 HRESULT

QueryPerformanceData(

 IN PPERFORMANCEID Target,

 OUT PDWORD* CounterIndexArray,

 OUT PLVM_VALUE* CounterValueArray,

 OUT PDWORD NumberOfCounters

);

Returns currently enabled performance counter value array.

3.16.6 QueryPerformanceCounterStatus

 HRESULT

QueryPerformanceCounterStatus(

 IN PPERFORMANCEID Target,

 IN PLVM_VALUE CounterIndexArray,

 OUT PBOOL* CounterEnableArray

 IN DWORD NumberOfCounters

);

Returns current performance counter enable. For each element of the counter index array, an element of the enable array is returned. The enable array boolean is TRUE if the counter is enabled.

3.16.7 StartPerformanceMonitor

HRESULT

StartPerformanceMonitor(

 IN PERFORMANCEID Target,

 IN BOOL ClearAllCounters

);

Start performance counters.

3.16.8 StopPerformanceMonitor

HRESULT

StopPerformanceMonitor(

 IN PERFORMANCEID Target,

 IN BOOL ClearAllCounters

);

Stop performance counters.

3.17 Error Monitoring

Error monitoring is a wild statement of intent only at this time. How we should actually proceed is a good question. See issues

The LVM API supports both a publish-subscribe event notification and a counter model for error monitoring. The first model relies on a general event infrastructure and is currently undefined; see issues. The counter model follows that for performance data monitoring.

Examples of error events or counters include:

Diskgonebad

Sectorgonebad

VolumeCompromised

VolumeSpared

VolumeHealthy

DiskYanked

DiskInserted

ExtentAddedToVolume

ExtentRemovedFromVolume

VolumeChangeStarted -+

VolumeChangeCompleted + x Bind, Unbind, Add, Remove

VolumeChangeAborted -+

VolumeParameterChange

ControllerParameterChange

ControllerFirmwareUpdate

ControllerPathFailover

ControllerVolumeFailover

ControllerResetStarted

ControllerResetCompleted

HotSpareInUse

HotSpareDeclared

DiskFirmwareUpdate

PerformanceCountersCleared

ErrorCountersCleared

PerformanceLogCleared

ErrorLogCleared

4. Client Interface

As discussed, the Logical Volume Management API presents two different interfaces:

· the Provider Interface used by logical volume managers

· the Client Interface used by logical volume management applications

The objects presented by the client interface are richer and the Common LVM Layer implements additional methods to filter queries or direct actions; the intent is to simplify the client. The objects presented by the provider interface are aggregated; the intent is to simplify the implementation of the provider and pull as much common data structure manipulation code into the Common LVM Layer.

The Client Logical Volume Management API divides the responsibilities for these actions among the following objects:

1. ILVM – global logical volume management services including discovery of all logical volume providers or actions which can be performed by any existing provider.
2. ILVMProvider – actions performed by one or more providers including volume configuration and volume queries.

3. IVolume – configuration and status queries directed to a single volume and/or its contributors.

4. IPack – disk pack membership, configuration and status queries affecting a single disk pack.

5. IPlatter - disk pack migration, configuration and status queries affecting a single disk platter.

6. IDisk - status queries and maintenance operations directed to a single disk.
7. IController – status queries and maintenance operations directed to a single hardware RAID controller.

The LVM API is a COM API. In addition to the methods described herein, the API also includes those necessary to present a COM interface. Any returned arrays are allocated by the provider or common layer using CoMemTaskAlloc and freed by the client.

4.1 ILVM Public Data and Methods

The LVM object implements all methods affecting one or more other objects. These actions include asynchronous operation cancellation and completion and provider enumeration.

The ILVM public data returned includes only the method pointers.

Logical volume configuration operations operate on allocations and report volume or disk extents.

typedef struct _LVM_TARGET {

 short Type; // target type

 [switch_is(Type)] union VALUE {

 [case(1)] PDISK disk;

 [case(2)] PVOLUME volume;

 };

} LVM_TARGET, *PLVM_TARGET;

typedef struct _LVM_ALLOCATION {

 LVM_TARGET Target; // disk or volume

 DWORDLONG Length; // length in bytes

} LVM_ALLOCATION, *PLVM_ALLOCATION;

typedef struct _LVM_EXTENT {

 LVM_TARGET Target; // disk or volume

 DWORDLONG StartingOffset; // offset from base of volume

 DWORDLONG Length; // length in bytes

} LVM_EXTENT, *PLVM_EXTENT;

4.1.1 BindVolume

HRESULT

BindVolume(

 OUT PVOLUME Volume,

 IN PPACK Pack,

 IN DWORDLONG VolumeSize,

 IN VOLUME_TYPE VolumeType,

 IN PBIND_HINTS BindHints,

 IN PLVM_VALUE BindExtensions,

 IN PLVM_CALLBACK Callback

);

BindVolume creates and initially configures an automagic volume. The only required parameter is VolumeSize; all others may be defaulted. The provider uses the BindHints and BindExtensions in good faith; these parameters are hints not requirements. BindExtensions are passed without check or change to the provider.

4.1.2 StripeVolume

HRESULT

StripeVolume(

 OUT PVOLUME Volume,

 IN PLVM_ALLOCATION AllocationArray,

 IN DWORD NumberOfAllocations,

 IN LVM_VALUE InterleaveSize,

 IN PLVM_VALUE StripeExtensions,

 IN PLVM_CALLBACK Callback

);

Creates and configures a striped logical volume using extents from the specified logical volumes or disks. Stripe sets are constructed from equal length extents; equal size extents from each target (volume or disk) in the allocation array are consumed.

The number of elements of that array determines the number of stripes in the volume. The stripe chunk is determined by InterleaveSize; the chunk may be defaulted by specifying DEFAULT_INTERLEAVE (0).

The Common LVM Layer checks the AllocationArray for duplicate targets prior to invoking the provider. It is not possible to construct a stripe set using one and only one disk by specifying the disk twice.

4.1.3 MapVolume

HRESULT

MapVolume(

 OUT PVOLUME Volume,

 OUT PLVM_VALUE DiskNumber,

 IN PLVM_ALLOCATION AllocationArray,

 IN DWORD NumberOfAllocations,

 IN PLVM_VALUE MapExtensions,

 IN PLVM_CALLBACK Callback

);

Configures a mapped volume. Volume extents are allocated in the order specified by the allocation array and concatenated. The resulting mapped volume is exposed to NT and an NT disk number is assigned.

