WIN32 Security Utility Classes

The intention of this document is to provide a brief outline of the WIN32 Security Model, and how the Security Utility classes that are used by SECRCW32.DLL encapsulate this model. It is not the intention of this document to thoroughly describe the guts of NT Security. For this sort of information, a good text is Windows NT Security by Nik Okuntseff.

WIN32 Security

There are several different constructs one must be familiar with in order to work with Windows NT security. These are as follows: SID, ACE, ACL, ACL, DACL, Owner, SECURITY_DESCRIPTOR.

SID
A SID is a Security Identifier. A Security Identifier identifies an account that can be a group, user, or a well-known SID (such as the group EVERYONE). SIDs are used to identify accounts for which levels of security are being applied. The class CSid is used to encapsulate the functionality of a SID.

ACE
ACE stands for Access Control Entry. An Access Control Entry is a piece of data that must be one of several types:

Access Allowed

Access Denied

System Audit

System Alarm (not supported by the provider)

Once the type is defined, the ACE itself consists of a SID, an Access Mask and a set of flags. The SID is the account the ACE describes access for, the Access Mask is the access bits the ACE controls for the user and the flag values vary from ACE Type to ACE Type. The class CAccessEntry encapsulates the data in an ACE.

ACL
An ACL is an Access Control List. ACLs in the Win32 API have a set of APIs for managing them. ACLs are made up of ACEs. For usability sake, I created a class called CAccessEntryList that uses a STL Linked List to maintain CAccessEntry objects.

DACL
A DACL is a Discretionary Access Control List. A DACL consists of only Access Allowed and Access Denied ACEs. This is what is traversed by the OS in order to determine whether or not a user has access to a particular object. An Empty DACL means that nobody has access to the object.. A NULL DACL means there is no security and Everyone has Full Control over the object. The class CDACL encapsulates a list of Access Allowed and Access Denied CAccessEntry objects.

SACL
A SACL is a System Access Control List. A SACL consists of System Audit and System Alarm ACEs. The class CSACL encapsulates a list of System Audit ACEs (System Alarm ACEs are ignored).

Owner
Any secured object has an Owner. The Owner of an object is a SID that ALWAYS has access to change the DACL of an object, so even if a DACL gets set so that nobody can access the object, there is always an account that can fix the DACL. A CSid is used to describe an object’s owner.

SECURITY DESCRIPTOR

When one gets or sets and object’s security, the medium used to transmit the information is a SECURITY_DESCRIPTOR. A SECURITY_DESCRIPTOR can contain an Owner, a DACL and a SACL. SECURITY_DESCRIPTORs may be Absolute or Self-Relative. Self-Relative means the descriptor and all of its components are contained in a single contiguous block of memory. Absolute means the descriptor contains pointers to external memory blocks. The CSecurityDescriptor class encapsulates the functionality of a Security Descriptor and is intended to hide the “self-relative vs. Absolute” nastiness of dealing with Security Descriptors, DACLs, SACLs and SIDs.

Security Utility Classes

This section outlines the different classes in the Security Utils directory. The intention of these descriptions is to give a brief overview of the classes and what they are used for. Please note that the basic idea for these classes was lifted from the Windows NT Security by Nik Okuntseff book mentioned earlier, although the actual implementation is somewhat different in terms of how classes are put together and the entry point functions are used to provide the desired functionality.

The source files for these classes are located in the Win32Provider\Providers\SecurityUtils subdirectory.
CSid

This class holds on to the various data associated with an account. This includes name, domain, SID and Sid Type. A CSid can be initialized with a PSID, an account name in “Domain\Name” format, or a separate Domain and Name. It can also have the name of a computer to execute on specified in order to handle accounts on a remote machine. Because it lookups can go out over the network, be aware that sometimes instantiating these can be somewhat costly. There are also three functions that have somewhat mystical returns, that one should be aware of:

IsValid()

IsOK()

IsAccountTypeValid()

IsValid() returns if the CSid contains a valid PSID (althoough a Lookup may have failed because a domain controller could not be reached). This means that at least the contained SID is valid.

IsOK() returns if a Lookup was successfully executed, meaning that the SID, Account Name and Domain Name values are all valid (although possibly empty in the case of the last 2 values).

IsAccountTypeValid() returns whether or not the Account Type returned by a lookup is a Deleted User, Invalid or Unknown. A Lookup may succeed for a SID, but specify a Deleted User, in which case the Account Information can be goofy (a domain, but no name).

CAccessEntry

Access control lists in Win32 are comprised of ACEs. In the Security Classes we are using, our Access Control Lists are comprised of CAccessEntry objects. These objects really just act as wrappers for the data held in various ACE objects. Currently, the objects are differentiated by the ACEType value, although deriving classes from here (e.g. CAccessAllowedEntry, CAccessDeniedEntry) might not be such a bad idea I terms of preserving type-safety and being all objecty and stuff.

