
1. The Whistler BVT

	Spec Title
	The Whistler BVT – Build Verification Test

	Version
	1.0

	Distribution
	 FORMDROPDOWN

	Component
	

	Feature area
	

	Feature scope
	

	Product
	WBEM

	Product Version
	Whistler

	Project
	Whistler

	Author
	Jenny McCollum

	Manager
	Nadir Ahmed

	Status
	 FORMDROPDOWN

	Last Changed
	4/18/2000

	Revision Summary

	Version
	Date
	Author
	Changes

	1.0
	4/18/2000
	Jenny
	Initial draft

1.1 Overview

This document outlines the list of test to be included in Whistler BVT for WMI. There are two types of tests, these are:

Build Verification Tests (BVT)
The set of tests to verify the build has not broken any major

Functionality of WMI, the BVT will test only the minimum

Functionality of each WMI component: Core, ESS, scripting, providers and adapters.

Build Acceptance Tests (BAT)
An additional set of tests to run after the BVT has passed.

Each BAT needs to run independently. It is VERY important that

a limited scenario is tested so that the BAT can be reclassified

later until a different SBO without alteration.

· The BVT should run via command line as well as part of the test framework.

· Each test will be numbered and completely isolated – to allow a specific test to be run.

· BVT will be extensible, configurable so that it can be easily modified for adding new tests or modifying the namespace / class on which test is to be run. The default values for a test may be changed in the BVT.INI.

· The executable will print out the default BVT, along with the description of each test if requested.

· Before each test is executed, the test running, along with it’s description, will be displayed on the screen and in the log file. If a particular test fails, it should log the error to the error log file – with all parameters printed out.

2. Security

3. Scope of operating system support

The BVT must run on the following platforms

4. Logging support

The command line version will log to BVT.LOG by default unless specified otherwise.

The Framework version will log to

5. Performance

The BVT should run between 15 – 40 minutes…. ?

6. The BVT Tests

The BVT project is structured in the following way:

BVT/BAT

The bvt subdirectory contains all of the code of the actual tests. These tests are completely isolated, use common code, wrapped apis available via BVTAPI.LIB. These tests should be callable as a simple function, so the shells can execute the tests by simply calling a function.

BVTAPI.LIB

For the API tests, each call to WMI will be completely wrapped in a function that will log all parameters, should the call fail. All of these wrapped calls are placed in the BVTAPI.LIB, and all tests must use these wrapped calls in order to ensure proper logging of parameters. The BVTAPI.LIB also contains common utility code.

Framework Shell

The framework version will use the framework logging, tests will be executed according to command line parameters:

The BVT executeable will have the following options:

-TEST
[1,2,10...]
The requested tests to run.
Default: All tests are executed

-INIFILE
inifilename
The name of the ini file.

Default: BVT.INI

-DEFAULT

Writes out the default ini file.
Default: BVT.INI

-LOGFILE
logfilename The name of the output log file. Default: BVT.LOG.

Command Line Shell

The command line version will execute the default tests when executed without command line parameters.

The BVT executeable will have the same options as specified in the Framework shell.

To add a new test to the BVT.EXE, follow these steps:

1. Write the test in a completely isolated way, it would be wise to use the BVTAPI.LIB to take advantage of the automatic logging of all parameters.

2. Add a new test number to BVT.H.

3. If desired, add default test information in BVTINI.CPP using the new test number, so the test will be automatically executed with the desired parameters.

4. Add the new test number to the switch statement in BVTMAIN.CPP

5. Recompile and execute.

Scripts

For the scripting test, there will be three types of scripts tested: JS, VBS,

Each script will log the parameter information using a common scripting object. The BVT executeable will simply spawn the script off, logging minimal information of when the script was launched, and the return code info. The script will be responsible for producing detailed error logs.

BVT/BAT Tests

There are the following basic sections that will be tested via API and Script:

Simple Repository Phase
 Single threaded execution of tests

Complex Repository Phase
 Multithreaded execution of tests

Provider Phase

 Testing of CIMV2 Namespace

Adapter Phase

 Testing of the OLEDB Adapter

Event Phase

 Testing the event subsystem

6.1 The Simple Repository Phase

The Simple Repository Phase will conduct the following tests:

1. Connecting to WMI

2. Namespace Creation

3. Class Manipulation

4. Instance Manipulation

5. Fetching Objects

6. Methods

7. Queries

8. Scopes/Collections

9. Transactions

The following sections outline each test, it’s number, descripton of major functionality, and the phase the test falls under.