4.1.4 Create Pack

HRESULT

CreatePack(

 OUT PPACK Pack,

 IN DWORDLONG ExtentSize,

 IN PWSTR lpszPackName,

 IN DWORD cchBufferLength,

 IN PDISK DiskArray,

 IN BOOL SpareFlag,

 IN DWORD ArraySize

);

Creates a diskpack. The extent size must be a power of two disk sectors. If the extent size is not specified, the Common LVM Layer will use 1% of the largest disk drive known to be in the configuration. For example, the extent size would default to 128MB for configurations with 18GB drives.

If the DiskArray is not empty, also adds disks to a pack. Any logical volume originally on the added disks is lost and not imported to the pack. Specifying SpareFlag as TRUE reserves the added disks as hotspares and does not allow them to be immediately inhabitable for automagic dynamic reconfiguration. To swap a free disk with a disk in a pack, use IDisk :: ReplaceDisk. To add disks to a pack, use IPack :: AddDisk. Only simple disks managed by a software provider are added to a pack; logical units exported by a hardware provider are implicitly added to the pack by automagic binding.

4.1.5 QueryDisks

HRESULT

QueryDisks(

 OUT PDISK* ArrayOfDisks,

 OUT PDWORD NumberOfDisks

);

Return all disks. To scope, use the corresponding ILVMProvider or IPack method.

4.1.6 QueryPacks

HRESULT

QueryPacks(

 OUT PPACK* PackArray,

 OUT PDWORD NumberOfPacks

);

Returns all disk packs with optional scoping by provider. To scope, use the corresponding ILVMProvider method.

4.1.7 QueryProviders

HRESULT

QueryProviders(

 OUT PPROVIDER* ArrayOfProviders,

 OUT PDWORD NumberOfProviders

);

Returns all active logical volume providers.

4.1.8 QueryVolumes

HRESULT

QueryVolumes(

 IN VOLUME_TYPE Type,

 IN VOLUME_STATUS Status,

 IN VOLUME_HEALTH Health,

 IN VOLUME_JELLO Jello,

 OUT PVOLUME* ArrayOfVolumes,

 OUT PDWORD NumberOfVolumes

);

Return all volumes with optional scoping by type, status, health, and/or jello. Ignores any stacking hierarchy. To scope, use the corresponding ILVMProvider or IPack method.

4.1.9 ClearPerformanceCounter

HRESULT

ClearPerformanceCounter(

);

Clears (sets to zero) all performance counters.

4.1.10 QueryPerformanceAttributes

HRESULT

QueryPerformanceAttributes(

 OUT PLVM_ATTRIBUTE* CommonAttributeArray,

 OUT PDWORD NumberOfCommonAttributes

);

Returns common performance attribute array. Common attributes apply equally well to volumes, disks, and/or controllers.

4.1.11 StartPerformanceMonitor

HRESULT

StartPerformanceMonitor(

 IN BOOL ClearAllCounters

);

Start all enabled performance counters.

4.1.12 StopPerformanceMonitor

HRESULT

StopPerformanceMonitor(

 IN BOOL ClearAllCounters

);

Stop all enabled performance counters.

4.2 ILVMProvider Public Data and Methods

The provider object implements all volume configuration operations and resource queries.

Many of the provider ILVMProvider methods directly correspond to ILVM or ILVMSpecificProvider methods. The ILVM method supplies a “generic provider” and should be used whenever the client is willing to allow the Common LVM Layer to select the appropriate provider (eg use Veritas dynamic disks rather than ftdisk basic disks). For all of these methods, refer to the ILVM documentation section.

Method
Reference

QueryParameters
3.1.6

QueryExtensions
3.1.6

BindVolume
4.1.1

StripeVolume
4.1.2

MapVolume
4.1.3

CreatePack
4.1.4

ClearPerformanceCounter
4.1.9

StartPerformanceCounter
4.1.11

StopPerformanceCounter
4.1.12

4.2.1 EvacuateDisks

HRESULT

EvacuateDisks(

 IN PPACKID Pack,

 IN PDISKID DiskArray,

 IN DWORD ArraySize,

 IN PCALLBACK Callback

);

This routine moves any volume extents from the disk array to other disks in the diskpack. Note that to be eligible for removal, any volumes occupying a disk must have been evacuated. In other words, the disk must contain no live data. The disks remain evacuated until explicitly declared ready for inhabit, freeing from a diskpack, removal, or conversion to hot spare. This method may be used to inhabit simple disks or disks managed by a hardware provider; in the latter case, the PACKID is only advisory.

4.2.2 InhabitDisks

HRESULT

InhabitDisks(

 IN PDISKID DiskArray,

 IN DWORD ArraySize

);

Declares the disks available for automagic volume migration or other volume configuration operation. Note that InhabitDisks does not guarantee that the affected disks return to active use or again contain any previously configured logical volume. This method may be used to inhabit simple disks or disks managed by a hardware provider. The disks must be members of a diskpack.

4.2.3 QueryControllers

HRESULT

QueryControllers(

 IN OUT PCONTROLLER* Controller,

 OUT DWORD NumberOfControllers

);

Returns the associated controller object. Software providers return NULL. Hardware providers are expected to return one controller unless they are hierarchical.

4.2.4 QueryDisks

HRESULT

QueryDisks(

 IN PPACK Pack,

 OUT PDISK ArrayOfDisks,

 OUT PDWORD NumberOfDisks

);

Return all disks with optional scoping by pack.

4.2.5 QueryID

HRESULT

QueryID(

 OUT PPROVIDERID ProviderID

);

Returns the provider ID.

4.2.6 QueryLUNs

HRESULT

QueryLUNs(

 IN OUT PDWORD* LUNArray,

 OUT PDWORD NumberOfLuns

);

Returns the LUNS (logical units) exposed by this provider. Software providers return NULL.
4.2.7 QueryName

HRESULT

QueryName(

 OUT PWSTR* lpszName,

 OUT PDWORD Instance

);

Returns the provider name and instantiation. Since each controller has a unique provider, when multiple identical controllers are present, the providers will each have the same name, but different instances.

4.2.8 QueryPacks

HRESULT

QueryPacks(

 OUT PPACK* PackArray,

 OUT PDWORD NumberOfPacks

);

Returns all disk packs.

4.2.9 QueryVolumes

HRESULT

QueryVolumes(

 IN VOLUME_TYPE Type,

 IN VOLUME_STATUS Status,

 IN VOLUME_HEALTH Health,

 IN VOLUME_JELLO Jello,

 IN PPACK Pack,

 OUT PVOLUME* ArrayOfVolumes,

 OUT PDWORD NumberOfVolumes

);

Return all volumes with optional scoping by type, status, health, jello, and/or pack. Ignores any stacking hierarchy.

