[image: image1.png]Where do you want 10 g0 today?2.

©WBEM

Web-Based Enterpiise Management

Changes to

Prepared By
:
a-davj & a-sanjes

Status:
:
Custom marshalling of IWbemObjectSink

Created
:
7-29-98

Version
:
Error! Unknown document property name.
Copyright 1998 © by Microsoft Corporation. All Rights Reserved

MICROSOFT CONFIDENTIAL - FOR INTERNAL DISTRIBUTION ONLY

Revision History

Version
Author
Date
Change

1.0
a-davj & a-sanjes
7/29/98
First version

1. 1.
Introduction

One of the potential bottle-necks in WBEM performance is the size of instance objects. A typical instance object could be around 1K in size. A class with thousands of instances, would consume considerable resources both transmitting the data and storing the instances in the clients memory.

Most of the memory usage for an instance is used in storing the class portion of the data. Since all the instances in an enumeration have identical class portions, a lot of memory can be saved by just transmitting and storing the class portion just once no matter how many instances are being enumerated. Currently, this is just being done for asynchronous enumerations though similar techniques could be used in other cases.

In order to support this feature, a custom proxy stub set has been written for the IWbemObjectSink interface. The proxy ensures that the class part is only sent once, and the stub ensures that the many instances can share a single copy of the class information.

This specification has two parts; the first deals with the changes to the IWbemObjectSink marshalling code and the second part has the details about how the class and instance parts of objects are split apart and later shared.

2. 0 Custom Proxy and Stub Code

In order to support the separation of instance and class data, we created our own proxy/stub pair for the IWbemObjectSink interface. This will be referred to as the “new style” proxy/stub. The current, or old style proxy/stub pair for this interface is created using the files automatically generated by MIDL and which are part of WBEMSVC.DLL.

For the foreseeable future, both the old style proxy/stub pair (in WBEMSVC.DLL) and the new style proxy/stub pair (in FASTPROX.DLL) will be used. The old pair is used in order to support remote access to older releases, establish versioning and also as a convenient way to handle the SetStatus function.

To support the new proxy/stub code, the files SINKMRSH.H and SINKMRSH.CPP have been added to the FASTPROX project. Together, they declare and define three classes. First, “CSinkFactoryBuffer” is a proxy/stub factory. There are also two classes named “CSinkProxyBuffer” and “CSinkStubBuffer” which contain the proxy and stub code.

Since both proxy/stub pairs are present, it is important to make sure that the HKCR\INTERFACE\IID_IWbemObjectSink |ProxyStub32 points to FASTPROX.DLL and not to WBEMSVC.DLL. Since the automatically generated code that goes into wbemsvc.dll would normally put itself into that value during self-registration, we created a replacement named dlldata2.c. Since dlldata2.c is not automatically generated by MIDL, it will have to be manually updated should there be and additional IDL files.

During the initialization of the proxy, the IRpcProxyBuffer::Connect(IRpcChannelBuffer * pChannel) function is called. During that function, the proxy does an AddRef on the channel buffer pointer not released until the IrpcProxyBuffer::Disconnect() function is called. Additionally, the Connect function also gets a pointer to the old style IwbemObjectSink proxy, which is also released during the Disconnect function.

In a Similar manner, the stub code gets a pointer to the old style stub code, which it holds until it is disconnected.

The Indicate function is complicated by the fact that the proxy does not initially know what sort of stub it is communicating with. To determine that, it always sends the first object using the old style proxy. When the new style stub gets the first indicate, it expects the data in the old format, but will replace the return code with WBEM_S_NEW_STYLE value. When the new style proxy gets back the result of the first indicate, it checks for that value and if it detects it, then all subsequent indicates will be done using our custom marshalling and unmarshalling code.

The advantage of this approach is that the proxy and stub are responsible for determing what version they are talking to. We considered updating the proxy/stub code for the IWbemServices interface and using CallAs functions which would somehow signal the IWbemObjectSink proxy/stub that it was working with a new style interface. However that would be more complicated and has the following potential hole in it. Because the IWbemObjectSink can be marshaled from one machine to another one, it could potentially be marshaled from a machine with new code to a machine with old code, causing versioning difficulties for the IWbemObjectSink Proxy/Stub Code, if it were informed by IWbemServices to function one way or the other..

3. 0 Wbem Data Packet Format

During the custom marshaling, we need to transmit data between the proxy and the stub. The data is laid out in a specific format as outlined below.

3.1 WBEM Data Packet Header

The basic layout of the packet is a structure WBEM_DATAPACKET_HEADER, followed by binary data that contains further packet specific information. The important thing is that ALL data packets are prepended by the header described below. This header is intended to act as a generic header that can be used to describe many different types of data, should we later decide to implement other marshalling. As data formats change the version information should be updated accordingly.

typedef struct tagWBEM_DATAPACKET_HEADER

{

DWORD
dwByteOrdering;

BYTE

abSignature[WBEM_DATAPACKET_SIZEOFSIGNATURE];
DWORD
dwSizeOfHeader;

DWORD
dwDataSize;

DWORD
dwFlags;

BYTE

bVersion;

BYTE

bPacketType;

} WBEM_DATAPACKET_HEADER;

The values in this header are as follows:

dwByteOrdering – This describes the byte ordering in use by the entire packet, including the data in the header. Possible values for this are:

WBEM_DATAPACKET_LITTLEENDIAN

0x00000000

WBEM_DATAPACKET_BIGENDIAN

0xFFFFFFFF

abSignature – This is an 8-byte signature that is in all packets prepended by a WBEM_DATAPACKET_HEADER structure. The 8-byte signature is as follows:

WBEM_DATAPACKET_SIGNATURE
{ 0x57, 0x42, 0x45, 0x4D, 0x44, 0x41,

0x54, 0x41 }

dwSizeOfHeader – This contains the size of the header. This allows for code to quickly jump to the end of the header to process data, even if the header changes from one version to the next.

dwDataSize – This is the size of the data following the header. The total size of the data packet is dwDataSize + dwSizeOfHeader.

dwFlags – This field can be used to describe various other attributes of the header and/or following data. Currently no values are supported, however it could easily be used to indicate if the following data is compressed or encrypted.

bVersion – This is the version of the protocol currently being run. If a data packet containing a newer version is received, we will most likely drop the connection with an appropriate error.

bPacketType – This is the type of packet that the WBEM_DATAPACKET_HEADER precedes. The packet type must be one recognized by the header. Currently, the supported values are:

typedef enum

{

WBEM_DATAPACKETYPE_FIRST = 0,

WBEM_DATAPACKETTYPE_OBJECTSINK_INDICATE = 0,

WBEM_DATAPACKETTYPE_LAST

} WBEM_DATAPACKETTYPE;

In cases where we need to check a block of data to determine if it is a valid packet header, we check that the size is at least that of the header, that the first 12 bytes of the packet consist of one of the valid byte ordering values followed by the known signature, the version is not greater than the current version and that the packet type is a recognized packet type. When adding packet types, there probably isn’t any need to bump up the version, since prior WBEM_DATAPACKET_HEADER code will toss the packet anyway, but if an existing packet type is changed, that would then be an appropriate time to bump up the version.

3.2 INDICATE Packet

When an IWbemObjectSink::Indicate() method is called, the WBEM_DATAPACKET_HEADER will be filled out with a bPacketType value of: WBEM_DATAPACKETTYPE_OBJECTSINK_INDICATE. Following is the format of the Indicate Packet.

typedef struct tagWBEM_DATAPACKET_OBJECTSINK_INDICATE

{

DWORD
dwSizeOfHeader;

DWORD
dwDataSize;

LONG

lObjectCount;

} WBEM_DATAPACKET_OBJECTSINK_INDICATE;

dwSizeOfHeader – This contains the size of the header. This allows for code to quickly jump to the end of the header to process data, even if the header changes from one version to the next.

dwDataSize – This is the size of the data following the header. The total size of the data packet is dwDataSize + dwSizeOfHeader.

lObjectCount – This is the number of Objects that will immediately follow this packet.

The Indicate Packet is immediately followed by lObjectCount Object Packets of various types as outlined below.
3.3 OBJECT Packets

When we need to write out object packets, they are written out using the following format.

typedef struct tagWBEM_DATAPACKET_OBJECT_HEADER

{

DWORD
dwSizeOfHeader;

DWORD
dwSizeOfData;

BYTE

bObjectType;

} WBEM_DATAPACKET_OBJECT_HEADER;

dwSizeOfHeader – This contains the size of the header. This allows for code to quickly jump to the end of the header to process data, even if the header changes from one version to the next.

dwDataSize – This is the size of the data following the header. The total size of the data packet is dwDataSize + dwSizeOfHeader.

bObjectType – This is one of the following values:

typedef enum

{

WBEMOBJECT_FIRST

= 0,

WBEMOBJECT_NONE

= 0,

WBEMOBJECT_CLASS_FULL

= 1,

WBEMOBJECT_INSTANCE_FULL
= 2,

WBEMOBJECT_INSTANCE_NOCLASS
= 3,

WBEMOBJECT_LAST

} WBEMOBJECT_PACKETTYPE;

WBEMOBJECT_CLASS_FULL – Describes a complete class object.

WBEMOBJECT_INSTANCE_FULL – Describes a complete instance object.

WBEMOBJECT_INSTANCE_NOCLASS – Describes an instance object without its class data.

3.4 Class Object Packet

Class Objects are always prepended by a WBEM_DATAPACKET_OBJECT_HEADER.

typedef struct tagWBEM_DATAPACKET_CLASS_HEADER

{

DWORD
dwSizeOfHeader;
// Size Of Header

DWORD
dwSizeOfData;
// Size Of Data following Header

} WBEM_DATAPACKET_CLASS_HEADER;

dwSizeOfHeader – This contains the size of the header. This allows for code to quickly jump to the end of the header to process data, even if the header changes from one version to the next.

dwDataSize – This is the size of the data following the header. The total size of the data packet is dwDataSize + dwSizeOfHeader.

3.5 Instance Object Packet

Instance Objects are always prepended by a WBEM_DATAPACKET_OBJECT_HEADER. The following header prepends all Instance Objects, regardless of whether or not they contain instance data.

typedef struct tagWBEM_DATAPACKET_INSTANCE_HEADER

{

DWORD
dwSizeOfHeader;

DWORD
dwSizeOfData;

GUID

guidClassId;

} WBEM_DATAPACKET_INSTANCE_HEADER;

dwSizeOfHeader – This contains the size of the header. This allows for code to quickly jump to the end of the header to process data, even if the header changes from one version to the next.

dwDataSize – This is the size of the data following the header. The total size of the data packet is dwDataSize + dwSizeOfHeader.

guidClassId – This is a GUID assigned to the packet by the sender. The receiver interprets the GUID based on the type of instance data that follows this header.

3.6 WBEM Data Packet Support classes

In order to centralize the handling of the previously documented structures, a series of classes have been created in FASTPROX.DLL. These classes are where changes and/or additions to processing logic should be added.

The classes are:

CWbemDataPacket

CWbemObjSinkIndicatePacket

CWbemObjectPacket

CWbemClassPacket

CWbemInstancePacket

CWbemClasslessInstancePacket

CWbemObjSinkIndicatePacket is derived from CWbemDataPacket. Any more major packet types we wish to add should also be derived from CWbemDataPacket.

CWbemObjectPacket provides standard processing for IWbemClassObject. CWbemClassPacket and CWbemInstancePacket derive from CWbemObjectPacket. CWbemClasslessInstancePacket Derives from CWbemInstancePacket. These classes are not dependent on CWbemObjSinkIndicatePacket or CWbemDataPacket and are intended to provide standalone help for transferring objects to and from byte streams.

4. Determination and usage of Class ID GUIDs

4.1 Why We Used GUIDs

The GUIDs that we use to identify classes used by Instance objects are determined as follows.

On the sending (proxy) side, for each instance object passed to us, we get the name of the class and look for the class in a map that is stored on a per proxy instance basis. If the class is not found, we assume this is the first time we are sending an instance of this particular class. At that point a new GUID is generated and associated with the class. Subsequent lookups for this class will result in the previously generated GUID being returned.

We chose to use GUIDs, because the proxy for IWbemObjectSink, can itself be marshaled between threads or to other machines, yet still point to the same Stub Instance. With this in mind, since classes of the same name but with different definitions may exist in multiple name spaces, or on multiple machines, by using a GUID generated on a per proxy basis, the stub is protected from hooking an instance up to the wrong class definition.

On the receiving (stub) side, the GUID assigned by the Proxy is read from the instance object’s packet data. If the instance object is a complete instance, the GUID and the instance object are added to a cache that relates GUIDs to IWbemClassObjects. If the instance is a classless instance, we look up the GUID in the cache and merge the class in the returned object with the classless object. The object that is merged with the classless object is AddRefed by the classless object, and is also AddRefed by the cache. The cache is destroyed when the stub object is destroyed, at which time the objects in the cache are Released. The instance object all the other objects are merged with is destroyed only after all the objects referencing it release it.

4.2 Support Classes

Two classes were written in order to support the GUIDs on each side of the Proxy/Stub architecture.

CWbemClassToIdMap is used by the Proxy in order to generate and retrieve GUIDs as needed for sending.

CWbemClassCache keeps a cache of GUID to IWbemClassObject relationships for retrieval on the Stub side of the Marshaling model.

Each of these classes implements an Add/Get set of methods which take appropriate parameters. The intention here is that the underlying data structures can be modified as needed without the interface to those structures having to change.

DCR Number
21360

Subject
CIMOM Instance encoding results in objects that are too large

Developer
a-davj & a-sanjes

Document Date
7/30/98