BVT.INI format s

6.1.1.1 Dynamically creation of classes format

 [APITEST?]

CLASSES
= “TestClass1, TestClass2”

TESTCLASS1
= “Empty”

TESTCLASS2
= "Parent:TestClass1,

 ClassQualifier:Dynamic:CIM_BOOLEAN:1,

 Property:LaKey1:CIM_STRING:Key1,

 PropertyQualifier:KEY:LaKey1:CIM_BOOLEAN:1”

CLASSES
= This is a list of the classes that we are working with. Each name refers to the

name of the class as well as the key that is defined in this same section.

TESTCLASS1
= The name of the class.

 “Empty”
A reserved word, and in this context means to create an empty

class.

TESTCLASS2
= The name of the class.

Parent

This section up to the next comma is defining a parent class.

TestClass1

The parent class to spawn a derived instance from.

ClassQualifier

This section up to the next comma defines a class qualifier.

Dynamic

The name of the qualifier

CIM_BOOLEAN
The data type of the qualifier

1

The value of the qualifier

Property

This section up to the next comma is defining a property.

LaKey1

This is the name of the property

CIM_STRING

This is the data type of the property

Key1

This is the value to be added to the property

PropertyQualifier
This section up to the next comma defines a property qualifier.

KEY

The name of the property qualifier

LaKey1

The property this qualifier will be added to.

CIM_BOOLEAN
The data type of the property qualifier.

1

The value of the property qualifier.

A class can have more than one key, simply separate them by a comma. A class can also have more than one property, simply separate them by a comma.

The following data types are supported by the BVT

CIM_UINT8

CIM_SINT8

CIM_BOOLEAN

CIM_CHAR16

CIM_SINT16

CIM_UINT16

CIM_SINT32

CIM_UINT32

CIM_SINT64

CIM_UINT64

CIM_REAL64

CIM_DATETIME

CIM_STRING

CIM_REFERENCE

6.1.1.2 Dynamically adding/deleting classes

[APITEST?]

CLASS_DEFINITION_SECTION = APITEST5

DELETE_ADD_CLASS_ORDER = Delete:TestClass2, Delete:TestClass9, Add:TestClass2,

 Delete: TestClass7, Delete: TestClass6

Delete

Means the following class name will be deleted from the namespace

Add

Means the following class name will be added to the namespace

The program will look for the definitions of these classes as specified in the key

CLASS_DEFINITION_SECTION

6.1.2 Connecting to WMI – Test # 1 - 3

6.1.2.1 Test1 - Basic connect using IWbemLocator to specified namespace.

If the BVT.INI doesn’t exist, the specified defaults will be added. If the BVT.INI exists, then the test will use whatever values are specified.

API Test

Ini file defaults

[APITEST1]

NAMESPACE = ”ROOT\DEFAULT”

DESCRIPTION = "Basic connect using IWbemLocator to specified namespace.”

Interfaces used to accomplish this test

· Get namespace from the ini file.

· CoCreateInstance of IID_IWbemLocator

· ConnectServer to specified namespace – IID_IWbemServices.

· Release IWbemServices

· Release IWbemLocator.

Script Test

Ini file defaults

[APITEST1]

SCRIPT = “scripts\test1.vbs”

SCRIPT_DESCRIPTION = " Basic connect via SWbemLocator and SWbemLocator.ConnectServer”

Script apis used to accomplish this test

· Create a SwbemLocator object
· Use SwbemLocator.ConnectServer to connect to the specified namespace
6.1.2.2 Test2 – Basic connect using IWbemConnection for all supported interfaces.
If the BVT.INI doesn’t exist, the specified defaults will be added. If the BVT.INI exists, then the test will use whatever values are specified.

API Test

Ini file defaults

[APITEST2]

NAMESPACE
= “ROOT\DEFAULT”

CLASS
= “__NAMESPACE”

DESCRIPTION
= “Basic connect using IWbemConnection for IWbemServices,

 IWbemServicesEx, IWbemClassObject"

NOTES:

NAMESPACE
= refers to the namespace to open

CLASS

= refers to the class to instantiate for IWbemClassObject

Interfaces used to accomplish this test

· Get namespace from the ini file.