4.2.10 QueryType

HRESULT

QueryType(

);

Return indicates whether the provider is a software or hardware provider.

4.3 IVolume Public Data and Methods

For more information on logical volume attributes and parameters, see 3.10.

4.3.1 Delete

HRESULT

Delete(

 IN PLVM_CALLBACK Callback

);

Deletes and deconfigures the volume. All data are lost. All disk extents or volume extents which contributed to the volume are freed for immediate reuse by the volume provider. The call affects only one stacking layer. To fully delete a mapped, striped, automagic volume requires that all contributing volumes are deleted.

The Common LVM Layer performs any coordination with NT prior to passing this request to the volume provider.

4.3.2 Extend

HRESULT

Extend(

 IN PLVM_ALLOCATION AllocationArray,

 IN DWORD NumberOfAllocations,

 IN PLVM_CALLBACK Callback

);

Extend grows the specified volume. The mechanism depends on the type of volume being extended:

· Simple spanned or mapped volumes are extended by appending volume extents. The appended extents are allocated in order from the allocation array. If the allocation array contains only one volume and that volume is the last (highest LBN) contributor, that volume will be extended by the Common LVM Layer.

· Striped volumes are extended by growing each contributing automagic volume. No allocation array is necessary. (See 2.1.5)

· Plexed volumes are extended by growing each plex. If the allocation array contains only the highest volume contributors, each will be extended by the Common LVM Layer. Otherwise, the allocation array will be used to extend the mapped volume.

The Common LVM Layer grows automagic volumes by invoking ResizeBindVolume (See 3.4.3.) The Common LVM Layer also has the responsibility of informing the file system that the volume has grown.

4.3.3 Shrink

HRESULT

Shrink(

 IN DWORDLONG NumberOfBytesToRemove,

 OUT PLVM_ALLOCATION* RemovedAllocationArray,

 OUT DWORD NumberOfRemovedAllocations,

 IN PLVM_CALLBACK Callback

);

Shrink removes volume extents from the specified volume. Volume extents are always removed from the last (highest) LBN of the volume. Striped volumes are contracted by shrinking each contributing volume.

The Common LVM Layer shrinks automagic volumes by invoking ResizeBindVolume (See 3.4.3.) The Common LVM Layer also has the responsibility of coordinating with the file system to ensuring that no data is lost. Data is evacuated from the logical block ranges to be removed prior to resizing.

4.3.4 AddPlex

HRESULT

AddPlex(

 IN PVOLUME PlexVolume,

 IN PLVM_VALUE PlexExtensions,

 OUT PDWORD AddedPlexId,

 IN PLVM_CALLBACK Callback

);

Adds a plex to the specified volume. The completion routine is invoked after the added plex has been synchronized with the original volume. The Common LVM layer verifies that the PlexVolume is large enough prior to invoking the provider.

4.3.5 RemovePlex

HRESULT

RemovePlex(

 IN DWORD PlexId,

 OUT PVOLUME RemovedVolume,

 OUT PDWORD RemovedPlexId,

 IN BOOL SyncFlag,

 IN PLVM_CALLBACK Callback

);

Removes a previously added plex from the specified volume. The Common LVM Layer optionally synchronizes the file system prior to causing the plex to be broken by the provider. After removal, the plex is no longer held in synchronization with the original volume.

4.3.6 ForceHealthy

HRESULT

ForceHeathy(

);

Forces volume to be healthy. Allows possibly dangerous override in the event of catastrophic disk failures.

4.3.7 ForceInitialize

HRESULT

ForceInitialize(

);

Forces volume to be reinitialized. All data may be lost. Allows possibly dangerous override in the event of catastrophic disk failures.

4.3.8 ForceRebuild

HRESULT

ForceRebuild(

);

Forces volume to be rebuilt. Allows possibly dangerous override in the event of catastrophic disk failures.

4.3.9 SetExtensions

HRESULT

SetExtensions(

 IN BOOL Override,

 IN PLVM_VALUE BindExtensionArray,

 IN DWORD BindExtensionArraySize

);

Sets provider-specific extended attributes for the volume.

4.3.10 SetLbnRemap

HRESULT

SetLbnRemap(

 IN BOOL Enable

);

Enables or disables automagic remapping by the logical volume provider. Disabling LBN remapping freezes the current logical to physical topology of the volume.

4.3.11 SetRebuildPriority

HRESULT

SetRebuildPriority(

 IN DWORD Priority

);

Sets the relative rebuild priority for the volume.

4.3.12 QueryAttributes

HRESULT

QueryAttributes(

 OUT PVOLUME_TYPE VolumeType,

 OUT PVOLUME_ATTRIBUTES* VolumeAttributes,

 OUT PLVM_VALUE* BindExtensionArray,

 OUT PDWORD NumberOfBindExtensions

 OUT PBOOL IsStacked

);

Returns volume type, provider, pack, size, and attributes.

4.3.13 QueryControllers

HRESULT

QueryControllers(

 OUT PCONTROLLER* ControllerArray,

 OUT PDWORD NumberOfControllers

);

Returns the any controller(s) associated with the specified volume.

4.3.14 QueryDiskExtents

HRESULT

QueryDiskExtents(

 OUT PVOLUME_TYPE Type,

 OUT PLVM_EXTENT* ArrayOfDiskExtents,

 OUT PDWORD NumberOfDiskExtents

);

Returns all disk extents contributing to the volume, regardless of the stacking hierarchy. Intended to provide a simple physical view of the resources consumed by the volume.

4.3.15 QueryDiskNumber

HRESULT

QueryDiskNumber(

 OUT PDWORD DiskNumber,

 OUT BOOL VolumeIsMapped

);

Returns the NT disk number (if any) associated with this volume. If the volume is a mapped volume, the disk number was created at volume configuration. If the volume is not a mapped volume, but the volume contributes extents to a mapped volume, the NT disk number is that of the mapped volume. If the volume is not mapped, there is no NT disk number.

4.3.16 QueryExtents

HRESULT

QueryExtents(

 OUT PVOLUME_TYPE Type,

 OUT PLVM_EXTENT* ArrayOfTargetExtents,

 OUT PDWORD NumberOfTargetExtents

);

Returns all volumes contributing one or more extents to this volume. Only one level of the stacking hierarchy is traversed; the query must be made recursively at each stacking level to build up a complete view.

Use QueryDiskExtents to retrieve a flat view of all contributing extents. Use QueryPlexes to retrieve any plex information.

