
1. Decoupled provider architecture
	Spec Title
	Decoupled provider architecture

	Version
	1.0

	Distribution
	 FORMDROPDOWN

	Component
	Decoupled providers

	Feature area
	Provider Subsystem

	Feature scope
	 FORMDROPDOWN

	Product
	Whistler

	Product Version
	 FORMDROPDOWN

	Project
	Wmi

	Author
	Steve Menzies

	Manager
	Ray McCollum

	Status
	 FORMDROPDOWN

	Last Changed
	4/12/00

	Revision Summary

	Version
	Date
	Author
	Changes

	1.0
	3/30/98
	Steve Menzies
	Initial draft

1.1 Overview

The existing Nova WMI provider infrastructure supports the hosting of component services using a tightly coupled pull technology. The requirement is to create a de-coupled provider-hosting infrastructure to meet the requirements of application and service management.

1.2 Goals & Objectives

The goal of the document is to describe the interface design and lifetime control of the decoupled provider architecture. The document details the minimal API design to allow useful application and service management. The document also describes a simple extension to the API to allow simplified event provision.

It is a requirement that the de-coupled provider architecture runs against both the existing Nova M3 architecture and the new Whistler architecture. It is therefore a requirement that the architecture share the same registration and API design.

This document does not cover the modeling issues relating to aggregated/distributed models i.e. how an application schema relates multiple distinct instances of an application and it’s associated management data. An example often described is the ability to enumerate all copies of SQL Server 7.0 and the set of repositories being hosted by that particular instance of the application, here each copy of SQL Server 7.0 registers as a servicing component for a particular instance __Win32provider or at least a variation of this, this results in WMI requesting, in turn, the services of each copy of SQL Server 7.0 for a given client request, it is possible for each copy of SQL Server 7.0 to return non-unique instances of a class under enumeration, or worst still, handle the execution of a Put, Delete or ExecMethod when in fact the invocation was actually meant for another copy of SQL Server 7.0. We will defer the scoping of the request to the provider implementation who will perform the necessary scoping checks. Further where it would be applicable, we will not perform any analysis checks to validate key uniqueness.

1.3 Executive Summary

The existing Nova WMI provider infrastructure supports the hosting of component services using a tightly coupled pull technology. The strategy for dispatching requests from clients is to load a given provider component upon receipt of the first associated service request. The lifetime of the COM server providing such instrumentation services is directly controlled by the provider subsystem. This strategy works well for OS system style instrumentation, where typically a single non RPC API call will return the required instrumentation information. This strategy however does not work well with application management style instrumentation, since the application is generally running in the context of a separate process from the provider and some private RPC mechanism needs to be performed to extract the required data. More importantly however, where the application and the provider share the same executable image, the lifetime of the provider should be bounded by the lifetime of the application. It is required that WMI does not invoke the services of a provider before the application host process has registered its intention to service provider requests, further when the application host process de-registers its intention to service provider requests, WMI will discontinue forwarding requests to the provider component. This document describes the feature set needed to meet these requirements.

2. Files

The de-coupled provider subsystem will be located in binary dll WmiDeCp.dll, with it’s associated mof WmiDeCp.mof

3. Provider functional support

The following provider types will be supported by the de-coupled provider architecture :-

Instance provider

Method provider

Event provider

Event consumer

Note that class and property providers will not be supported.

4. Scope of operating system support

The component will be required to work on Windows 95 SPn (??) , Windows 98 (SP ??), Windows NT4 SP6, Windows 2000, Millennium and Whistler. (this is a ridiculous matrix, who really wants to perform application management of anything but NT and Windows 2000 ?).

The components implementations will take into account the ANSI/UNICODE differences of each platform, by performing compile time platform checks. This allows the binaries to run un-impeded on their respective platforms. This means that their will be two binary executions files, one for Ansi and one for Unicode, however they will share the same name.

5. Provider registration

The de-coupled provider subsystem will use a registration broker to handle the dispatching of requests to specific instances of a running de-coupled provider .