· CoCreateInstance of IID_IWbemConnection

· Open with IID_IWbemServices for specified namespace.

· Release pointer

· Open with IID_IWbemServicesEx for specified namespace.

· Release pointer.

· Open with IID_IWbemClassObject for specified class.

· Release pointer.

· Release IWbemConnection pointer.

Script Test

Ini file defaults

[APITEST2]

SCRIPT = “scripts\test2.vbs”

SCRIPT_DESCRIPTION = "Basic connect via SWbemLocatorEx and SWbemLocator.Open”

Script apis used to accomplish this test

· Create a SwbemLocatorEx object
· Use SwbemLocator.Open to connect to the specified namespace
6.1.2.3 Test3 - Basic async connect using IWbemConnection for all supported interfaces.
If the BVT.INI doesn’t exist, the specified defaults will be added. If the BVT.INI exists, then the test will use whatever values are specified.

API Test

Ini file defaults

[APITEST3]

NAMESPACE
= “ROOT\DEFAULT”

CLASS
= “__NAMESPACE”

DESCRIPTION
= “Basic async connect using IWbemConnection for IWbemServices,

 IWbemServicesEx, IWbemClassObject"

NOTES:

NAMESPACE
= refers to the namespace to open

CLASS

= refers to the class to instantiate for IWbemClassObject

Interfaces used to accomplish this test

· Get namespace from the ini file.

· CoCreateInstance IID_IWbemConnection

· Create internal handler CSinkEx

· OpenAsync with IID_IWbemServices for specified namespace.
· Use handler to get the interface pointer – IWbemServices

· Release pointer

· OpenAsync with IID_IWbemServicesEx for specified namespace.

· Use handler to get the interface pointer – IWbemServicesEx

· Release pointer.

· OpenAsync with IID_IWbemClassObject for specified class.

· Use handler to get the interface pointer – IWbemClassObject

· Release pointer.

· Release internal handler

· Release IWbemConnection pointer.

Script Test

[APITEST3]

SCRIPT = “scripts\test3.vbs”
 SCRIPT_DESCRIPTION =

6.1.2.4 Test4 - Creation of a test namespace
If the BVT.INI doesn’t exist, the specified defaults will be added. If the BVT.INI exists, then the test will use whatever values are specified.

API Test

Ini file defaults

[APITEST4]

NAMESPACE

= “ROOT\BVTAPITEST”

 PARENT_NAMESPACE
= “ROOT"

 CLASSES

=”__NAMESPACE"

 __NAMESPACE

= "Property:Name:CIM_STRING:BVTAPITEST"

DESCRIPTION

= “Creation of a test namespace”

NOTES:

NAMESPACE

= refers to the end result namespace desired

PARENT_NAMESPACE
= refers to the parent namespace of the new one to be created.

CLASSES
= refers to the class to get to create the namespace.

__NAMESPACE
= see BVT.INI format information for class definitions.

Interfaces used to accomplish this test

· Get namespace from the ini file.

· CoCreateInstance IID_IWbemConnection
· Parse the namespace name to get the parent first, and open the parent (which must exist) via Open using IID_IWbemServices.

· Start looping through all child namespace names, use Open to see if namespace exists.

· Child namespace exists:

· Release parent namespace pointer.

· Set this child as the new parent.

· Child namespace does not exist:

· Calling GetObject on “__NAMESPACE”

· Get a new instance of this class by calling SpawnInstance.

· Set the new namespace's name by setting the Name property to the child namespace name and calling Put on the instance.

· Create the new namespace by calling PutInstance in the parent namespace.

· Release the parent namespace pointer

· Call Open, using IID_IWbemServices on the child namespace and set this as the new parent.

· Release class and instance pointers, continue looping to see if there are anymore child namespaces.

· Release parent, child namespace pointers.

· Release IWbemConnection pointer.

Script Test

[APITEST4]

SCRIPT

= “scripts\test4.js”

SCRIPT_DESCRIPTION
=

6.1.2.5 Test5 - Creates test classes in the test namespace
If the BVT.INI doesn’t exist, the specified defaults will be added. If the BVT.INI exists, then the test will use whatever values are specified.

Special notes on this test:

In this test there must be class hierarchies at least to three levels.