4.3.17 QueryID

HRESULT

QueryID(

 OUT PVOLUMEID VolumeID

);

Returns the volume ID.
4.3.18 QueryLbnRemap

HRESULT

QueryLbnRemap(

 OUT PBOOL Enable

);

Returns whether or not the volume may currently be dynamically reconfigured. If LBN (logical block number) remapping is enabled, the provider may migrate volume extents at will. Note that the returned enable applies only to the specified volume; if the volume is stacked, the constituent volumes may be differently enabled.

4.3.19 QueryLUN

HRESULT

QueryLUN(

 IN OUT PDWORD LUN

);

Returns the LUN (logical units) associated with this volume (if any). If there is no associated LUN, the return is –1.
4.3.20 QueryPack

HRESULT

QueryPack(

 OUT PPACK Pack,

);

Returns the pack containing the volume.

4.3.21 QueryPlatter

HRESULT

QueryPlatter(

 OUT PPLATTER Platter,

 OUT PPACK Pack

);

Returns the platter (if any) and pack containing the volume. If the volume is not on a platter, the return is NULL.

4.3.22 QueryPlexes

HRESULT

QueryPlexes(

 OUT PVOLUME* VolumeArray,

 OUT PDWORD NumberOfPlexes

);

Finds all plexes of the specified volume. The returned volume array contains plexes in plexId order.

4.3.23 QueryProvider

HRESULT

QueryProvider(

 OUT PPROVIDER Provider

);

Returns volume provider.

4.3.24 QuerySize

HRESULT

QuerySize(

 OUT PDWORDLONG VolumeSize

);

Returns volume size.

4.3.25 QueryState

HRESULT

QueryState(

 OUT PVOLUME_STATUS Status,

 OUT PVOLUME_HEALTH Health,

 OUT PVOLUME_JELLO Jello

);

Returns volume status, health, and jello.

4.3.26 QueryType

HRESULT

QueryType(

 OUT PVOLUME_TYPE Type

);

Returns volume type. See 4.1 for the definition of VOLUME_TYPE; Default, FaultTolerant, NotFaultTolerant are not returned as a result of this query.

4.3.27 QueryVolumeUsingPlex

 HRESULT

QueryVolumeUsingPlex(

 IN PVOLUME Plex,

 OUT PVOLUME Volume,

 OUT PDWORD PlexId

);

Finds the base volume of this volume plex. The returned plexId is that of the original plex volume.

4.3.28 QueryVolumesUsingVolume

HRESULT

QueryVolumesUsingVolume(

 IN BOOL IncludeStack,

 OUT PVOLUME ArrayOfVolumes,

 OUT PDWORD NumberOfVolumes

);

Find all stacked volumes with extents residing on the specified volume. The IncludeStack boolean scopes the stacking hierarchy; IncludeStack of FALSE returns only the next stacking level volumes.

4.3.29 StartMaintenance

HRESULT

StartMaintenance(

 IN MAINTENANCE_OPERATION Operation

);

Start specified hardware maintenance operation. The operation will affect all disks contributing extents to the volume.

4.3.30 StopMaintenance

HRESULT

StopMaintenance(

 IN MAINTENANCE_OPERATION Operation

);

Stop specified hardware maintenance operation. The operation will affect all disks contributing extents to the volume.

4.3.31 PulseMaintenance

HRESULT

PulseMaintenance(

 IN MAINTENANCE_OPERATION Operation,

 IN DWORD Count

);

Repeat specified hardware maintenance operation a specified number of times. The operation will affect all disks contributing extents to the volume.

4.3.32 ClearPerformanceCounter

HRESULT

ClearPerformanceCounter(

 IN PDWORD CounterIndexArray,

 IN DWORD CounterIndexArraySize,

 IN BOOL ClearAll

);

Clears (sets to zero) specified performance counters.

4.3.33 DisablePerformanceCounter

HRESULT

DisablePerformanceCounter(

 IN PDWORD CounterIndexArray,

 IN DWORD CounterIndexArraySize,

 IN BOOL DisableAll

);

Disables specified performance counters.

4.3.34 EnablePerformanceCounter

HRESULT

EnablePerformanceCounter(

 IN PDWORD CounterIndexArray,

 IN DWORD CounterIndexArraySize,

 IN BOOL EnableAll

);

Enables specified performance counters.

4.3.35 QueryPerformanceCounters

HRESULT

QueryPerformanceCounters(

 OUT PLVM_ATTRIBUTE* ExtendedAttributeArray,

 OUT PDWORD NumberOfExtendedAttributes

);

Returns vendor-specific performance attribute arrays.

4.3.36 QueryPerformanceData

 HRESULT

QueryPerformanceData(

 OUT PDWORD* CounterIndexArray,

 OUT LVM_VALUE* CounterValueArray,

 OUT PDWORD NumberOfCounters

);

Returns current performance counter value array.

4.3.37 QueryPerformanceCounterStatus

 HRESULT

QueryPerformanceCounterStatus(

 IN PLVM_VALUE CounterIndexArray,

 OUT PBOOL* CounterEnableArray

 IN DWORD NumberOfCounters

);

Returns current performance counter enable. For each element of the counter index array, an element of the enable array is returned. The enable array boolean is TRUE if the counter is enabled.

4.3.38 StartPerformanceMonitor

HRESULT

StartPerformanceMonitor(

 IN BOOL ClearAllCounters

);

Start performance counters.

4.3.39 StopPerformanceMonitor

HRESULT

StopPerformanceMonitor(

 IN BOOL ClearAllCounters

);

Stop performance counters.

4.4 IPack Public Data and Methods

The disk pack object implements all disk pack membership. Import/export/migration between packs are performed with IPlatter methods.

4.4.1 Delete

HRESULT

Delete(

 IN BOOL ForceFlag

);

Deletes a diskpack. If ForceFlag is specified as FALSE, the operation will fail if the pack still contains any logical volumes. Specifing ForceFlag as TRUE overrides this and causes to any logical volumes remaining in the pack to be lost.

4.4.2 AddDisks

HRESULT

AddDisks(

 IN PDISK DiskArray,

 IN BOOL SpareFlag,

 IN DWORD ArraySize

);

Adds disks to a pack. Any logical volume originally on the added disks is lost and not imported to the pack. Specifying SpareFlag as TRUE reserves the added disks as hotspares and does not allow them to be immediately inhabitable for automagic dynamic reconfiguration. To swap a free disk with a disk in a pack, use ReplaceDisk. Only simple disks managed by a software provider are added to a pack; logical units exported by a hardware provider are implicitly added to the pack by automagic binding.