Each de-coupled provider will register by creating an instance of MSFT_DecoupledProvider specified below. Each instance of MSFT_DecoupledProvider will be required to specify the Name and Decoupled_CLSID properties and optionality specify the Decoupled_PerLocaleInitialization and Decoupled_SecurityDescriptor properties. In addition the provider writer will be expected to create instances of __InstanceProviderRegistration, __MethodProviderRegistration, __EventProviderRegistration and __EventConsumerProviderRegistration to indicate the level of functional support for the de-coupled provider. The decoupled provider subsystem implementation will use the provider registration information to determine the functional support for the given de-coupled provider and forward or reject the client-derived request as needed.

class MSFT_DecoupledProvider : __Win32Provider

{

[

Description ("Decoupled provider CLSID, do not change. Do not override") ,

Override("Clsid")

]

String Clsid = "{54D8502C-527D-43F7-A506-A9DA075E229C}" ;

[

Description ("Hosting Model, provides compatibility with Whistler. Do not override.") ,

Override("HostingModel")

]

string HostingModel = "Decoupled";

[

Description ("SecurityDescriptor , secures registration of a decoupled provider during the Register phase of execution. ") ,

Override("SecurityDescriptor")

]

string SecurityDescriptor;

} ;

6. Logging support

The de-coupled provider subsystem will use a hybrid implementation of the core logging and provider-logging infrastructure.

Details to be added.

7. Self instrumentation

No specific instrumentation is supported.

8. Interface design

8.1 overview

IWbemDecoupledRegistrar is a CoCreatable object interface that allows a provider to register participation in the provision of WMI functionality for a given provider role. Existing providers implemented provider functionaliy by registering a COM server and associating the by role of the provider via a number of schema elements, specifically __Win32Provider, __InstanceProviderRegistration, __EventProviderRegistration, __EventConsumerProviderRegistration and __MethodProviderRegistration. The existing provider architecture invoked a particular COM server implementation via a the COM activation mechanism (e.g. CoCreateInstance), it’s activation being totally controlled by WMI. There are a number of typical management scenarios that require the lifetime of the provider to be defined by a given hosting process (application). In this respect it is necessary to allow the hosting process to register it’s willingness to interoperate with WMI if and only if it is already activated. IWbemDecoupledRegistrar allows a process hosted provider to define the interoptability lifetime. Once a provider has registered with an object registration and an associated request against the provider has been identified, the object interface will be QI’d for IWbemProviderInit. At this time the provider will receive an IWbemProviderInit :: Initialize call , allowing the provider to extract a valid pointer to an IWbemServices object. On successful completion of this call the object interface will again be QI’d for a given interface specific to the request. If for example the provider is registered to send events, the provider subsystem will QI IWbemEventProvidr and call ProvideEvents, thus allowing the provider so send events to an event sink.

8.2 Interface requirements

WMI may QI on the IUnKnown for the following interface identifiers in anticipation of executing some client derived request.

Iunknown

IwbemProviderInit

IwbemServices

IwbemServicesEx

IwbemEventProvider

IwbemEventProviderQuerySink

IwbemEventProviderSecurity

IwbemProviderIdentity

IwbemEventConsumerProviderEx

IwbemShutdown

IwbemStatus

8.3 Decoupling of provider and winmgmt lifetimes

Is it a requirement to de-couple the lifetimes of the provider and winmgmt. This implies that Winmgmt will not attempt to instantiate the provider, instead the provider will register that it is capable of servicing requests from winmgmt. If the de-coupled provider has not registered to receive requests, then winmgmt will not be able to forward calls to the associated de-coupled provider, in this case it will return WBEM_E_PROVIDER_NOT_REGISTERED whenever a call is made to the associated provider. The de-coupled provider will advertise its willingness to respond to service requests by calling IWbemDecoupledRegistrar :: Register. This activation will place a marshaled stream into the registry so that the de-coupled provider subsystem can locate the actively running object, much the same way that the COM Running Object table does. On activation of the de-coupled provider subsystem via a call by a client request, the provider subsystem will interrogate the registry to determine whether there is a corresponding active de-coupled provider that is capable of servicing the request, if there is, the call will be forwarded, otherwise as already stated, WBEM_E_PROVIDER_NOT_REGISTERED will be returned.

By definition a provider will not activate Winmgmt since it only places information within the registry, all other interaction are done via the callback interfaces specified above. Hosting requirements

It is required that the process hosting the provider call CoInitializeSecurity such that it is possible for a caller to successfully execute. Of course the hosting process can specifically specify the set of user identities that can call into the process with the intent to restrict access to management data.

8.4 Registry format

On receipt of a call to Register the de-coupled provider subsystem will create an entry within the registry location HKEY_LOCAL_MACHINE\SOFTWARE\MICROSOFT\WBEM\TRANSPORTS\DECOUPLED with the name specified by the argument a_Name passed into IWbemDecoupledRegistrar :: Register. This key will be created with a security descriptor with an associated DACL with GENERIC_ALL access allowed ACEs of OWNER SID and LOCALSYSTEM, this will allow the creating process and winmgmt to retrieve the required registration information. Underneath this key the Register function will create a key identifying the process identifier of the hosting process. Under here the Register function will create the following registry values

	Name
	Type
	Value

	CreationTime
	REG_SZ
	Time the process was created

	ProcessIdentifier
	REG_DWORD
	Process Identifier of registered process.

