Windows 95/98 Configuration Manager

And The Registry

The intention of this document is to help clear up any mysteriousness regarding how the Configuration Manager classes handle the Windows Registry and the Configuration Manager Data stored therein.

Why It Was Written

The configuration manager classes for the Win32 Providers were written as an attempt to put off having to write a thunking layer and 16-bit code in order to access Windows Configuration Manager resource data (e.g. IRQs, IO Ports, etc.).

Currently the resource data is retrieved by reading binary data from the registry and converting said data into resource descriptors as defined in the DDK. This is an undocumented and most likely unsupported method of grabbing the data, however, it is a fully 32-bit solution. On the other hand, the data retrieved is only a partial representation of all the data that could possibly be retrieved from the Configuration Manager.

In order to access all the data, it is looking more and more likely that we will have to write a thunking layer for Windows 95. For Windows 98, there is a chance that 32-bit APIs may be available, although I have not researched this.

The configuration manager classes that we use, however are an abstraction of the retrieved data. What this means, is that they provide a single point of entry that may be used for retrieving the data, and translating it into a format used by the rest of our code.

How It Works

This section describes how we use the registry in order to obtain our data. Although the method of retrieving the data isn’t necessarily documented, the structures that the data corresponds to are, so be aware that there are some leaps of logic being made in terms of how the data is being retrieved.

First off, the Configuration Manager stores its allocation data for every device it is aware of , in the HKEY_DYN_DATA\Config Manager\Enum key in the registry. Under this key exists one subkey for every device on the system. The subkeys consist of names such as the following: C112E590, C112E670, etc.

Each of the subkeys contains a series of values as follows: Allocation, HardwareKey, Problem and Status.

Allocation – This is the binary data that describes resource allocations for the device.

HardwareKey – This is the subkey under HKEY_LOCAL_MACHINE\Enum where the device descriptions and such can be found.

Problem – This is a problem code associated with the device. If there are no problems, it is 0, if there are, it will have a value.

Status – This is a mask of bits combined together that describe the configuration manager status of the device. This value at times may seem to indicate a problem, but problem will not actually show anything as being wrong..

HardwareKey is the link between the Configuration Manager Device Information and the outside world. If one goes to the subkey pointed to by the hardware key, one will very quickly find a bunch of human readable data on the device, such as name, manufacturer, etc. This is the data many of our providers read when we are giving data on Network Adapters, SCSI drives and such. Unfortunately, there is no quick way to jump from a Hardware Key to a configuration manager device in the registry, although it seems to me that writing such a function would not be very difficult.

Allocation Data Format

The allocation data appears to consist of a set of different resource descriptors. There are four standard types of resource descriptors handled by the Configuration Manager: IRQ, IO Port, Device Memory and DMA. There are structures in the Windows 95 DDK that correspond to each of these resources. There is a file called “Poormansresource.h” that contains all of these structures for quick and easy reference. The actual format of the binary data is surprisingly simple:

All of these start off with 8 bytes that don’t seem to really mean anything. My guess is version information.

The next four bytes are a DWORD describing the size of the immediately following descriptor.

The next four bytes are a resource id. Only the first 5 bits of this id are a number we need to pay attention to. The rest of the bits may be flags indicating that the resource is ignored, or other information (such as an OEM Number). The actual resource id determines how the data following should be interpreted, since at that point the data will cleanly fall into one of the appropriate resource descriptors.

There is a possibility that a described resource is not one of the four standard resources, in which case, there’s not a lot we can do with the data. The Configuration Manager code will however, grab the resource and place it in the generic resource descriptor object (meaning we won’t be able to do much with it).

Status And Problem Codes

Status and problem code values are also defined in the Poormansresource.h file. There are also human readable strings corresponding to the problem codes that can be found in the Windows 95 DDK header (they are NOT in the poormansresource.h file).

CResourceDescriptor

This is the base class for all of our resource descriptors. It acts as a repository for the binary data for each descriptor. It provides some virtual functions for implementation by derived classes in order to provide interpreted data from the descriptor. It is really up to the derived classes to perform the appropriate interpretation, and provide resource specific methods for accessing the binary data. Currently, there are three derived classes: CIRQDescriptor, CDMADescriptor, CIODescriptor. I have written a fourth class, CDeviceMemoryDescriptor, but it is not in the current project.

CConfigMgrDevice

This class is supplied with the Device ID on its constructor. This is the registry key from which we are obtaining our data. It maintains lists of resource descriptors, status and problem codes, a device description and a harware key for the device. This is where changes (if any) that are made in terms of where we retrieve configuration manager information should be made.

Why Does It All Work?
I don’t know. Actually, the method we are using for traversing the registry is not really documented, but too much of it fits together for it all to be coincidentally. So, yes it’s true, I in fact really don’t know.

Where Do We Go From Here?

While resource data, device status codes and device problem codes are a significant percentage of the data available from the Configuration Manager, it is still only a subset of the total data available. Additional pieces of information, such as the bus type of a device, parent-child-sibling relationships of hardware devices and such are all available from the Configuration Manager. However, accessing this information is not all that straightforward.

In Windows 95, the Configuration Manager is a 16-bit piece of code, and talking to it will require an additional 16-bit piece of code from us. Once that is in place, a thunking layer will need to be established so our 32-bit code can obtain the data. At this time, I do not believe this will require creation of a VXD or similar piece of code.

In Windows 98, the Configuration Manager appears to be accessible from the 32-bit environment, although I do not know how much of the 16-bit API set may be supported and what if any additional data that may be available.

Because of the way the Configuration Manager classes are constructed, however, they do provide, I believe, a central location from which hardware data can be obtained and dispersed out for interpretation by the various provider classes. Specifically, the CConfigMgrDevice class is where the actual configuration manager device is read in and stored. It is this class, from which resource information, status codes, and problem codes may be obtained. However, the source of the data is completely irrelevant. Whether it is performing the current binary interpretation hack, thunking down to 16-bit land, or talking to a 32-bit API, it simply reads in the data, organizes it into the associated structures, and leaves it up to a user to ask it for information.