4.4.3 CreatePack

HRESULT

CreatePack(

 OUT PPLATTER Platter

);

Creates a platter for volume migration.

4.4.4 FreeDisks

HRESULT

FreeDisks(

 IN PDISK DiskArray,

 IN DWORD ArraySize,

 OUT PDISK* RemovedDiskArray,

 OUT PDWORD NumberOfRemovedDisks

);

Removes disks from pack and makes them free agents. Note that to be eligible for removal, any volumes occupying a disk must have been evacuated. In other words, the disk must contain no live data. Only those disks actually evacuated will be returned in the RemovedDiskArray. This method affects only simple disks managed by a software provider.

4.4.5 QueryDisks

HRESULT

QueryDisks(

 OUT PDISK* ArrayOfDisks,

 OUT PDWORD NumberOfDisks

);

Return all disks in the pack.

4.4.6 QueryID

HRESULT

QueryID(

 OUT PPACKID PackID

);

Returns the pack ID.

4.4.7 QueryLUNs

HRESULT

QueryLUNs(

 IN OUT PPROVIDERID* ProviderArray,

 IN OUT PDWORD* LUNArray,

 OUT PDWORD NumberOfLuns

);

Returns a pair of arrays containing the provider and lun for all logical units contained within this pack.

4.4.8 QueryPlatters

HRESULT

QueryPlatters(

 OUT PPLATTER* PlatterArray,

 OUT PDWORD NumberOfPlatters

);

Returns all disk platters currently in this pack.

4.4.9 QueryProvider

HRESULT

QueryProvider(

 OUT PPROVIDER Provider

);

Returns (uppermost) provider responsible for the pack.

4.4.10 QueryVolumes

HRESULT

QueryVolumes(

 IN VOLUME_TYPE Type,

 IN VOLUME_STATUS Status,

 IN VOLUME_HEALTH Health,

 IN VOLUME_JELLO Jello,

 OUT PVOLUME* ArrayOfVolumes,

 OUT PDWORD NumberOfVolumes

);

Return all volumes with optional scoping by type, status, health, and jello. Ignores any stacking hierarchy.

4.5 IPlatter Public Data and Methods

The disk platter object implements all import/export (disk pack migration) operations.

4.5.1 Delete

HRESULT

Delete(

);

Cancels preparation of a platter for volume migration. Any volumes on the platter rejoin the disk pack and may migrate freely.

4.5.2 Export

HRESULT

Export(

 IN PLVM_CALLBACK Callback

);

Marks all disks on the platter ready for export. As a side effect, the disks contained in the platter are recorded such that when the platter is subsequently imported, the receiving pack can determine if all disks are present.

4.5.3 Import

HRESULT

Import(

 IN PPACK Pack,

 IN BOOL OverrideMissingDisks,

 IN PLVM_CALLBACK Callback

);

Imports all volumes and adds all disks contained on the platter to the pack. This operation may fail or cause reconfiguration of the existing volumes if the volume allocation extent of the platter differs from that of the receiving platter.

If one or more disks have been lost in the movement, volumes contained on the platter may not be transitively closed. Specifying OverrideMissingDisks will import any transitively closed volumes and add all disks. This may cause silent loss of volumes and/or data and should only be done with after careful consideration.

Successful import of a platter also causes deletion of that platter. The imported volumes join all other volumes in the pack.

4.5.4 Migrate

HRESULT

Migrate(

 IN PPACK NewPack,

 IN PLVM_CALLBACK Callback

);

Atomically moves the platter between packs. Both packs must be present on the same processor node in a cluster.

4.5.5 MoveVolumesOff

HRESULT

MoveVolumesOff(

 IN PVOLUME ArrayOfVolumes,

 IN DWORD ArrayOfVolumesSize,

 IN PDISK ArrayOfDisks,

 IN DWORD ArrayOfDisksSize,

 IN PLVM_CALLBACK Callback

);

Explicitly moves volumes or evacuates disks and frees them from a platter. This routine is intended for use only for minor corrections to a friendly export which inadvertently includes a volume or disk.

The FriendlyFlag controls whether or not additional volumes may by added to the platter as explained in 2.1.7. The CompactFlag controls whether or not volume extents are compacted onto disk drives prior to migration. Logical volume providers compact volumes in good faith but the number of drives is not guaranteed to be the absolute minimal.

Once completed, all affected logical volume providers may do no other automagic migration of volumes to or from the platter. Removing a volume from platter causes that volume to rejoin the diskpack and may result in automagic reconfiguration of the volume if otherwise permitted.

4.5.6 MoveVolumesOnto

HRESULT

MoveVolumesOnto(

 IN PVOLUME ArrayOfVolumes,

 IN DWORD ArrayOfVolumesSize,

 IN PDISK ArrayOfDisks,

 IN DWORD ArrayOfDisksSize,

 IN BOOL CompactFlag,

 IN BOOL FriendlyFlag,

 IN PLVM_CALLBACK Callback

);

Prepares a platter for migration by moving one or more volumes to one or more disks. Specifying a disk array is optional; automagic volume managers may select disks for migration. Moving volumes to a platter may cause volume extent migration.

The FriendlyFlag controls whether or not additional volumes may by added to the platter as explained in 2.1.7. The CompactFlag controls whether or not volume extents are compacted onto disk drives prior to migration. Logical volume providers compact volumes in good faith – the number of drives is not guaranteed to be the absolute minimal.

Once completed, all affected logical volume providers may do no other automagic migration of volumes to or from the platter. No change in volume type is permitted.

4.5.7 QueryDisks

HRESULT

QueryDisks(

 OUT PDISK* DiskArray,

 OUT PDWORD NumberOfDisks

);

Returns the disks (if any) contained on the platter.

4.5.8 QueryPack

HRESULT

QueryPack(

 OUT PPACK Pack

);

Returns the diskpack containing this platter.

4.5.9 QueryProvider

HRESULT

QueryProvider(

 OUT PPROVIDER Provider

);

Returns (uppermost) provider responsible for the platter.

4.5.10 QueryVolumes

HRESULT

QueryVolumes(

 IN VOLUME_TYPE Type,

 IN VOLUME_STATUS Status,

 IN VOLUME_HEALTH Health,

 IN VOLUME_JELLO Jello,

 OUT PVOLUME* VolumeArray,

 OUT PDWORD NumberOfVolumes

);

Returns all volumes (if any) contained on this platter with optional scoping by type, status, health, and jello. Ignores any stacking hierarchy.