CAccessEntryList

This class encapsulates a linked list of CAccessEntry objects. It is designed to provide direct memory access to its data to only itself and derived classes. Public functions for enumerating and retrieving data only allow the user to work with copies of data held internally by the class. The idea here is to make the class as goof-proof as possible. Also, since ACLs tend to consist of finite types of ACEs, the idea here, was to allow derived classes to provide public entry points for adding and removing CAccessEntry objects, so that type-safety in terms of our lists is preserved. When we build Access Entry Lists, one of our features, is that if we find duplicate ACEs in an ACL, we merge them together so we maintain single ACEs based on SID, Type and Flags.

CDACL

This class is derived from CAccessEntryList. It ONLY allows the user to add and remove Access Allowed and Access Denied entries. Of note here, is the fact that DACLs maintain a canonical order of entries. What this means, is that in order to optimize the NT access check tests, one should place all access denied entries before one’s access allowed entries. NT does NOT enforce this, however, but it is encouraged. With this in mind, when Access Denied entries are added to a DACL, they are added at the head of the list, while Access Allowed entries are appended to the end of the list. NT 5.0 adds some gotchas to all this which, I will discuss later in an NT 5.0 section.

CSACL

This class is derived from CAccessEntryList. It currently only contains functions for adding and removing Audit Entries, however, it is where we would also add Alarm entries when we decide to support those entries as well.

CTokenPrivilege

In order to perform some of our operations, such as obtaining SACLs or setting an objct’s Owner, certain Windows NT Privileges need to be enabled in the token the thread is using to perform our operations. This class provides an easy way to enable/disable a named privilege in our associate access token.

CSecurityDescriptor

This is the big kahuna. The InitSecurity() function call is passed a Security Descriptor which is used to record an Owner SID, a DACL and a SACL. The DACL is broken into two parts, an Access Allowed DACL and an Access Denied DACL. If a user requests a DACL, the two are combined together into a single DACL. By keeping the entries separate internally, it just makes it easy to track which entries are going where. One of the internal “features” is that NULL DACLs are translated into an Access Allowed DACL with a single ACE for “Everyone” with full control security. This is automagically translated on the way in and on the way out. Corresponding entry points for adding and removing typed Access Entries are provided for the DACL and SACL members, as well as for changing an object’s owner.

When the ApplySecurity() function is called, the user MUST specify which items to change, Owner, DACL and/or SACL. The function will build a security descriptor and pass it into the WriteOwner() and/or WriteACLs() functions so a derived class can apply the descriptor in the correct fashion. Please note that the WriteOwner() and WriteACLs() functions are pure virtual in CSecurityDescriptor, so derived classes MUST implement these functions for the CSecurityDescriptor class to be of any use.

CSecureFile

This class is derived from CSecurityDescriptor. This class provides entry points for obtaining security info from, and applying security information to a file/directory object.

Remote Computers

One of the features of security is that on a network, one can specify that security functions execute on a remote machine. For example, to set security on directories on a mapped network drive, one would need to specify that the SIDs all be obtained from the remote machine in order to ensure that the security will work correctly. The CSID class was designed to handle this, and one will note that a computer name can be passed into the object so we pull security from the correct place. However, in order to get all of this working correctly, one would also need to ensure that the CSecurityDescriptor class maintained a remote computer name (passed in during the call to InitSecurity()), and used that computer name when resolving SIDs. This would require some modification (estimate a day’s worth), but in the end, would make these classes even more powerful than they already are.

NT 5.0
NT 5.0 has made some drastic changes in the ways ACLs work in terms of inheritance that need to be covered should we decide to provide FULL support for NT 5.0.

A new flag, INHERITED_ACE was introduced that means the ACE while retrieved for security, does not really exist, and was inherited from a parent object. When a DACL is written out, if one wants to keep INHERITED_ACEs as such, we should NOT write these out, and rather need to specify a flags in the SECURITY_DESCRIPTOR that Auto Inheritance should take place (this flag is in the NT 5.0 WINNT.H file). However the flag used to specify AUTO_INHERITANCE is not always enforced by an API. For example, we could specify this flag but if we call SetFileSecurity() nothing will happen.

To fully support auto-inheritance, a function SetNamedSecurityInfoEx() should be called. However, setting up this function would require another set of translation functions be added to the CSid, CAccessEntry and CAccessEntryList functions in order to support the new types of structures required to make this function work. I estimate the time required to research and perform these changes to be approximately 3 days. However, I have not actually done this so, it may be easier/harder than estimated.

The current security model we are using more closely resembles the NT 4 model, in that INHERITED_ACEs are written back, however to maintain canonical order, we write them back as follows:

Access Denied, Access Allowed, Inherited Access Denied and Inherited Access Allowed.

BE CAREFUL
When testing security applications, make sure you are not working with anything important. You can VERY EASILY put yourself in a situation where you, nor anyone else have access to an object you are working with. If for example you did this to your Windows Directory and/or your registry security, you could get yourself into a really sorry state, really quick.