	User
	REG_SZ
	Identity of process creator

	Locale
	REG_SZ
	Locale specified in registeration.

	Scope
	REG_SZ
	Scope specified in registration.

	MarshaledProxy
	REG_BINARY
	Byte array representing the marshaled interface of the Iunknown specified in the Register function

The CreationTime registry value will be used to determine whether on registry read, the registry key for each registration is still valid. It can do this by determining if the process identifier is still valid and if the CreationTime specified in the registry is equivalent to the CreationTime of the currently executing process with the associated process identifier, if they are not equivalent, the entry is defined as invalid. If the registry entry is invalid, the entry will be deleted. On call to IWbemDecoupledRegistrar :: DeRegister or when the object represented by IWbemDecoupledProvider is finally released the associated registry entry will be deleted.

The User registry value will be used to filter the set of requests that originate with a specific User identifier. If User is NULL then the requests will be forwarded irrespective of the identity of the originating management request.

The Locale registry value will be used to filter the set of requests that originate with a specific Locale identifier. If Locale is NULL then the requests will be forwarded irrespective of the locale of the originating management request, however no specific locale processing will be performed.

The Scope registry value will be used to filter the set of requests that originate from a specific namespace.. If the Scope value is NULL, then the provider will accept requests from all namespaces, otherwise the provider will accept requests from the namespace specified.

The MarshaledProxy value will be used to identify the Iunknown interface proxy passed into Register. This value will be read from the registry and then un-marshaled by the de-coupled provider subsystem when it is first activated. This allows the de-coupled provider subsystem to determine that a provider is ready to accept service requests.

8.5 IWbemDecoupledRegistrar::Register

HRESULT Register (

[in] long a_Flags ,

[in] IWbemContext *a_Context ,

[in] LPCWSTR a_User,

[in] LPCWSTR a_Locale,

[in] LPCWSTR a_Scope ,

[in] LPCWSTR a_Registration ,

[in] IUnknown *a_Unknown

) ;

Semantics

	Description
	Registers an object interface with WMI, indicating the registration object that applies to the object interface.

	Concurrency and Threading
	Fully concurrent access permitted.

	Blocking
	Call returns once the registration is established.

	Misc.
	

	Justification
	Need to declare registration mechanism so that provider can participate in provider servicing.

	Limitations and Restrictions
	

Discussion:

The Register method binds a provider to a specific instance of a provider registration object. The provider subsystem will use the object for all requests associated with the provider registration. There may be multiple processes that call the Register function against the same provider registration object, in these circumstances the provider dec-coupled subsystem will call each de-coupled provider in turn using the same interface method. This may result in multiple objects with the same key being returned for a given method invocation. If this is the case, the provider subsystem will use the first object it received for a given key. The provider should be architectured so that multiple keys are not returned for the same request.

Parameters

	A_Flags
	Currently no flag values defined.

	A_Context
	Optional context. Currently no context values defined

	A_Registration
	The name of the provider being registered. tHe name corresponds to the identity of the provider specified by A_Registration.

__Win32Provider – handle servicing for the given provider registration

	A_Scope

	An object path representing the binding to a WMI provider registration object in a specified namespace. The scope object can be null, indicating that the provider will support of functionality for all namespaces.

	A_User
	A User string identifying the USER that this specific registration will surface. If the provider registration object identified by the class MSFT_Win32Provider has the property Decoupled_USERInitialization set to true, then WMI will attempt to identify the specifc iunknown passed into register with the associated provider name and Name as specified within the client call to IWbemServices :: ConnectServer, if no such match is found, WMI will return WBEM_E_PROVIDER_NOT_REGISTERED to the calling client. Otherwise WMI will use all IUNKNOWN’s with an associated a_USER that was specified as NULL

	A_Locale
	A locale string identifying the locale that this specific registration will surface. If the provider registration object identified by the class MSFT_Win32Provider has the property Decoupled_PerLocaleInitialization set to true, then WMI will attempt to identify the specifc iunknown passed into register with the associated provider name and locale as specified within the client call to IWbemServices :: ConnectServer, if no such match is found, WMI will return WBEM_E_PROVIDER_NOT_REGISTERED to the calling client. Otherwise WMI will use all IUNKNOWN’s with an associated a_Locale that was specified as NULL.

	A_Unknown
	An IUnknown pointer indicating the object interface for a particular provider registration. This interface will be QI’d to determine the interface support that the object is capable of servicing.

Return Values

	WBEM_S_NO_ERROR
	Success

	WBEM_E_ALREADY_REGISTERED
	Object has already been registered.

	WBEM_E_ACCESS_DENIED
	

	WBEM_E_NOT_FOUND
	

	WBEM_E_TIMED_OUT
	

	WBEM_E_OUT_OF_MEMORY
	

	WBEM_E_CRITICAL_ERROR
	Internal error

8.6 IWbemDecoupledRegistrar::UnRegister

HRESULT UnRegister () ;
Semantics

	Description
	Deregisters an object interface with WMI.

	Concurrency and Threading
	Fully concurrent access permitted.

	Blocking
	Call returns once the registration is established.

	Misc.
	

	Justification
	Need to declare registration mechanism so that provider can cancel participation in provider servicing.

	Limitations and Restrictions
	

Discussion:

The UnRegister function removes the binding between the provider registration object and the provider object implementation. On return the provider object will no longer receive calls into it’s incoming methods.

Parameters

None.
Return Values

	WBEM_S_NO_ERROR
	Success

	WBEM_E_NOT_REGISTERED
	Object was never registrered.

	WBEM_E_ACCESS_DENIED
	

	WBEM_E_NOT_FOUND
	

	WBEM_E_TIMED_OUT
	

	WBEM_E_OUT_OF_MEMORY
	

	WBEM_E_CRITICAL_ERROR
	Internal error

Samples

tbd

9. Interface IWbemDecoupledBasicEventProvider

9.1 Overview

IWbemDecoupledBasicEventProvider is a CoCreatable object interface that allows a provider to register participation in the provision of WMI event functionality. The object created should be passed into the a_Unknown argument of IWbemDecoupledRegistrar :: Register. The provider can immediately call into GetService to obtain an interface to IwbemServices so that it can retrieve further WMI objects. The provider should call GetSink to retrieve a sink that is used to send events to WMI. The sink will forward the events to WMI, via Indicate, if and only if there is at least one event registration in effect. The sink will return WBEM_E_NOT_AVAILABLE from indicate, if there are no registrations in effect. When a registration takes effect, the sink will become begin to forward the events to WMI for analysis.

The implementation of IwbemDecoupledBasicEventProvider will use the services of the IwbemDecoupledRegistrar implementation for object registration, the previous section should be referred to for additional details.

9.2 IWbemDecoupledBasicEventProvider::Register

HRESULT Register (

[in] long a_Flags ,

[in] IWbemContext *a_Context ,

[in] LPCWSTR a_User,

[in] LPCWSTR a_Locale,

[in] LPCWSTR a_Scope ,

[in] LPCWSTR a_Registration ,

[in] IUnknown *a_Unknown

) ;

Semantics

	Description
	Registers an object interface with WMI, indicating the registration object that applies to the object interface.

	Concurrency and Threading
	Fully concurrent access permitted.

	Blocking
	Call returns once the registration is established.

	Misc.
	

	Justification
	Need to declare registration mechanism so that provider can participate in provider servicing.

	Limitations and Restrictions
	

Discussion:

The Initialize method binds a provider to a specific instance of a provider registration object. The provider subsystem will use the object for all requests associated with the provider registration. There may be multiple processes that call the Initialize function against the same provider registration object, under these circumstances the de-coupled provider subsystem might receive duplicate event instances from each provider instance. In any case the de-coupled provider subsystem will forward all received events. The provider should be architectured so that duplicate events are not forwarded for the same event registration. The a_Unknown parameter argument is used by the de-coupled provider subsystem for execution of the following associated event provider interfaces

IwbemEventProviderQuerySink

IwbemEventProviderSecurity

If the a_Unknown argument is NULL when the Initialize function is called, the de-coupled provider subsystem will quietly ignore the calls from the WMI core subsystem.

Parameters

	A_Flags
	Currently no flag values defined.

	A_Context
	Optional context. Currently no context values defined

	A_Registration
	The name of the provider being registered. tHe name corresponds to the identity of the provider specified by A_Registration.

__Win32Provider – handle servicing for the given provider registration

	A_Scope

	An object path representing the binding to a WMI provider registration object in a specified namespace. The scope object can be null, indicating that the provider will support of functionality for all namespaces.