4.6 IDisk Public Data and Methods

Many of the IDisk methods directly correspond to IVolume methods. For all of these methods, refer to the IVolume documentation section.

Method
Reference

QueryParameters
3.1.6

QueryExtensions
3.1.6

StartMaintenance
4.3.28

StopMaintenance
4.3.29

PulseMaintenance
4.3.30

ClearPerformanceCounter
4.3.31

DisablePerformanceCounter
4.3.32

EnablePerformanceCounter
4.3.33

QueryPerformanceCounters
4.3.34

QueryPerformanceData
4.3.35

QueryPerformanceCounterStatus
4.3.36

StartPerformanceCounter
4.3.37

StopPerformanceCounter
4.3.38

4.6.1 ReplaceDisk

HRESULT

ReplaceDisk(

 IN PDISK NewDisk,

 IN BOOL StrictFlag,

 IN PLVM_CALLBACK Callback

);

Substitutes one physical disk for another to allow media migration. Any contents of the replaced disk are migrated, although not necessarily to the new disk. Specifying StrictFlag to be TRUE causes strict replacement; all contents of the replaced disk are migrated to the new disk. If StrictFlag is true and the new disk is not large enough to hold the contents of the replaced disk, the operation will fail. At completion, the replaced disk is no longer in use and may be physically removed.

4.6.2 SetHotSpare

HRESULT

SetHotSpare(

 IN HRESULT Enable

);

Declares disk to be used as a hot spare. If the disk current contributes to one or more logical volumes, this call will fail. The volumes must be first moved using ReplaceDisk (4.6.1).

4.6.3 QueryConnection

HRESULT

QueryConnection(

 OUT PDISK_CONNECT_TYPE ConnectionType

);

Returns abstracted physical connection to disk. See 3.11.2 for the returned connection types.

4.6.4 QueryController

HRESULT

QueryController(

 OUT PCONTROLLER Controller

);

Returns the controller (if any) associated with the specified disk.

4.6.5 QueryExtensions

HRESULT

QueryExtensions(

 OUT PLVM_VALUE* DiskExtensionArray,

 OUT PDWORD NumberOfDiskExtensions

);

Returns vendor-specific disk parameter array.

4.6.6 QueryID

HRESULT

QueryID(

 OUT DISKID DiskID

);

Returns the disk ID.

4.6.7 QueryLUNs

HRESULT

QueryLUNs(

 IN OUT PDWORD* LUNArray,

 OUT PDWORD NumberOfLuns

);

Returns any LUNS (logical units) contributed by this disk. Valid only if the disk is managed by a hardware provider. Software providers return NULL.

4.6.8 QueryParameters

HRESULT

QueryParameters(

 IN OUT PLVM_PARAMETER* ExtendedParameterArray,

 OUT PDWORD NumberOfExtendedParameters

);

Returns the array of LVM_VALUE vendor-specific disk extended parameter values.

4.6.9 QueryPack

HRESULT

QueryPacks(

 IN OUT PPACK* PackArray,

 OUT DWORD NumberOfPacks

);

Returns the diskpack containing the disk. If the disk is a free agent, the returned pack is NULL. If the disk is managed by a software provider, the number of packs must be one.

4.6.10 QueryPlatter

HRESULT

QueryPlatter(

 OUT PPLATTER Platter,

 OUT PPACK Pack

);

Returns the platter (if any) and pack which contains the disk. If the disk is not on a platter, the return is NULL. If the disk is a free agent, the returned pack is NULL.

4.6.11 QueryProvider

HRESULT

QueryProvider(

 OUT PPROVIDER Provider

);

Returns lowest level provider managing the disk.

4.6.12 QuerySize

HRESULT

QuerySize(

 OUT PDWORDLONG DiskSize

);

Returns size in bytes of the specified disk.

4.6.13 QueryStatus

HRESULT

QueryStatus(

 OUT PVOLUME_STATUS Status

);

Returns current access by NT. Disk access is the same as volume access (VOLUME_STATUS).

4.6.14 QueryVolumesUsingDisk

HRESULT

QueryVolumesUsingDisk(

 IN VOLUME_TYPE Type,

 IN VOLUME_STATUS Status,

 IN VOLUME_HEALTH Health,

 IN VOLUME_JELLO Jello,

 IN BOOL IncludeStack,

 OUT PVOLUME* ArrayOfVolumes,

 OUT PDWORD NumberOfVolumes

);

Finds all volumes with extents residing on the specified disk with optional scoping by type, status, health, and jello. Specifying IncludeStack as FALSE will cause only the lowest level bound volume to be returned. Set IncludeStack to TRUE to traverse the hierarchy locating all stacked volumes.

4.7 IController Public Data and Methods

Many of the IController methods directly correspond to IVolume methods. For all of these methods, refer to the IVolume documentation section.

Method
Reference

QueryParameters
3.1.6

QueryExtensions
3.1.6

StartMaintenance
4.3.28

StopMaintenance
4.3.29

PulseMaintenance
4.3.30

ClearPerformanceCounter
4.3.31

DisablePerformanceCounter
4.3.32

EnablePerformanceCounter
4.3.33

QueryPerformanceCounters
4.3.34

QueryPerformanceData
4.3.35

QueryPerformanceCounterStatus
4.3.36

StartPerformanceCounter
4.3.37

StopPerformanceCounter
4.3.38

4.7.1 ForceHealthy

HRESULT

ForceHeathy(

);

Forces controller to be healthy. Allows possibly dangerous override in the event of catastrophic controller or disk failures.

4.7.2 ForceInitialize

HRESULT

ForceInitialize(

);

Forces controller to reinitialize. Must not affect current volumes configured behind the controller.

4.7.3 ForcePath

HRESULT

ForcePath(

 IN DWORD ActivePath

);

Forces active controller path to specified path.

4.7.4 ForceRebuild

HRESULT

ForceRebuild(

);

Forces all volumes configured behind the controller to be rebuilt. Allows possibly dangerous override in the event of catastrophic controller or disk failures.

4.7.5 SetExtensions

HRESULT

SetExtensions(

 IN BOOL Override,

 IN PLVM_VALUE* ConrollerExtensionArray,

 IN DWORD ControllerExtensionArraySize

);

Sets provider-specific extended attributes for the controller.

4.7.6 QueryAttributes

HRESULT

QueryAttributes(

 OUT PBOOL Online,

 OUT PVOLUME_HEALTH Health,

 OUT PCONTROLLER_ATTRIBUTES* ControllerAttributes,

 OUT PLVM_VALUE* ControllerExtensionArray,

 OUT PDWORD NumberOfControllerExtensions

);

Returns whether the controller is currently online, vendor-specific controller extended parameter values, and vendor-specific extended binding attributes.