API Test

Ini file defaults

[APITEST5]

Classes = “TestClass1,TestClass2,TestClass3,TestClass4,TestClass5,

TestClass6,TestClass7,TestClass8,TestClass9,TestClass10"

Script = “scripts\test5.vbs”

RUN_TESTS = “4”

TestClass1 = "Empty"
// an abstract class, so 4 and 5 can define

// additional keys

TestClass2 = "Property:LaKey1:CIM_STRING:Key1,

 PropertyQualifier:KEY:LaKey1:CIM_BOOLEAN:1,

 Property:LaKey2:CIM_STRING:Key2,

 PropertyQualifier:Key:LaKey2:CIM_BOOLEAN:1"

TestClass3 = “Property:KeyName1:CIM_SINT32:3,

 PropertyQualifier:KEY:KeyName1:CIM_BOOLEAN:1,

 Property:PropertyName3:CIM_UINT32:3,

 Property:PropertyName3B:CIM_STRING:Test

TestClass4 = Parent:TestClass1, Property:KeyName4:CIM_UINT32:4,

PropertyQualifier:KEY:KeyName4:CIM_BOOLEAN:1,

Property:PropertyName4:CIM_BOOLEAN:0

TestClass5 = Parent:TestClass1, Property:KeyName5:CIM_STRING:Temp,

PropertyQualifier:KEY:KeyName5:CIM_BOOLEAN:1,

Property:PropertyName5:CIM_STRING:Value5

TestClass6 = Parent:TestClass5,

Property:PropertyName6:CIM_STRING:Value6" },

// no additional key can be defined

TestClass7 = Parent:TestClass6, Property:PropertyName7:CIM_BOOLEAN:1

// no additional key can be defined

TestClass8 = Parent:TestClass7, Property:PropertyName8:CIM_SINT32:2

 // no additional key can be defined

TestClass9 = Parent:TestClass8,Property:PropertyName9:CIM_STRING:Value9

// no additional key can be defined

TestClass10 = Parent:TestClass9, Property:PropertyName10:CIM_BOOLEAN:0

// no additional key can be defined

DESCRIPTION = “Creates test classes in the test namespace”

Interfaces used to accomplish this test

· Call the tests specified in RUNTESTS key.

· CoCreateInstance, IID_IWbemLocator

· Connect to the test namespace via ConnectServer for IWbemServices pointer.

· For each class, perform the following:

· Get the definition of the class.

· Get an empty class object to work with by calling GetObject with null name.

· Set parent class by calling InheritsFrom.

· Write properties by calling Put

· Set the key by setting the reserved name “Key” qualifier.

· Call GetPropertyQualifierSet on class

· Call Put on the QualifierSet pointer.

· Put the class into the namespace

· Calling GetObject on the new class

· Get a new instance of this class by calling SpawnInstance.

· Set the property default values as specified in the BVT.INI

· Write the instance by calling PutInstance in the namespace.

· Release class and instance pointers.

· Release the Namespace pointer.

· Release the IWbemLocator pointer.

Script Test

6.1.2.6 Test6 – Delete and recreate classes in the test namespace

If the BVT.INI doesn’t exist, the specified defaults will be added. If the BVT.INI exists, then the test will use whatever values are specified.

Special notes on this test:

This test will automatically run tests 4 and 5, to create new test namespace and new test classes before executing the below.

Class definitions will be looked for in the section specified by:

CLASS_DEFINITION_SECTION

Classes will be deleted as specified by the ini entry:

DELETE_CLASSES

Classes will then be compared to what is expected to be left, by looking at the values in the ini entry:

CLASSES_AFTER_DELETE

Classes to be added are then specified by the ini entry:

ADD_CLASSES

Classes will then be compared to what is expected to be left, by looking at the values in the ini entry:

CLASSES_AFTER_ADD

Classes to be deleted and added in specified order:

DELETE_ADD_CLASS_ORDER

Expected results of the above operation

CLASSES_AFTER_DELETE_ADD

API Test

Ini file defaults

 [APITEST6]

RUNTESTS = “5”

CLASS_DEFINITION_SECTION = APITEST5

DELETE_CLASSES = “TestClass1,TestClass3”

CLASSES_AFTER_DELETE = “TestClass2”

ADD_CLASSES = “TestClass1,TestClass3,TestClass4,TestClass5,TestClass6,

 TestClass7, TestClass8, TestClass9, TestClass10”

CLASSES_AFTER_ADD=”TestClass1,TestClass2,TestClass3,TestClass4,TestClass5,

 TestClass6,TestClass7, TestClass8, TestClass9, TestClass10”

DELETE_ADD_CLASS_ORDER =”Delete:TestClass2, Delete:TestClass9, Add:TestClass2,

 Delete: TestClass7, Delete: TestClass6”

CLASSES_AFTER_DELETE_ADD=”TestClass1,TestClass2,TestClass3,TestClass4,TestClass5”

DESCRIPTION = “Deletes and Creates the classes as defined in test 5 in the requested order.”