	A_User
	A User string identifying the USER that this specific registration will surface. If the provider registration object identified by the class MSFT_Win32Provider has the property Decoupled_USERInitialization set to true, then WMI will attempt to identify the specifc iunknown passed into register with the associated provider name and Name as specified within the client call to IWbemServices :: ConnectServer, if no such match is found, WMI will return WBEM_E_PROVIDER_NOT_REGISTERED to the calling client. Otherwise WMI will use all IUNKNOWN’s with an associated a_USER that was specified as NULL

	A_Locale
	A locale string identifying the locale that this specific registration will surface. If the provider registration object identified by the class MSFT_Win32Provider has the property Decoupled_PerLocaleInitialization set to true, then WMI will attempt to identify the specifc iunknown passed into register with the associated provider name and locale as specified within the client call to IWbemServices :: ConnectServer, if no such match is found, WMI will return WBEM_E_PROVIDER_NOT_REGISTERED to the calling client. Otherwise WMI will use all IUNKNOWN’s with an associated a_Locale that was specified as NULL.

	A_Unknown
	An IUnknown pointer indicating the object interface for a particular provider registration. This interface will be QI’d to determine the interface support that the object is capable of servicing.

Return Values

	WBEM_S_NO_ERROR
	Success

	WBEM_E_ALREADY_REGISTERED
	Object has already been registered.

	WBEM_E_ACCESS_DENIED
	

	WBEM_E_NOT_FOUND
	

	WBEM_E_TIMED_OUT
	

	WBEM_E_OUT_OF_MEMORY
	

	WBEM_E_CRITICAL_ERROR
	Internal error

9.3 IWbemDecoupledBasicEventProvider::GetService

HRESULT GetService (

[in] long a_Flags ,

[in] IWbemContext *a_Context ,

[out] IWbemService *a_Service

) ;
Semantics

	Description
	Retrieves an IwbemServices object to be used to call back into WMI.

	Concurrency and Threading
	Fully concurrent access permitted.

	Blocking
	Call returns once the IWbemService object has been established or failure has occured.

	Misc.
	

	Justification
	Provider needs IWbemServices to obtain related execution context.

	Limitations and Restrictions
	

Discussion:

The GetService method retrieves a pointer to an IwbemServices Object. This object can be used to call back into WMI. It is undecided whether the object returned is an actual connectable object or whether it is just a stub that becomes valid, once the de-coupled provider subsystem has initialized it internally.

Parameters

	A_Flags
	Currently no flag values defined.

	A_Context
	Optional context. Currently no context values defined

	A_Service
	An interface pointer to an IwbemServices object that can be used to retrieve information from WMI.

Return Values

	WBEM_S_NO_ERROR
	Success

	WBEM_E_ACCESS_DENIED
	

	WBEM_E_NOT_FOUND
	

	WBEM_E_TIMED_OUT
	

	WBEM_E_OUT_OF_MEMORY
	

	WBEM_E_CRITICAL_ERROR
	Internal error

9.4 IWbemDecoupledBasicEventProvider::GetSink

HRESULT GetSink (

[in] long a_Flags ,

[in] IWbemContext *a_Context ,

[out] IWbemObjectSink *a_Sink

) ;
Semantics

	Description
	Returns an object sink for event forwarding.

	Concurrency and Threading
	Fully concurrent access permitted.

	Blocking
	Call returns on creation of object sink or on FAILURE condition.

	Misc.
	

	Justification
	Provider needs to forward event instances into WMI.

	Limitations and Restrictions
	

Discussion:

The GetSink method returns an object sink. The object sink is used to forward event objects to WMI. The IwbemObjectSink :: Indicate method will return WBEM_E_NOT_AVAILABLE if there are no associated event filters bound to the provider, otherwise Indicate will forward an event object to WMI.

Parameters

	A_Flags
	Currently no flag values defined.

	A_Context
	Optional context. Currently no context values defined

	A_Sink
	An interface pointer to an IwbemSink object that can be used to forward information to WMI.

Return Values

	WBEM_S_NO_ERROR
	Success

	WBEM_E_NOT_REGISTERED
	Object was never registrered.

	WBEM_E_ACCESS_DENIED
	

	WBEM_E_NOT_FOUND
	

	WBEM_E_TIMED_OUT
	

	WBEM_E_OUT_OF_MEMORY
	

	WBEM_E_CRITICAL_ERROR
	Internal error

Samples

tbd

10. References

1/8/2001
Microsoft Confidential
Page 3