4.7.7 QueryDisks

HRESULT

QueryDisks(

 OUT PDISK* ArrayOfDisks,

 OUT PDWORD NumberOfDisks

);

Returns an array of disks attached to the controller. The array is exactly DiskPaths by DisksPerPath; where DiskPaths and DisksPerPath are controller attributes. If no disk is present at the location, the DISKID array entry is returned as INVALID_DISK. If the array is not sufficiently large, an error is returned and all array contents are suspect.

4.7.8 QueryID

HRESULT

QueryID(

 OUT PCONTROLLERID ControllerID

);

Returns the controller ID.

4.7.9 QueryLbnRemap

HRESULT

QueryLbnRemap(

 OUT PBOOL Capable,

 OUT PBOOL Enable

);

Returns whether or not the controller is capable of dynamic volume reconfiguration and whether or not the controller is currently allowed to do so. If LBN remapping is enabled, the provider may migrate volume extents at will.

4.7.10 QueryPath

HRESULT

QueryPath(

 OUT PDWORD PrimaryPath,

 OUT PDWORD SecondaryPath,

 OUT PDWORD ActivePath

);

Returns primary, secondary, and currently active paths for a dual pathed controller.

4.7.11 QueryProvider

HRESULT

QueryProvider(

 OUT PPROVIDER Provider

);

Returns the associated provider.

4.8 CIM Public Data and Methods

The controller maintenance operations described in 3.14 are exposed as CIM objects. The table will summarize correspondence between the SES maintenance element and the CIM object. Full design of the mapping is still TBD.

SES Maintenance Element
CIM Object
Comments

PowerSupply

Cooling

Temperature

DoorLock

AudibleAlarm

ControllerElectronics

ConfigurationElectronics

NonvolatileCache

UninterruptiblePowerSupply

Display

Keypad

ExternalPort

Language

CommunicationsPort

Voltage

Current

TargetPort

InitiatorPort

5. NT callbacks

This section enumerates all NT methods used by the Common LVM Layer. These routines are not to be used by logical volume providers or application clients.
Bare minimum enumeration. All will likely have user and kernel mode equivalents. Known missing include any GUID to device target translations.

5.1.1 EvacuateVolumeExtent

This TBD routine gets the file system to move files from a list of extents (prior to shrinking a volume).

5.1.2 InhabitVolumeExtent

This TBD routine informs the file system that the volume has been extended.

5.1.3 SynchVolumeContents

This TBD routine causes the file system or database to synchronize the volume media contents. Used prior to breaking a snapshot plex. Implies some companion mechanism by which a database or other application can register a synchronization callback.

5.1.4 UpdateWolfpackLVM

This TBD routine causes logical volume configuration change information to be written to the Wolfpack quorum data.

5.1.5 GetWolfpackLVM

This TBD routine retrieves logical volume configuration change information from the Wolfpack quorum data.

6. Vendor interactions and issues

This section very rough. Suggestions solicited.

6.1.1 Veritas

Veritas maintains a vxconfigd API. As of this writing, how that API would map to this API is unclear – that API and the underlying architecture are undocumented. The following are known technical issues in addition to any business issues:

1. Veritas groups are not diskpacks. Veritas maintains configuration information for all members of a group on each group member. The base product implements basic volume sanity and supports only one disk group. The LDM-Pro product imposes a majority rule quorum for groups and supports multiple groups. With the possible exception of volume migration between groups, this issue can be addressed by treating groups as “super-packs”. Groups provide additional robustness properties over LVM packs.

2. Support for volume migration between groups is unclear. This may be limited to LDM-Pro, or may be more generally restricted.

3. Volume stacking is supported only with LDM-Pro. Veritas may also support mirrored stripes not striped mirrors.

4. Veritas integration with Wolfpack is still being worked. The failover unit is the group, but there is a circular dependency between group sanity and quorum volume identity. Veritas does not discover the volumes contained within a group until the group is brought online. Disk ownership must be established prior to bringing the group online. Thus, the unit of arbitration is the group rather than quorum volume. This issue is true with or without and LVM API.

5. Veritas has some thoughts about an API for hardware RAID controllers. This API would allow their system management applications to manage RAID controllers. We don’t know the extent to which this API has found acceptance with various RAID vendors. We should at least avoid asking the same vendor to implement two APIs for our systems.

6. Veritas scaling to the no-care systems is unclear. Their on-disk partition structure differs from the DOS partition – transparently converting back and forth without loss of data is untested. Also, their current memory footprint is not small.

6.1.2 Minimalist hardware provider

A minimalist hardware provider does the least management implementation work and offers the least additional intelligence. Such a provider does not implement automagic configuration rules or dynamic extent remapping. The minimalist capabilities are exposed to the common volume management layer at provider registration.

A minimalist provider uses the AutomagicToDirectBinding callback in response to all BindVolume requests and may chose not to support striped or spanned volumes. Maintenance operations may be totally unsupported (for host-based adapter controllers) or supported strictly via standard SCSI SES protocol (initiated by the common logical volume layer). No performance counters need be exposed.

6.1.3 Automagic enterprise hardware provider

An automagic enterprise provider implements provider-specific rules for volume binding and dynamic volume tuning. Those rules are never exposed directly and likely execute on the hardware controller. EMC Symmetrix boxes are a good model for this type of provider.

Automagic providers may implement the notion of diskpacks or may ignore them. Multiple packs may inhabit a single disk cabinet and the provider may migrate extents between packs. In this case, hot spare drives should be exposed only as free agents. Alternately, the provider may participate in the pack resource scoping by migrating extents only within a pack.

7. References

1. [SES] SCSI Enclosure Services; {Date: 1998/01/30, Rev: 08b, Status: Publication, Project: 1212-D}; http://www.symbios.com/t10/io/t10/drafts/ses/ses-r08b.pdf.

2. [SSC] SCSI Controller Commands; {Date: 1997/09/12, Rev: 04, Status: NCITS Approval, Project: 1225-D}; http://www.symbios.com/t10/io/t10/drafts/scc2/scc2r04.pdf.

8. Issues

8.1 Open

1. Need to understand implications for GUID. Need is non-volatile unique identifier. Current ftdisk uses only 64bits; storage subsystem may use per-epoch.

2. The completion model for asynchronous operations is unclear and will depend on the threading used. Teo owns.

3. Big installations likely need some tradeoff dictums to balance length of time necessary complete a topology query vs. the overhead associated with keeping a host-based cache updated at all times. Updating such a cache can be expensive, but long queries can be frustrating. CvI owns.