Interfaces used to accomplish this test

· Call the tests specified in RUNTESTS key.

· CoCreateInstance, IID_IWbemLocator

· Connect to the test namespace via ConnectServer for IWbemServices pointer.

· Delete each class specified in DELETE_CLASSES list by calling pNamespace->DeleteClass

· Enumerate all classes by calling pNamespace->CreateClassEnum and see if just the classes listed in the CLASSES_AFTER_DELETE list are there. If not, error out.

· Add the classes specified in the ADD_CLASSES list by calling pNamespace->PutClass

· Enumerate all classes by calling pNamespace->CreateClassEnum and see if just the classes listed in the CLASSES_AFTER_ADD list are there. If not, error out.

· Add/Delete the classes specified in the DELETE_ADD_CLASS_ORDER

· Enumerate all classes by calling pNamespace->CreateClassEnum and see if just the classes listed in CLASSES_AFTER_DELETE_ADD list are there. If not, error out.

· Release the Namespace pointer.

· Release the IWbemServices pointer.

Test7 – Create some simple association classes

If the BVT.INI doesn’t exist, the specified defaults will be added. If the BVT.INI exists, then the test will use whatever values are specified.

Special notes on this test:

This test will automatically run test 5 to create the test classes

API Test

Ini file defaults

 [APITEST7]

CLASS_DEFINITION_SECTION = APITEST7

RUNTESTS = “6”

CLASSES = “Association1, Association2"

Association1 = "Property:FirstPoint:CIM_REFERENCE:Value,

PropertyQualifier:KEY:FirstPoint:CIM_BOOLEAN:1,

PropertyQualifier:CIMTYPE:FirstPoint:CIM_STRING:ref:Test1,

Property:EndPoint:CIM_REFERENCE:Value,

PropertyQualifier:CIMTYPE:EndPoint:CIM_STRING:ref:Test2,

PropertyQualifier:Key:EndPoint:CIM_BOOLEAN:1"

Association2 = Property:AssocProp1:CIM_STRING:TestClass3,

PropertyQualifier:Key:AssocProp1:CIM_BOOLEAN:1,

Property:AssocProp2:CIM_STRING:TestClass4,

PropertyQualifier:Key:AssocProp2:CIM_BOOLEAN:1"

Interfaces used to accomplish this test

· Call the tests specified in RUNTESTS key.

· CoCreateInstance, IID_IWbemServices

· Connect to the test namespace via ConnectServer for IWbemServices pointer.

· Get the list of classes to create as specified in the CLASSES key.

· Create the class as specified in test5, after looking to see what section the class definitions are in, by looking at the CLASS_DEFINITION_SECTION key.

· Release the Namespace pointer.

· Release the IWbemLocator pointer.

Test8 – Query

If the BVT.INI doesn’t exist, the specified defaults will be added. If the BVT.INI exists, then the test will use whatever values are specified.

Special notes on this test:

This test will automatically run test 5 to create the test classes

API Test

Ini file defaults

 [APITEST8]

 RUNTESTS

= “7”

 QUERY_LIST

=“QUERY,ASSOCIATORS_QUERY, REFERENCES_QUERY”

 QUERY_RESULTS

 QUERY

="select * from meta_class"

 ASSOCIATORS_QUERY
=”Associators of"

 REFERENCES_QUERY
=”References of"

Interfaces used to accomplish this test

· Call the tests specified in RUNTESTS key.

· CoCreateInstance, IID_IWbemServices

· Connect to the test namespace via ConnectServer for IWbemServices pointer.

· Get the list of queries as specified in the QUERY_LIST key.

· Execute the queries as requested via pNamespace->ExecQuery

· Release the Namespace pointer.

· Release the IWbemLocator pointer.

NOTE: Need to find the best way to compare results, should be a simple number of how many returned, or comparing class names?

Test9 – Creating instances

If the BVT.INI doesn’t exist, the specified defaults will be added. If the BVT.INI exists, then the test will use whatever values are specified.

Special notes on this test:

API Test

Ini file defaults

 [APITEST9]

INSTANCE_DEFINITION_SECTION = “APITEST9”

RUN_TESTS = “7”

INSTANCES = “TestClass2, TestClass3, TestClass5”

INSTANCE_RESULTS =

Interfaces used to accomplish this test

· Call the tests as specified in RUN_TESTS key

· CoCreateInstance, IID_IWbemServices

· Connect to the test namespace via ConnectServer for IWbemServices pointer.

· Get the list of instances to create as specified in the INSTANCES key

· Create the instances by getting the definitions as specifiedin the INSTANCE_DEFINITION_SECTION key, by calling pNamespace->PutInstance

· Check the results

· Release the Namespace pointer.

· Release the IWbemLocator pointer.

NOTE: Need to find the best way to compare results, should be a simple number of how many returned, or comparing instances?

Test10 – Deleting instances

If the BVT.INI doesn’t exist, the specified defaults will be added. If the BVT.INI exists, then the test will use whatever values are specified.

Special notes on this test:

API Test

Ini file defaults

 [APITEST10]

RUN_TESTS = “7”

DELETE_INSTANCES = “TestClass2, TestClass3, TestClass5”

INSTANCE_RESULTS =

Interfaces used to accomplish this test

· Call the tests as specified in RUN_TESTS key

· CoCreateInstance, IID_IWbemServices

· Connect to the test namespace via ConnectServer for IWbemServices pointer.

· Get the list of instances to delete as specified in the DELETE_INSTANCES key

· Delete the instances by pNamespace->DeleteInstance

· Check the results

· Release the Namespace pointer.

· Release the IWbemLocator pointer.

NOTE: Need to find the best way to compare results, should be a simple number of how many returned, or comparing instances?

6.1.2.7 Test11 – Enumerating instances

If the BVT.INI doesn’t exist, the specified defaults will be added. If the BVT.INI exists, then the test will use whatever values are specified.

Special notes on this test:

API Test

Ini file defaults

 [APITEST11]

RUN_TESTS = “7”

ENUMERATE_INSTANCES = “TestClass2, TestClass3, TestClass5”

INSTANCE_RESULTS =

Interfaces used to accomplish this test

· Call the tests as specified in RUN_TESTS key

· CoCreateInstance, IID_IWbemServices

· Connect to the test namespace via ConnectServer for IWbemServices pointer.

· Get the list of instances to enumerate as specified in the ENUMERATE_INSTANCES key

· Enumerate the instances by pNamespace->CreateInstanceEnum

· Check the results

· Release the Namespace pointer.

· Release the IWbemLocator pointer.

NOTE: Need to find the best way to compare results, should be a simple number of how many returned, or comparing instances?

Test12 – Creating Association instances

If the BVT.INI doesn’t exist, the specified defaults will be added. If the BVT.INI exists, then the test will use whatever values are specified.

Special notes on this test:

This test uses the same interfaces/scripts as Test# 9, just with a different INI section.

API Test

Ini file defaults

 [APITEST13]

RUN_TESTS = “7”

ASSOCIATION_INSTANCES = “TestClass2, TestClass3, TestClass5”

INSTANCE_RESULTS =

6.1.2.8 Test13 – Deleting Association instances

If the BVT.INI doesn’t exist, the specified defaults will be added. If the BVT.INI exists, then the test will use whatever values are specified.

Special notes on this test:

This test uses the same interfaces/scripts as Test# 10, just with a different INI section.

API Test

Ini file defaults

 [APITEST13]

RUN_TESTS = “7”

ASSOCIATION_INSTANCES = “TestClass2, TestClass3, TestClass5”

INSTANCE_RESULTS =

Test14 – Enumerating Association instances

If the BVT.INI doesn’t exist, the specified defaults will be added. If the BVT.INI exists, then the test will use whatever values are specified.

Special notes on this test:

This test uses the same interfaces/scripts as Test# 11, just with a different INI section.

API Test

Ini file defaults

 [APITEST14]

RUN_TESTS = “7”

ASSOCIATION_INSTANCES = “TestClass2, TestClass3, TestClass5”

INSTANCE_RESULTS =

Test15 – Ensure that deletion of the classes takes out all the instances of the class

If the BVT.INI doesn’t exist, the specified defaults will be added. If the BVT.INI exists, then the test will use whatever values are specified.

API Test

Ini file defaults

 [APITEST15]

RUNTESTS = “9”

CLASS_DEFINITION_SECTION = APITEST5

DELETE_CLASSES = “TestClass1,TestClass3”

DESCRIPTION = “Ensure that deletion of the classes takes out all the instances of the class”

Interfaces used to accomplish this test

· Call the tests specified in RUNTESTS key.

· CoCreateInstance, IID_IWbemLocator

· Connect to the test namespace via ConnectServer for IWbemServices pointer.

· Delete each class specified in DELETE_CLASSES list by calling pNamespace->DeleteClass

· Enumerate instances of the class, if there are instances, then error out.

· Release the Namespace pointer.

· Release the IWbemServices pointer.

Test16 – Fetching various objects

Get the various types of objects (classes/instances) using the various types of paths accepted by WMI (WMI path/ UMI path/ HTTP path)

6.1.2.9 Test17 – Getting a list of Methods for a class

6.1.2.10 Test18 – Getting a list of Methods for an instance

6.1.2.11 Test19 – Add objects to scope/collection using methods IWbemServicesEx interface

6.1.2.12 Test20 – Get the list of objects in a scope/collection using by getting enumerator of instances using IWbemServicesEx on the the scooping / parent object

6.1.2.13 Test21 – Open association endpoint as collection and enumerate, ensure that the results are correct

6.1.2.14 Test22 – Get a IWbemTransaction , start a transaction , add a class, an instance of that class and commit the transaction

6.1.2.15 Test23 – Start a transaction, delete a class and Abort the transaction and check if that class still exists in the namespace

Complex Repository Phase

· Rerun the above set of tests with async calls

· Rerun the above set of tests in parallel from several threads in different namespaces.

6.2 The Provider Phase

CIMV2 Provider Phase : Testing on Cimv2 namespace

6.2.1.1 Open CIMV2 namespace

6.2.1.2 Get class enumerator for the namespace to get list of classes

6.2.1.3 Get instance enumerator for simple classes Win32_logicalDisk, Win32_Process

6.2.1.4 Get classes/instances using path of the object

6.2.1.5 Execute simple Select * Queries

6.2.1.6 Execute Association/Reference queries

6.2.1.7 Enumerate methods for a class/instance.

6.2.1.8 Execute a method on one of the instance say Terminate method on Win32_process and check if the instance is removed.

6.2.1.9 Close the connection

6.2.1.10 Run the above test with several threads in parallel

WDM Provider Phase : Testing on ROOT/WMI namespace

6.2.1.11 Open ROOT/WMI namespace

6.2.1.12 Get class enumerator for the namespace to get list of classes

6.2.1.13 Get instance enumerator for simple classes RegisteredGuids

6.2.1.14 Get classes/instances using path of the object

6.2.1.15 Execute Select * Queries

6.2.1.16 Enumerate methods for a class/instance – find the NDIS class

6.2.1.17 Execute a method on one of the instance

6.2.1.18 Register for NDIS event

6.2.1.19 Create Refresher on Object

6.2.1.20 Create Refresher on Class

6.2.1.21 Close the connection

6.2.1.22 Run the above test with several threads in parallel

Reverse Dredger Phase : Testing on ?

What other providers should be included on this?

6.3 The Event Phase

Testing Events

6.3.1.1 Creation, working, and cancellation of temporary subscriptions

6.3.1.2 Creation, working, deletion, and recreation of permanent subscriptions

6.3.1.3 Event providers (including Non-COM and Decoupled) participating in above

6.3.1.4 Core (repository events) participating in above

6.3.1.5 Polling participating in above

6.3.1.6 Monitors (temporary and permanent): new feature

6.3.1.7 Guarded filters (as part of (2)): new feature

6.3.1.8 Policy provider access

6.3.1.9 Forwarding of events to another machine

6.3.1.10 Policy application

The Adapter Phase

OLEDB Adapter

Create Rowset

Create Row Object

Read a row from Rowset

Read a row from Row Object

Write a row to Rowset

Write a row to Row Object

Execute a command

Enumerate columns for a class

Execute a method

Bind to a row, rowset, datasource

Set up a transaction

What other adapters should be included in here?

6.4 The Additional Scripting Phase

2. Namespace creation

· Create a new test namespace by using SwbemObject.Put method for an instance of __Namespace and check if this namespace is available by connecting to the namespace

3. Working with Classes

· Create a new class. This can be done by creating SwbemObject adding properties , setting properties and saving the class by SWbemObject:Put() Simple data types like String and SINT32 can be used for the different properties. Check if the new class added exists in the repository by getting object with the path.

· Delete an existing Class. Ensure that the class is deleted by trying to get the class object with the path.

· Enumerate the classes in Namespace by using SWbemServices::SubClassesOf

· Create some simple association classes

4. Working with instances

· Create instances of the above class. Ensure that the instance is added by getting the object using the path of the object.

· Delete instances of the class. Ensure that the instance is deleted by trying to fetch the object with the path and this should result in error

· Get enumerator for the list of instances and check if instances added are present in the objects in the enumerator

· Add instance to Association classes

· Get References of a instance

· Get Associators of a instances

5. Fetching objects

· Get the various types of objects (classes/instances) using the various types of paths accepted by WMI (WMI path/ UMI path/ HTTP path)
6. Working with Methods

· Getting list of methods for a class/instance
7. Working with Queries

· Execute simple select queries to get the list of instances of a class and test if the query returns the instances correctly

· Execute Association/Reference queries and test if it is executed successfully.

· Try to execute a invalid query to get an error

8. Working with Scopes/Collections

· Add objects to scope/collection using methods SwbemServicesEx and SWbemObjectEx interface.

· Get the list of objects in a scope/collection using by getting enumerator of instances using SWbemObjectEx on the the scooping / parent object

· Open association endpoint as collection and enumerate, ensure that the results are correct
· Add an object to container/scope and check if it is present in the scope/container by checking if this objects exists.
· Copy Objects from one container to another and check if it is copied properly
9. Object paths

· Set a different types of path(as specified in the Object path design document of Scripting API) to sWbemObjectPathEx and check the different properties and methods(IsClass, Namespace,keys) are returned correctly.

· Fetch the new properties Components and Parent .

· Construct a path with SwbemObjectPathComponents object

10. Custom Interfaces

· Get a ADSI object which will be a aggregated ADSI extension object. Call method or fetch a property of the custom interface

11. DateTime property

· Get a property of type CIM_DATETIME into a variable of type sWbemDateTime and check the different properties of the object to get the different parts of the datetime

· Add a static class with a property of CIM_DATETIME. Add an instance and set the datetime property using an object of sWbemDateTime.

12. Interface Properties

· Set interface properties(like search preferences) for a SwbemServicesEx object on a LDAP object using InterfaceProperties property and then execute a LDAP query.
13. System Properties

· Fetch all the system properties for an existing object in a namespace (Ex: an instance of Win32_logicaldisk) using SystemProperties property of SwbemObjectEx
· Set a value to a system property and if the underlying provider allows this.
14. Object Text :

· Get an the object text as XML using GetText method of SwbemObjectEx and store it in file.
· Load an object from the XML file using SetFromText of SWBemObjectText and fetch all the properties to check if it is a valid object.
15. Refreshing an object

· Refresh an object using SwbemObjectEx’s Refresh function
· Use Refresher object to refresh multiple object
16. Object Security

· Create a class, an instance of that class and set the object security using SwbemServicesEx object’s PutObjectSecurity
· Get the object security for the above object using SwbemServicesEx object’s GetObjectSecurity
· Test setting and getting security descriptor with SwbemObjectEx methods
17. Transactions

· Using SwbemTransaction on a SWbemServices start a transaction, add an instance of a class and commit the transaction
· Using SwbemTransaction on a SWbemServicesEx start a transaction, add an instance of a class and Rollback the transaction
· Do transactions processing with SwbemTransaction or SwbemObjectEx on a object

Scripts

The .vbs, .js scripts that are spawned from BVTSCRIPT.CPP

Command line Shell

Code to wrap the tests so they run via command line

Framework Shell

Code to wrap the tests so they run in the framework.

BVTAPI.LIB

Contains all wrapped api calls

BVT/BAT

BVTREPOSIT.CPP,

BVTCIMV2.CPP,

BVTESS.CPP,

BVTSCRIPT.cpp, …

These are the actual tests.

These are coded independently, not tied to either framework or command line.

5/6/2000
Microsoft Confidential
Page 2