4. Interactions between removable media and LVM need work. Seems like backup snapshot to a JAZ drive would be nice. At the very least, need to add a “removable” disk attribute (which differs from disk connection type) and consider how that may or may not map to a volume attribute. Teo owns.

5. Find another term for volume configuration stability. Jello, while descriptive, is hardly technical. Nik owns.

6. Performance counter definitions are totally punted. Decision here was that counter support was sufficient and that trace retrieval was highly specialized and outside our scope. (Value added for the hardware guys and implies private tools.) Need to get a list of common counters vetted by the RAID folks; suggest we start with existing diskperf wdm list. CvI owns.

7. Error handling also punted. WMI/WEBM should provide some infrastructure, but when ? What we’d really like is a general publish/subscribe model with minimal filtering. Where is this coming from ? CvI owns.

8. Is ReplaceDisk an IDisk or IProvider or IPack method ?

9. Need to resolve naming for QueryVolumeLUN. Intent is for controller to return the right thing to allow the common layer to implement the SES functionality. Likely need an SES attribute on the controller.

10. WEBM/WMI/CIM integration is TBD. Goal would be to leverage off that infrastructure if possible, but provide specialized-to-LVM view. Query operations are simpler than configuration operations and event delivery. For queries, LVM likely becomes become high performance provider for WEBM and converts to CIM schema objects; note, however that CIM schema needs to be enriched to encompass stacking. Run away until schema and COM issues settles. CvI owns.

11. Should we do more packing/unpacking of the SES CDB structures at the client interface to more closely match CIM ? See 13 unless a client application appears. CvI owns.

8.2 Closed

1. Per review, need to break “volume” into distinct names to distinguish the non-mapped ones. Introduction of LUN clarifies role.

2. If the volume topology configuration is changing dynamically, wildcard queries may not result in self-consistent (coherent) information. Tough. We don’t care enough about the problem to implement the sort of big locks or logging required to get it precise.

3. At import, if the allocation quantum of the importing platter differs, we’ve got a reshuffle. This is ugly, but one and one allocation size also feels wrong. Fix quantum size until we understand how to do the reshuffle.

4. COM (or other mechanism) must be able to steer queries on a per node basis within the cluster. Shared nothing means that one node can’t actually see the full resources of another. Doing the query on each node may cause duplicate reporting of offline or other unowned resources (hot spares). Punt to GUI.

5. Similarly, there is a real opportunity for a good cluster wide view of the system. Such aggregation and filtering is punted to the client application where display is everything. Resolved.

6. Each logical volume provider managing a stacked volume consumes space. Missing is some way of pre-computing the necessary size of an automagic volume given the desired size of a mapped/striped volume which uses it. Given storage sizes these days and relatively small budget, this is also tough.

7. Hot sparing policy is flexible. Hot spares may be bound to a pack or free agents. The latter allows a single hot spare in a RAID controller to span packs. The drive replaces the pack drive when spared.

8. Target NT 6 likely due to test issues. No known kernel dependencies that cannot be “next versioned” in the Common LVM Layer (eg evacuating space prior to shrinking a volume). Resolved.

9. Revision History

Revision
When
Who
What

0.1
06-24-98
CvI
Original draft

0.2
07-08-98
CvI
Flesh out automagic; split of stacking. Punt on performance, errors. Fold in Norbert’s comments from 0.1

0.3
08-10-98
CvI
Pull all APIs but configuration for now. Add diskpack and wolfpack. Next step is flesh pack and query.

0.4
09-09-98
CvI
All APIs back. Pre-v1.0 review.

1.0
09-29-98
CvI
All pre-review comments included.

2.0
01-20-99
CvI
COM reorganization. Separate provider and client APIs.

2.1
01-29-99
CvI/Teo
More COM; resolve disk/Lun problem; clarify maintenance

2.2
02-03-99
CvI/Teo
As shared with Compaq

2.3
02-20-99
CvI
Packs are software only; CIM placeholder

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.4 ���

� EMBED Visio.Drawing.5 ���

� SCSI SCC-2 and the RAID Handbook[3] terms disk extents p_extents and volume extents ps_extents. The storage made available to the application is equal to the extent size only for ps_extents.

� Note: this differs from the current ftdisk. Unbinding a mirror set removes one of the set members, but leaves both members exposed to NT.

� While this example seems odd, one might want to do this to get a stripe chunk size unsupported by the controller.

� For example, to allow fast access to lower LBNs which contain file system metadata

� Don’t ask us why one would want to do something like this.

� Disk Administrator does this today.

� By Veritas.

� Consider the case of a two-way mirror. The volume provider loses communication with one of the mirrors. The system subsequently crashes. The provider discovers both mirrors. The epoch number, or other tie-breaker mechanism can be used to determine which is the most up-to-date mirror.

� The specified callback and context parameters are placeholders. See issues.

� Need to formalize ILVMCompletion class, depending on whether we use a GUID or per operation cookie. Assume GUID for now. Only volume and platter operations are asynch now and we ignore the platter.

� We’re looking for an alternate technical term. Suggestions ?

� Wolfpack enforces shared nothing. All drives within a pack (hence on a platter) are owned by the same processor. Migration of a platter does not implicitly cause failover of that platter across nodes.

� Packing and unpacking that structure was considered but seemed to offer little value above providing nice field naming.

� Wolfpack enforces shared nothing. All drives within a pack (hence on a platter) are owned by the same processor. Migration of a platter does not implicitly cause failover of that platter across nodes.

1
1

 PAGE 1

PAGE 1

[image: image4.wmf]Automagical

configuration

Disk

Striping

Mapping

(concatenation)

Plex

Plex

[image: image5.wmf]Big-magilla aps for

controlled binding,

performance and state

change monitoring

Free-from-care apps for

automagic binding and

montoring

Software logical volume

provider

Hardware logical volume

provider

Physical disk(s)

Common logical volume managment layer

[image: image6.wmf]Exposed

Initializing

Unhealthy

Healthy

Rebuilding

_966250664.vsd
Healthy�

Unhealthy�

Exposed�

Rebuilding�

Initializing�

�

_981731163.vsd
Automagical configuration�

Disk�

Striping�

Mapping
(concatenation)�

Plex�

Plex�

�

_963928826.vsd
Physical disk(s)�

Software logical volume provider�

Hardware logical volume provider�

Common logical volume managment layer�

Big-magilla aps for controlled binding, performance and state change monitoring �

Free-from-care apps for automagic binding and montoring�

