15. ACPI Source Language (ASL) Reference

 XE "ACPI Source Language (ASL)"

 XE "ASL" This section formally defines the ACPI Control Method Source Language (ASL). ASL is a source language for writing ACPI control methods. OEMs and BIOS developers write control methods in ASL and then use a translator tool (compiler) to generate ACPI Machine Language (AML) versions of the control methods. For a formal definition of AML, see the ACPI Control Method Machine Language (AML) Specification, section 16.

AML and ASL are different languages though they are closely related.

Every ACPI-compatible OSes must support AML. A given user can define some arbitrary source language (to replace ASL) and write a tool to translate it to AML.

An OEM or BIOS vendor needs to write ASL and be able to single step AML for debugging. (Debuggers and similar tools are expected to be AML level tools, not source level tools.) An ASL translator implementer must understand how to read ASL and generate AML. An AML interpreter author must understand how to execute AML.

This section has two parts:

· The ASL grammar, which is the formal ASL specification and also serves as a quick reference.

· A full ASL reference, which repeats the ASL term syntax and adds information about the semantics of the language.

15.1 ASL Language Grammar

 XE "ASL:grammer" The purpose of this section is to state unambiguously the grammar rules used by the syntax checker of an ASL compiler.

ASL statements declare objects. Each object has three parts, two of which can be null.

Object := ObjectType FixedList VariableList

FixedList refers to a list, of known length, that supplies data that all instances of a given ObjectType must have. A fixed list is written as (a , b , c , …) where the number of arguments depends on the specific ObjectType, and some elements can be nested objects, that is (a, b, (q, r, s, t), d). Arguments to a FixedList can have default values, in which case they can be skipped. Thus, (a,,c) will cause the default value for the second argument to be used. Some ObjectTypes can have a null FixedList, which is simply omitted. Trailing arguments of some object types can be left out of a fixed list, in which case the default value is used.

VariableList refers to a list, not of predetermined length, of child objects that help define the parent. It is written as { x, y, z, aa, bb, cc } where any argument can be a nested object. ObjectType determines what terms are legal elements of the VariableList. Some ObjectTypes may have a null variable list, which is simply omitted.

Other rules for writing ASL statements are the following:

· Multiple blanks are the same as one. Blank, (,), ‘,’ and newline are all token separators.

· // marks the beginning of a comment, which continues from the // to the end of the line.

· /* marks the beginning of a comment, which continues from the /* to the next */.

· “” surround an ASCII string.

· Numeric constants can be written in two ways: ordinary decimal, or hexadecimal, using the notation 0xdd
· nothing indicates an empty item. For example { nothing } is equivalent to {}

15.1.1 ASL Grammar Notation

The notation used to express the ASL grammar is specified in the following table.

Table 15-1 ASL Grammar Notation

Notation Convention
Description
Example

Term := Term Term …
The term to the left of := can be expanded into the sequence of terms on the right.
aterm := bterm cterm means that aterm can be expanded into the two-term sequence of bterm followed by cterm.

Angle brackets (< >)
Used to group items.
<a b> | <c d> means either

a b or c d.

Bar symbol (|)
Separates alternatives.
aterm := bterm | <cterm dterm> means the following constructs are possible:

 bterm

 cterm dterm

aterm := <bterm | cterm> dterm means the following constructs are possible:

 bterm dterm

 cterm dterm

Term Term Term
Terms separated from each other by spaces form an ordered list.
N/A.

Word in bold.
Denotes the name of a term in the ASL grammar, representing any instance of such a term.
In the following ASL term definition:

ThermalZone (ZoneName)

 {NamedObjectList}

the item in bold is the name of the term.

Word in italics
Names of arguments to objects that are replaced for a given instance.
In the following ASL term definition:

ThermalZone (ZoneName)

 {NamedObjectList}

the italicized item is an argument. The item that is not bolded or italicized is defined elsewhere in the ASL grammar.

Single quotes (‘ ’)
Indicate constant characters.
‘A’

0xdd
Refers to a byte value expressed as 2 hexadecimal digits.
0x21 means a value of hexadecimal 21, or decimal 37. Note that a value expressed in hexadecimal must start with a leading zero (0).

Dash character (-)
Indicates a range.
1-9 means a single digit in the range 1 to 9 inclusive.

15.1.2 ASL Names XE "ASL Names"
LeadNameChar
:= ‘A’ | ‘B’ | ‘C’ | ‘D’ | ‘E’ | ‘F’ | ‘G’ | ‘H’ | ‘I’ | ‘J’ | ‘K’ | ‘L’ | ‘M’ | ‘N’ | ‘O’ | ‘P’ | ‘Q’ | ‘R’ | ‘S’ | ‘T’ | ‘U’ | ‘V’ | ‘W’ | ‘X’ | ‘Y’ | ‘Z’ | ‘_’

NameChar
:= ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’ | LeadNameChar

RootChar
:= ‘\’

NameSeg
:= <LeadNameChar NameChar NameChar NameChar> |
<LeadNameChar NameChar NameChar> |
<LeadNameChar NameChar> |
<LeadNameChar>

NameString
:= <RootChar NamePath> | <PrefixPath NamePath>

PrefixPath
:= Nothing | <‘^’ PrefixPath>

NamePath
:= Nothing | <NameSeg NamePathTail>

NamePathTail
:= Nothing | <‘.’ NameSeg NamePathTail>

15.1.3 ASL Language and Terms XE "ASL Language and Terms"
ASLCode
:= DefinitionBlockTerm

DefinitionBlockTerm
:= DefinitionBlock(

AMLFileName,
//String

TableSignature,
//String

ComplianceRevision,
//ByteConst

OEMID,
//String

TableID,
//String

OEMRevision
//DWordConst
) {TermList}

TermList
:= Nothing | <Term TermList>

Term
:= Object | Type1Opcode | Type2Opcode

CompilerDirective
:= IncludeTerm | ExternalTerm

ObjectList
:= Nothing | <Object ObjectList>

Object
:= CompilerDirective | NamedObject | NameSpaceModifier | UserTerm

DataObject
:= BufferTerm | PackageTerm | LiteralData | DataMacros

LiteralData
:= Integer | String | ConstTerm

ComputationalData
:= Integer | String | BufferTerm

DataMacros
:= EISAIDTerm | ResourceTemplateTerm

NamedObject
:= BankFieldTerm | CreateBitFieldTerm | CreateByteFieldTerm | CreateDWordFieldTerm | CreateFieldTerm | CreateWordFieldTerm | DeviceTerm | EventTerm | FieldTerm | IndexFieldTerm | MethodTerm | MutexTerm | OpRegionTerm | PowerResTerm | ProcessorTerm | ThermalZoneTerm

NameSpaceModifier
:= AliasTerm | NameTerm | ScopeTerm

UserTerm
:= NameString(
//NameString=>MethodTerm

ArgList
) => DataObject

ArgList
:= Nothing | <TermArg ArgListTail>

ArgListTail
:= Nothing | <’,’ TermArg ArgListTail>

TermArg
:= Type2Opcode | DataObject | UserTerm | ArgTerm | LocalTerm

Type1Opcode
:= BreakTerm | BreakPointTerm | FatalTerm | IfElseTerm | LoadTerm | NoOpTerm | NotifyTerm | ReleaseTerm | ResetTerm | ReturnTerm | SignalTerm | SleepTerm | StallTerm | UnloadTerm | WhileTerm
// A Type1OpCode term can only be used standing alone on a
// line of ASL code; because these types of terms do not
// return a value so they cannot be used as a term in an
// expression.

Type2Opcode
:= AcquireTerm | AddTerm | AndTerm | ConcatTerm | CondRefOfTerm | DecTerm | DerefOfTerm | DivideTerm | FindSetLeftBitTerm | FindSetRightBitTerm | FromBCDTerm | IncTerm | IndexTerm | LAndTerm | LEqualTerm | LGreaterTerm | LGreaterEqualTerm | LLessTerm | LLessEqualTerm | LNotTerm | LNotEqualTerm | LOrTerm | MatchTerm | MultiplyTerm | NAndTerm | NOrTerm | NotTerm | ObjectTypeTerm | OrTerm | RefOfTerm | ShiftLeftTerm | ShiftRightTerm | SizeOfTerm | StoreTerm | SubtractTerm | ToBCDTerm | WaitTerm | XorTerm
// A Type2Opcode term returns a value that can be used in
// an expression.

IncludeTerm
:= Include(

IncFilePathName
//String
)

ExternalTerm
:= External(

ObjName,
//NameString

ObjType
//Nothing | ObjectTypeKeyword
)

BankFieldTerm
:= BankField(

RegionName,
//NameString

BankName,
//NameString

BankValue,
//TermArg=>DWordConst

AccessType,
//AccessTypeKeyword

LockRule,
//LockRuleKeyword

UpdateRule
//UpdateRuleKeyword
) {FieldUnitList}
FieldUnitList
:= Nothing | <FieldUnit FieldUnitListTail>

FieldUnitListTail
:= Nothing | <‘,’ FieldUnit FieldUnitListTail>

FieldUnit
:= FieldUnitEntry | OffsetTerm | AccessAsTerm

FieldUnitEntry
:= <Nothing | NameSeg> ‘,’ Integer

OffsetTerm
:= Offset(

ByteOffset
//Integer
)

AccessAsTerm
:= AccessAs(

AccessType,
//AccessTypeKeyword

AccessAttribute
//Nothing | ByteConst
)

CreateBitFieldTerm
:= CreateBitField(

SourceBuffer,
//TermArg=>BufferTerm

BitIndex,
//TermArg=>Integer

BitFieldName
//NameString
)

CreateByteFieldTerm
:= CreateByteField(

SourceBuffer,
//TermArg=>BufferTerm

ByteIndex,
//TermArg=>Integer

ByteFieldName
//NameString
)

CreateDWordFieldTerm
:= CreateDWordField(

SourceBuffer,
//TermArg=>BufferTerm

ByteIndex,
//TermArg=>Integer

DWordFieldName
//NameString
)

CreateFieldTerm
:= CreateField(

SourceBuffer,
//TermArg=>BufferTerm

BitIndex,
//TermArg=>Integer

NumBits,
//TermArg=>Integer

FieldName
//NameString
)

CreateWordFieldTerm
:= CreateWordField(

SourceBuffer,
//TermArg=>BufferTerm

ByteIndex,
//TermArg=>Integer

WordFieldName
//NameString
)

DeviceTerm
:= Device(

DeviceName
//NameString
) {ObjectList}

EventTerm
:= Event(

EventName
//NameString
)

FieldTerm
:= Field(

RegionName,
//NameString

AccessType,
//AccessTypeKeyword

LockRule,
//LockRuleKeyword

UpdateRule
//UpdateRuleKeyword
) {FieldUnitList}

IndexFieldTerm
:= IndexField(

IndexName,
//NameString

DataName,
//NameString

AccessType,
//AccessTypeKeyword

LockRule,
//LockRuleKeyword

UpdateRule
//UpdateRuleKeyword
) {FieldUnitList}

MethodTerm
:= Method(

MethodName,
//NameString

NumArgs,
//Nothing | ByteConst

SerializeRule
//Nothing |

//SerializeRuleKeyword
) {TermList}

MutexTerm
:= Mutex(

MutexName,
//NameString

SyncLevel
//ByteConst
)

OpRegionTerm
:= OperationRegion(

RegionName,
//NameString

RegionSpace,
//RegionSpaceKeyword

Offset,
//TermArg=>DWordConst

Length
//TermArg=>DWordConst
)

PowerResTerm
:= PowerResource(

ResourceName,
//NameString

SystemLevel,
//ByteConst

ResourceOrder
//WordConst
) {ObjectList}

ProcessorTerm
:= Processor(

ProcessorName,
//NameString

ProcessorID,
//ByteConst

PBlockAddress,
//DWordConst

PblockLength
//ByteConst
) {ObjectList}

ThermalZoneTerm
:= ThermalZone(

ThermalZoneName
//NameString
) {ObjectList}

AliasTerm
:= Alias(

SourceObject,
//NameString

AliasObject
//NameString
)

NameTerm
:= Name(

ObjectName,
//NameString

Object
//DataObject
)

ScopeTerm
:= Scope(

Location
//NameString
) {ObjectList}

BreakTerm
:= Break

BreakPointTerm
:= BreakPoint

FatalTerm
:= Fatal(

Type,
//ByteConst

Code,
//DWordConst

Arg
//TermArg=>Integer
)

IfElseTerm
:= IfTerm ElseTerm

IfTerm
:= If(

Predicate
//TermArg=>Integer
) {TermList}

ElseTerm
:= Nothing | <Else {TermList}>

LoadTerm
:= Load(

Object,
//NameString

DDBHandle
//SuperName
)

NoOpTerm
:= Noop

NotifyTerm
:= Notify(

Object,
//SuperName

NotificationValue
//TermArg=>ByteConst
)

ReleaseTerm
:= Release(

SyncObject
//SuperName
)

ResetTerm
:= Reset(

SyncObject
//SuperName
)

ReturnTerm
:= Return(

Arg
//TermArg=>DataObject
)

SignalTerm
:= Signal(

SyncObject
//SuperName
)

SleepTerm
:= Sleep(

MilliSecs
//TermArg=>Integer
)

StallTerm
:= Stall(

MicroSecs
//TermArg=>Integer
)

UnloadTerm
:= Unload(

DDBHandle
//SuperName
)

WhileTerm
:= While(

Predicate
//TermArg=>Integer
) {TermList}
AcquireTerm
:= Acquire(

SyncObject,
//SuperName

TimeoutValue
//WordConst
) => Boolean
//Ones means timed-out

AddTerm
:= Add(

Addend1,
//TermArg=>Integer

Addend2,
//TermArg=>Integer

Result
//Nothing | SuperName
) => Integer

AndTerm
:= And(

Source1,
//TermArg=>Integer

Source2,
//TermArg=>Integer

Result
//Nothing | SuperName
) => Integer

ConcatTerm
:= Concatenate(

Source1,
//TermArg=>ComputationalData

Source2,
//TermArg=>ComputationalData

Result
//Nothing | SuperName
) => ComputationalData

CondRefOfTerm
:= CondRefOf(

Source,
//SuperName

Destination
//SuperName
) => Boolean

DecTerm
:= Decrement(

Addend
//SuperName
) => Integer

DerefOfTerm
:= DerefOf(

Source
//TermArg=>ObjectReference

//ObjectReference is an object

//produced by terms such as

//Index, RefOf or CondRefOf.
) => ObjectReference

DivideTerm
:= Divide(

Dividend,
//TermArg=>Integer

Divisor,
//TermArg=>Integer

Remainder,
//Nothing | SuperName

Result
//Nothing | SuperName
) => Integer
//returns Result

FindSetLeftBitTerm
:= FindSetLeftBit(

Source,
//TermArg=>Integer

Result
//Nothing | SuperName
) => Integer

FindSetRightBitTerm
:= FindSetRightBit(

Source,
//TermArg=>Integer

Result
//Nothing | SuperName
) => Integer

FromBCDTerm
:= FromBCD(

BCDValue,
//TermArg=>Integer

Result
//Nothing | SuperName
) => Integer

IncTerm
:= Increment(

Addend
//SuperName
) => Integer

IndexTerm
:= Index(

Source,
//TermArg=>

//<BufferTerm | PackageTerm>

Index,
//TermArg=>Integer

Destination
//Nothing | SuperName
) => ObjectReference

LAndTerm
:= LAnd(

Source1,
//TermArg=>Integer

Source2
//TermArg=>Integer
) => Boolean

LEqualTerm
:= LEqual(

Source1,
//TermArg=>Integer

Source2
//TermArg=>Integer
) => Boolean

LGreaterTerm
:= LGreater(

Source1,
//TermArg=>Integer

Source2
//TermArg=>Integer
) => Boolean

LGreaterEqualTerm
:= LGreaterEqual(

Source1,
//TermArg=>Integer

Source2
//TermArg=>Integer
) => Boolean

LLessTerm
:= LLess(

Source1,
//TermArg=>Integer

Source2
//TermArg=>Integer
) => Boolean

LLessEqualTerm
:= LLessEqual(

Source1,
//TermArg=>Integer

Source2
//TermArg=>Integer
) => Boolean

LNotTerm
:= LNot(

Source,
//TermArg=>Integer
) => Boolean

LNotEqualTerm
:= LNotEqual(

Source1,
//TermArg=>Integer

Source2
//TermArg=>Integer
) => Boolean

LOrTerm
:= LOr(

Source1,
//TermArg=>Integer

Source2
//TermArg=>Integer
) => Boolean

MatchTerm
:= Match(

SearchPackage,
//TermArg=>Package

Op1,
//MatchOpKeyword

MatchObject1,
//TermArg=>Integer

Op2,
//MatchOpKeyword

MatchObject2,
//TermArg=>Integer

StartIndex
//TermArg=>Integer
) => Ones | Integer

MultiplyTerm
:= Multiply(

Multiplicand,
//TermArg=>Integer

Multiplier,
//TermArg=>Integer

Result
//Nothing | SuperName
) => Integer

NAndTerm
:= NAnd(

Source1,
//TermArg=>Integer

Source2
//TermArg=>Integer

Result
//Nothing | SuperName
) => Integer

NOrTerm
:= NOr(

Source1,
//TermArg=>Integer

Source2
//TermArg=>Integer

Result
//Nothing | SuperName
) => Integer

NotTerm
:= Not(

Source,
//TermArg=>Integer

Result
//Nothing | SuperName
) => Integer

ObjectTypeTerm
:= ObjectType(

Object
//SuperName
) => Integer

OrTerm
:= Or(

Source1,
//TermArg=>Integer

Source2
//TermArg=>Integer

Result
//Nothing | SuperName
) => Integer

RefOfTerm
:= RefOf(

Object
//SuperName
) => ObjectReference

ShiftLeftTerm
:= ShiftLeft(

Source,
//TermArg=>Integer

ShiftCount
//TermArg=>Integer

Result
//Nothing | SuperName
) => Integer

ShiftRightTerm
:= ShiftRight(

Source,
//TermArg=>Integer

ShiftCount
//TermArg=>Integer

Result
//Nothing | SuperName
) => Integer

SizeOfTerm
:= SizeOf(

DataObject
//SuperName=>DataObject
) => Integer

StoreTerm
:= Store(

Source,
//TermArg=>DataObject

Destination
//SuperName
) => DataObject

SubtractTerm
:= Subtract(

Addend1,
//TermArg=>Integer

Addend2,
//TermArg=>Integer

Result
//Nothing | SuperName
) => Integer

ToBCDTerm
:= ToBCD(

Value,
//TermArg=>Integer

Result
//Nothing | SuperName
) => Integer

WaitTerm
:= Wait(

SyncObject,
//SuperName

TimeoutValue
//TermArg=>Integer
) => Boolean

XOrTerm
:= XOr(

Source1,
//TermArg=>Integer

Source2
//TermArg=>Integer

Result
//Nothing | SuperName
) => Integer

ObjectTypeKeyword
:= UnknownObj | IntObj | StrObj | BuffObj | PkgObj | FieldUnitObj | DeviceObj | EventObj | MethodObj | MutexObj | OpRegionObj | PowerResObj | ThermalZoneObj | BuffFieldObj | DDBHandleObj

AcessTypeKeyword
:= AnyAcc | ByteAcc | WordAcc | DWordAcc | BlockAcc | SMBSendRecvAcc | SMBQuickAcc
LockRuleKeyword
:= Lock | NoLock
UpdateRuleKeyword
:= Preserve | WriteAsOnes | WriteAsZeros

RegionSpaceKeyword
:= UserDefRegionSpace | SystemIO | SystemMemory | PCI_Config | EmbeddedControl | SMBus

UserDefRegionSpace
:= 0x80-0xff
SerializeRuleKeyword
:= Serialized | NotSerialized

MatchOpKeyword
:= MTR | MEQ | MLE | MLT | MGE | MGT

DMATypeKeyword
:= Compatibility | TypeA | TypeB | TypeF

BusMasterKeyword
:= BusMaster | NotBusMaster
XferTypeKeyword
:= Transfer8 | Transfer16 | Transfer8_16

ResourceTypeKeyword
:= ResourceConsumer | ResourceProducer

MinKeyword
:= MinFixed | MinNotFixed
MaxKeyword
:= MaxFixed | MaxNotFixed
DecodeKeyword
:= SubDecode | PosDecode
RangeTypeKeyword
:= ISAOnlyRanges | NonISAOnlyRanges | EntireRange

MemTypeKeyword
:= Cacheable | WriteCombining | Prefetchable | NonCacheable

ReadWriteKeyword
:= ReadWrite | ReadOnly

InterruptTypeKeyword
:= Edge | Level
InterruptLevel
:= ActiveHigh | ActiveLow
ShareTypeKeyword
:= Shared | Exclusive

IODecodeKeyword
:= Decode16 | Decode10
SuperName
:= NameString | ArgTerm | LocalTerm | DebugTerm | IndexTerm

ArgTerm
:= Arg0 | Arg1 | Arg2 | Arg3 | Arg4 | Arg5 | Arg6
LocalTerm
:= Local0 | Local1 | Local2 | Local3 | Local4 | Local5 | Local6 | Local7
DebugTerm
:= Debug
Integer
:= ByteConst | WordConst | DWordConst

ByteConst
:= 0x00-0xff

WordConst
:= 0x0000-0xffff

DWordConst
:= 0x00000000-0xffffffff

String
:= ‘”’ AsciiCharList ‘”’

AsciiCharList
:= Nothing | <AsciiChar AsciiCharList>

AsciiChar
:= 0x01-0x7f

NullChar
:= 0x00

ConstTerm
:= Zero | One | Ones | Revision

Boolean
:= True | False

True
:= Ones

False
:= Zero

BufferTerm
:= Buffer(

BuffSize
//Nothing |

//TermArg=>Integer
) {String | ByteList}

ByteList
:= Nothing | <ByteConst ByteListTail>

ByteListTail
:= Nothing | <‘,’ ByteConst ByteListTail>

DWordList
:= Nothing | <DWordConst DWordListTail>

DWordListTail
:= Nothing | <‘,’ DWordConst DWordListTail>

PackageTerm
:= Package(

NumElements
//Nothing |

//ByteConst
) {PackageList}

PackageList
:= Nothing | <PackageElement PackageListTail>

PackageListTail
:= Nothing | <‘,’ PackageElement PackageListTail>

PackageElement
:= DataObject | NameString

EISAIDTerm
:= EISAID(

EISAIDString
//String
) => DWordConst

ResourceTemplateTerm
:= ResourceTemplate() {ResourceMacroList} => BufferTerm

ResourceMacroList
:= Nothing | <ResourceMacroTerm ResourceMacroList>

ResourceMacroTerm
:= DMATerm | DWordIOTerm | DWordMemoryTerm | EndDependentFnTerm | FixedIOTerm | InterruptTerm | IOTerm | IRQNoFlagsTerm | IRQTerm | Memory24Term | Memory32FixedTerm | Memory32Term | QWordIOTerm | QWordMemoryTerm | StartDependentFnTerm | StartDependentFnNoPriTerm | VendorLongTerm | VendorShortTerm | WordBusNumberTerm | WordIOTerm

DMATerm
:= DMA(

DMAType,
//DMATypeKeyword (_TYP)

BusMaster,
//BusMasterKeyword (_BM)

XferType,
//XferTypeKeyword (_SIZ)

ResourceTag
//Nothing | NameString
) {ByteList}
//List of channels (0-17)

DWordIOTerm
:= DWORDIO(

ResourceType,
//Nothing (ResourceConsumer)|

//ResourceTypeKeyword

MinType,
//Nothing (MinNotFixed) |

//MinKeyword (_MIF)

MaxType,
//Nothing (MaxNotFixed) |

//MaxKeyword (_MAF)

Decode,
//Nothing (PosDecode) |

//DecodeKeyword (_DEC)

RangeType,
//Nothing (EntireRange) |

//RangeTypeKeyword (_RNG)

AddressGranularity,
//DWordConst (_GRA)

MinAddress,
//DWordConst (_MIN)

MaxAddress,
//DWordConst (_MAX)

Translation,
//DWordConst (_TRA)

AddressLen,
//DWordConst (_LEN)

ResSourceIndex,
//Nothing | ByteConst

ResSource,
//Nothing | String

ResourceTag
//Nothing | NameString
)

DWordMemoryTerm
:= DWORDMemory(

ResourceType,
//Nothing (ResourceConsumer)|

//ResourceTypeKeyword

Decode,
//Nothing (PosDecode) |

//DecodeKeyword (_DEC)

MinType,
//Nothing (MinNotFixed) |

//MinKeyword (_MIF)

MaxType,
//Nothing (MaxNotFixed) |

//MaxKeyword (_MAF)

MemType,
//Nothing (NonCacheable) |

//MemTypeKeyword (_MEM)

ReadWriteType,
//ReadWriteKeyword (_RW)

AddressGranularity,
//DWordConst (_GRA)

MinAddress,
//DWordConst (_MIN)

MaxAddress,
//DWordConst (_MAX)

Translation,
//DWordConst (_TRA)

AddressLen,
//DWordConst (_LEN)

ResSourceIndex,
//Nothing | ByteConst

ResSource,
//Nothing | String

ResourceTag
//Nothing | NameString
)

EndDependentFnTerm
:= EndDependentFn()

FixedIOTerm
:= FixedIO(

AddressBase,
//WordConst (_BAS)

RangeLen,
//ByteConst (_LEN)

ResourceTag
//Nothing | NameString
)

InterruptTerm
:= Interrupt(

ResourceType,
//Nothing (ResourceConsumer)|

//ResourceTypeKeyword

InterruptType,
//InterruptTypeKeyword

//(_LL, _HE)

InterruptLevel,
//InterruptLevelKeyword

//(_LL, _HE)

ShareType,
//Nothing (Exclusive)

//ShareTypeKeyword (_SHR)

ResSourceIndex,
//Nothing | ByteConst

ResSource,
//Nothing | String

ResourceTag
//Nothing | NameString
) {DWordList}
//list of interrupts (_INT)

IOTerm
:= IO(

IODecode,
//IODecodeKeyword (_DEC)

MinAddress,
//WordConst (_MIN)

MaxAddress,
//WordConst (_MAX)

Alignment,
//ByteConst (_ALN)

RangeLen,
//ByteConst (_LEN)

ResourceTag
//Nothing | NameString
)

IRQNoFlagsTerm
:= IRQNoFlags(

ResourceTag
//Nothing | NameString
) {ByteList}
//list of interrupts (0-15)

IRQTerm
:= IRQ(

InterruptType,
//InterruptTypeKeyword

//(_LL, _HE)

InterruptLevel,
//InterruptLevelKeyword

//(_LL, _HE)

ShareType,
//Nothing (Exclusive)

//ShareTypeKeyword (_SHR)

ResourceTag
//Nothing | NameString
) {ByteList}
//list of interrupts (0-15)

Memory24Term
:= Memory24(

ReadWriteType,
//ReadWriteKeyword (_RW)

MinAddress[23:8],
//WordConst (_MIN)

MaxAddress[23:8],
//WordConst (_MAX)

Alignment,
//WordConst (_ALN)

RangeLen,
//WordConst (_LEN)

ResourceTag
//Nothing | NameString
)

Memory32FixedTerm
:= Memory32Fixed(

ReadWriteType,
//ReadWriteKeyword (_RW)

AddressBase,
//DWordConst (_BAS)

RangeLen,
//DWordConst (_LEN)

ResourceTag
//Nothing | NameString
)

Memory32Term
:= Memory32(

ReadWriteType,
//ReadWriteKeyword (_RW)

MinAddress,
//DWordConst (_MIN)

MaxAddress,
//DWordConst (_MAX)

Alignment,
//DWordConst (_ALN)

RangeLen,
//DWordConst (_LEN)

ResourceTag
//Nothing | NameString
)

QWordIOTerm
:= QWORDIO(

ResourceType,
//Nothing (ResourceConsumer)|

//ResourceTypeKeyword

MinType,
//Nothing (MinNotFixed) |

//MinKeyword (_MIF)

MaxType,
//Nothing (MaxNotFixed) |

//MaxKeyword (_MAF)

Decode,
//Nothing (PosDecode) |

//DecodeKeyword (_DEC)

RangeType,
//Nothing (EntireRange) |

//RangeTypeKeyword (_RNG)

AddressGranularity,
//QWordConst (_GRA)

MinAddress,
//QWordConst (_MIN)

MaxAddress,
//QWordConst (_MAX)

Translation,
//QWordConst (_TRA)

AddressLen,
//QWordConst (_LEN)

ResSourceIndex,
//Nothing | ByteConst

ResSource,
//Nothing | String

ResourceTag
//Nothing | NameString
)

QWordMemoryTerm
:= QWORDMemory(

ResourceType,
//Nothing (ResourceConsumer)|

//ResourceTypeKeyword

Decode,
//Nothing (PosDecode) |

//DecodeKeyword (_DEC)

MinType,
//Nothing (MinNotFixed) |

//MinKeyword (_MIF)

MaxType,
//Nothing (MaxNotFixed) |

//MaxKeyword (_MAF)

MemType,
//Nothing (NonCacheable) |

//MemTypeKeyword (_MEM)

ReadWriteType,
//ReadWriteKeyword (_RW)

AddressGranularity,
//QWordConst (_GRA)

MinAddress,
//QWordConst (_MIN)

MaxAddress,
//QWordConst (_MAX)

Translation,
//QWordConst (_TRA)

AddressLen,
//QWordConst (_LEN)

ResSourceIndex,
//Nothing | ByteConst

ResSource,
//Nothing | String

ResourceTag
//Nothing | NameString
)

StartDependentFnTerm
:= StartDependentFn(

CompatPriority,
//ByteConst (0-2)

PerfRobustPriority
//ByteConst (0-2)
) {ResourceMacroList}

StartDependentFnNoPriTerm
:=StartDependentFnNoPri() {ResourceMacroList}

VendorLongTerm
:= VendorLong(

ResourceTag
//Nothing | NameString
) {ByteList}

VendorShortTerm
:= VendorShort(

ResourceTag
//Nothing | NameString
) {ByteList}
//up to 7 bytes

WordBusNumberTerm
:= WordBusNumber(

ResourceType,
//Nothing (ResourceConsumer)|

//ResourceTypeKeyword

MinType,
//Nothing (MinNotFixed) |

//MinKeyword (_MIF)

MaxType,
//Nothing (MaxNotFixed) |

//MaxKeyword (_MAF)

Decode,
//Nothing (PosDecode) |

//DecodeKeyword (_DEC)

AddressGranularity,
//WordConst (_GRA)

MinAddress,
//WordConst (_MIN)

MaxAddress,
//WordConst (_MAX)

Translation,
//WordConst (_TRA)

AddressLen,
//WordConst (_LEN)

ResSourceIndex,
//Nothing | ByteConst

ResSource,
//Nothing | String

ResourceTag
//Nothing | NameString
)

WordIOTerm
:= WordIO(

ResourceType,
//Nothing (ResourceConsumer)|

//ResourceTypeKeyword

MinType,
//Nothing (MinNotFixed) |

//MinKeyword (_MIF)

MaxType,
//Nothing (MaxNotFixed) |

//MaxKeyword (_MAF)

Decode,
//Nothing (PosDecode) |

//DecodeKeyword (_DEC)

RangeType,
//Nothing (EntireRange) |

//RangeTypeKeyword (_RNG)

AddressGranularity,
//WordConst _GRA)

MinAddress,
//WordConst (_MIN)

MaxAddress,
//WordConst (_MAX)

Translation,
//WordConst (_TRA)

AddressLen,
//WordConst (_LEN)

ResSourceIndex,
//Nothing | ByteConst

ResSource,
//Nothing | String

ResourceTag
//Nothing | NameString
)

15.2 Full ASL Reference

This reference section is for developers who are writing ASL code while developing definition blocks for platforms.

15.2.1 ASL Names

 XE "ASL:names" This section describes how to encode object names using ASL.

The following table lists the characters legal in any position in an ASL object name.

Table 15-2 Control Method Named Object Reference Encodings

Value
Description

41-5A, 5F
Lead character of name (‘A’ - ‘Z’, ‘_’)
LeadNameChar

30-39, 41-5A, 5F
Non-lead (trailing) character of name (‘A’ - ‘Z’, ‘_’, ’0 - 9’)
NameChar

The following table lists the name modifiers.

Table 15-3 Definition Block Name Modifier Encodings

Description
NamePrefix :=
Followed by …

5C
Name space root (‘\’)
RootPrefix
 Name

5E
Parent name space (‘^’)
ParentPrefix
 Name

2E
Name extender: 1
DualNamePrefix
 Name Name

2F
Name extender: N
MultiNamePrefix
count Namecount

15.2.2 ASL Data Types

 XE "ASL:data types" The contents of an object, or the data it references, may be abstract entities (for example, “Device Object”) or can be one of three computational data types. The computational data type can be used as arguments to many of the ASL Operator terms.

Table 15-4 Data Types

Data Type
Description

Integer
32-bit little endian unsigned value.

Buffer
Arbitrary fixed length array of bytes.

String
ASCIIZ string 1 to 200 characters in length (including NullChar).

15.2.3 ASL Terms

 XE "ASL:terms" This section describes all the ASL terms and provides sample ASL code that uses the terms.

The ASL terms are grouped into the following categories:

· Definition block term

· Compiler directive terms

· Object terms

· Opcode terms

· User terms

· Data objects

· Miscellaneous objects

15.2.3.1 Definition Block Term

DefinitionBlockTerm
:= DefinitionBlock(

AMLFileName,
//String

TableSignature,
//String

ComplianceRevision,
//ByteConst

OEMID,
//String

TableID,
//String

OEMRevision
//DWordConst
) {TermList}

The DefinitionBlock term specifies the unit of data and/or AML code that the OS will load as part of the Differentiated Definition Block or as part of an additional Definition Block. This unit of data and/or AML code describes either the base system or some large extension (such as a docking station). The entire DefinitionBlock will be loaded and compiled by the OS as a single unit, and can be unloaded by the OS as a single unit.

15.2.3.2 Compiler Directive Terms

The compiler directives are:

· Include term

· External term

15.2.3.2.1 Include – Include Another ASL File

IncludeTerm
:= Include(

IncFilePathName
//String
)

IncFilePathname is the full OS file system path to another file that contains ASL terms to be included in the current file of ASL terms.

15.2.3.2.2 External – Declare External Objects

ExternalTerm
:= External(

ObjName,
//NameString

ObjType
//Nothing | ObjectTypeKeyword
)

The External compiler directive is to let the assembler know that the object is declared external to this table so that the assembler will not complain about the undeclared object. During compiling, the assembler will create the external object at the specified place in the name space (if a full path of the object is specified), or the object will be created at the current scope of the External term. ObjType is optional. If not specified, "UnknownObj" type is assumed.

15.2.3.3 Object Terms

Object terms includes: Named Object terms and Name Space Modifiers.

15.2.3.3.1 Named Object Terms

 XE "ASL:named object terms"

 XE "named object terms" \t "See ASL" The ASL terms that can be used to create named objects in a definition block are listed in the following table.

Table 15-5 Named Object Terms

ASL Statement
Description

BankField
Declares fields in a banked configuration object.

CreateBitField
Declare a bit field object of a buffer object.

CreateByteField
Declare a byte field object of a buffer object.

CreateDWordField
Declare a dword field object of a buffer object.

CreateField
Declare a field object of any bit length of a buffer object.

CreateWordField
Declare a dword field object of a buffer object.

Device
Declares a bus/device object.

Event
Declares an event synchronization object.

Field
Declares fields of an operation region object.

IndexField
Declares fields in an index/data configuration object.

Method
Declares a control method.

Mutex
Declares a mutex synchronization object.

OperationRegion
Declares an operational region.

PowerResource
Declares a power resource object.

Processor
Declares a processor package.

ThermalZone
Declares a thermal zone package.

15.2.3.3.1.1 BankField - Declare Bank/Data Field

BankFieldTerm
:= BankField(

RegionName,
//NameString

BankName,
//NameString

BankValue,
//TermArg=>DWordConst

AccessType,
//AccessTypeKeyword

LockRule,
//LockRuleKeyword

UpdateRule
//UpdateRuleKeyword
) {FieldUnitList}
This statement creates data field objects. The contents of the created objects are obtained by a reference to a bank selection register.

This encoding is used to define named data field objects whose data values are fields within a larger object selected by a bank selected register. Accessing the contents of a banked field data object will occur automatically through the proper bank setting, with synchronization occurring on the operation region that contains the BankName data variable, and on the global lock if specified by the LockRule.

The AccessType, LockRule, UpdateRule, and FieldUnitList are the same format as the Field operator.

The following is a block of ASL sample code using BankField:
· Creates a 4-bit bank select register in system I/O space.

· Creates overlapping fields in the same system I/O space which are selected via the bank register.

// define 256-byte operational region in SystemIO space

// and name it GIO0

OperationRegion (GIO0, SystemIO, 0x125, 0x100)

// create some field in GIO including a 4 bit bank select register

Field (GIO0, ByteAcc, NoLock, Preserve) {

GLB1, 1,

GLB2, 1,

Offset(1),

// move to offset for byte 1

BNK1, 4

}

// Create FET0 & FET1 in bank 0 at byte offset 0x30

BankField (GIO0, BNK1, 0, ByteAcc, NoLock, Preserve) {

Offset (0x30),

FET0, 1,

FET1, 1

}

// Create BLVL & BAC in bank 1 at the same offset

BankField (GIO0, BNK1, 1, ByteAcc, NoLock, Preserve) {

Offset (0x30),

BLVL, 7,

BAC, 1

}

15.2.3.3.1.2 CreateBitField

CreateBitFieldTerm
:= CreateBitField(

SourceBuffer,
//TermArg=>BufferTerm

BitIndex,
//TermArg=>Integer

BitFieldName
//NameString
)

 XE "ASL:CreateBitField"

 XE "CreateBitField" \t "See ASL" SourceBuffer is evaluated as a buffer. BitIndex is evaluated as an integer. A new buffer field object BitFieldName is created for the bit of SourceBuffer at the bit index of BitIndex. The bit-defined field within SourceBuffer must exist.

15.2.3.3.1.3 CreateByteField

CreateByteFieldTerm
:= CreateByteField(

SourceBuffer,
//TermArg=>BufferTerm

ByteIndex,
//TermArg=>Integer

ByteFieldName
//NameString
)

 XE "ASL:CreateByteField"

 XE "CreateByteField" \t "See ASL" SourceBuffer is evaluated as a buffer. ByteIndex is evaluated as an integer. A new buffer field object ByteFieldName is created for the byte of SourceBuffer at the byte index of ByteIndex. The byte-defined field within SourceBuffer must exist.

15.2.3.3.1.4 CreateDWordField

CreateDWordFieldTerm
:= CreateDWordField(

SourceBuffer,
//TermArg=>BufferTerm

ByteIndex,
//TermArg=>Integer

DWordFieldName
//NameString
)

 XE "ASL:CreateDWordField"

 XE "CreateDWordField" \t "See ASL" SourceBuffer is evaluated as a buffer. ByteIndex is evaluated as an integer. A new buffer field object DWordFieldName is created for the DWord of SourceBuffer at the byte index of ByteIndex. The DWord-defined field within SourceBuffer must exist.

15.2.3.3.1.5 CreateField - Field

CreateFieldTerm
:= CreateField(

SourceBuffer,
//TermArg=>BufferTerm

BitIndex,
//TermArg=>Integer

NumBits,
//TermArg=>Integer

FieldName
//NameString
)

 XE "ASL:CreateField - Field"

 XE "CreateField - Field" \t "See ASL" SourceBuffer is evaluated as a buffer. BitIndex and NumBits are evaluated as integers. A new buffer field object FieldName is created for the bits of SourceBuffer at BitIndex for NumBits. The entire bit range of the defined field within SourceBuffer must exist.

15.2.3.3.1.6 CreateWordField

CreateWordFieldTerm
:= CreateWordField(

SourceBuffer,
//TermArg=>BufferTerm

ByteIndex,
//TermArg=>Integer

WordFieldName
//NameString
)

 XE "ASL:CreateWordField"

 XE "CreateWordField" \t "See ASL" SourceBuffer is evaluated as a buffer. ByteIndex is evaluated as an integer. A new bufferfield object WordFieldName is created for the word of SourceBuffer at the word index of ByteIndex. The word-defined field within SourceBuffer must exist.

15.2.3.3.1.7 Device - Declare Bus/Device Package

DeviceTerm
:= Device(

DeviceName
//NameString
) {ObjectList}

 XE "ASL:Device-Declare Bus/Device Package" Creates a Device object, which represents either a bus or a device or any other such entity of use. Device opens a name scope.

A Bus/Device Package is one of the basic ways the Differentiated Definition Block describes the hardware devices in the system to the operating software. Each Bus/Device Package is defined somewhere in the hierarchical name space corresponding to that device’s location in the system. Within the name space of the device are other names that provide information and control of the device, along with any sub-devices that in turn describe sub-devices, and so on.

For any device, the BIOS provides only information that is added to the device in a non-hardware standard manner. This type of “value added” function is expressible in the ACPI Definition Block such that operating software can use the function.

The BIOS supplies Device Objects only for devices that are obtaining some system-added function outside the device’s normal capabilities and for any Device Object required to fill in the tree for such a device. For example, if the system includes a PCI device (integrated or otherwise) with no additional functions such as power management, the BIOS would not report such a device; however, if the system included an integrated ISA device below the integrated PCI device (device is an ISA bridge), then the system would include a Device Package for the ISA device with the minimum feature being added being the ISA device’s ID and configuration information and the parent PCI device, because it is required to get the ISA Device Package placement in the Name Space correct.

The following block of ASL sample code shows a nested use of Device objects to describe an IDE controller connected to the root PCI bus.

Device (IDE0) {

// primary controller

Name(_ADR, 0)

// put PCI Address (device/function) here

// define region for IDE mode register

OperationRegion (PCIC, PCI_Config, 0x50, 0x10)

Field (PCIC, AnyAcc, NoLock, Preserve) {

…

}

Device(PRIM) {

//Primary adapter

Name(_ADR, 0)

//Primary adapter = 0

…

Device(MSTR) {

// master channel

Name(_ADR, 0)

Name(_PR0, Package(){0, PIDE})

Method (_STM, 2) {

…

}

}

Device(SLAV) {

Name(_ADR, 1)

Name(_PR0, Package(){0, PIDE})

Method (_STM, 2) {

…

}

}

}

}

15.2.3.3.1.8 Event - Declare Event Synchronization Object

EventTerm
:= Event(

EventName
//NameString
)

Creates an event synchronization object named EventName.

 XE "ASL:Event-Declare Event Synchcronization Object" For more information about the uses of an event synchronization object, see the ASL definitions for the Wait, Signal, and Reset function operators.

15.2.3.3.1.9 Field - Declare Field Objects

FieldTerm
:= Field(

RegionName,
//NameString

AccessType,
//AccessTypeKeyword

LockRule,
//LockRuleKeyword

UpdateRule
//UpdateRuleKeyword
) {FieldUnitList}

 XE "ASL:Field - Declare Field Objects" Declares a series of named data objects whose data values are fields within a larger object. The fields are parts of the object named by RegionName, but their names appear in the same scope as the Field term.

For example, the field operator allows a larger operation region that represents a hardware register to be broken down into individual bit fields that can then be accessed by the bit field names. Extracting and combining the component field from its parent is done automatically when the field is accessed.

Accessing the contents of a field data object provides access to the corresponding field within the parent object. If the parent object supports Mutex synchronization, accesses to modify the component data objects will acquire and release ownership of the parent object around the modification.
All accesses within the parent object are performed naturally aligned. If desired, AccessType can be used to force minimum access width. Note that the parent object must be able to accommodate the AccessType width. For example, an access type of WordAcc cannot read the last byte of an odd-length operation region. Not all access types are meaningful for every type of operational region.

The following table relates region types declared with an OperationRegion term to the different access types supported for each region.

Table 15-6 OperationRegion Region Types and Access Types

Region Types
Access Type
Description

SystemMemory
ByteAcc

SystemIO
WordAcc

PCI_Config
DWordAcc

AnyAcc
Read/Write Byte, Word, DWord access

EmbeddedControl
ByteAcc

SMBus
ByteAcc
Read/Write SMBus byte protocol

WordAcc
Read/Write SMBus word protocol

BlockAcc
Read/Write SMBus block protocol

AnyAcc
Read/Write linear SMBus byte, word, block protocol

SMBSendRecvAcc
Send/Receive SMBus protocol

SMBQuickAcc
QuickRead/QuickWrite SMBus protocol

If LockRule is set to Lock, accesses to modify the component data objects will acquire and release the global lock. If both types of locking occur, the global lock is acquired after the parent object Mutex.
UpdateRule is used to specify how the unmodified bits of a field are treated. For example, if a field defines a component data object of 4 bits in the middle of a WordAcc region, when those 4 bits are modified the UpdateRule specifies how the other 12 bits are treated.

The named data objects are provided in FieldList as a series of names and bit widths. Bits assigned no name (or NULL) are skipped. The ASL compiler supports an Offset(ByteOffset) macro within a FieldList to skip to the bit position of the supplied byte offset.

For support of non-linear address devices, such as SMBus devices, a protocol is required to be associated with each command value. The ASL compiler supports the AccessAs(AccessType, AccessAttribute) macro within a FieldList. The AccessAttribute portion of the macro is interpreted differently depending on the address space. For SystemMemory, SystemIO, PCI_Config or EmbeddedControl space the AccessAttribute is reserved. For SMBus devices the AccessAttribute indicates the command value of the SMBus device to use for the field being defined. The AccessAttribute allows a specific protocol to be associated with the fields following the macro and can contain any of the Access Type listed in the table.

15.2.3.3.1.9.1 SMBus Slave Address

 XE "ASL:SmBus slave address" SMBus device Addressing supports both a linear and non-linear addressing mechanism. This section clarifies how ACPI treats these types of devices and how they should be defined and accessed. SMBus devices are defined to have a fixed 7-bit slave address. This can be illustrated by the smart battery subsystem devices:

Table 15-7 Examples of SMBus Devices and Slave Addresses

SMBus Device Description
Slave Address (A0-A6)

SMBus Host Slave Interface
0x8

SBS Charger
0x9

SBS Selector
0xA

SBS Battery
0xB

The SMBus driver expects a 7-bit slave address for the device to be passed to it. The 1.0 System Management Bus specification defines the address protocols (how data is passed on the wiggling pins) as:

[image: image1.wmf]R

/

W

Slave Address (A6-A0)

7

1

0

2

3

4

5

6

Figure 15-1 SMBus Slave Address Protocol

This indicates that bit 0 of the protocol represents whether this access is a read or write cycle, and the next six bits represent the slave address. Note that the driver expects a zero-based address, not a one-based address. For example, the SBS battery has a slave address of 0xB, or 0001011b (bits 0, 1 and 4 being set). This value is represented by 0x16 for writes or 0x17 for reads to the smart battery in the SMBus protocol format. The protocol format of the slave address and the actual slave address should not be confused as the SMBus driver expects the actual slave address, not the protocol format with the read/write value; the driver will shift the slave address left by 1 bit and mask in the read/write protocol.

15.2.3.3.1.9.2 SMBus Addressing

 XE "ASL:SMBus addressing" Associated with each SMBus device is an 8-bit command register that represents an additional address space within the device, allowing up to 256 registers within an SMBus device. For some devices this is treated as a linear address space; for other devices such as the Smart Battery, this is treated as a non-linear address space. The SMBus driver differentiates these types of devices so that it can understand how to use the different SMBus protocols on the device.

A linear address device treats the command and slave address fields as a byte-linear 15-bit address space where the address is formed as follows:

[image: image2.wmf]Command Address

14

0

1

2

3

4

5

6

7

8

9

10

11

12

13

Slave Address

Figure 15-2 SMBus Linear Address Decode

For example an SMBus memory device that consumes slave address 0x40 would be accessing a linear address range of 0x4000-0x40FF (256 bytes of address space). A byte access to 0x4000 (slave 0x40, command 0) would access byte location 0x4000 (slave 0x40, command 0), and a word access to 0x4000 (slave 0x40, command 0) would access byte locations 0x4000-0x4001 (slave 0x40, commands 0-1). For a device that behaves in this manner, ASL should indicate an AnyAcc in the field operator defining the SMBus device. This indicates to the SMBus driver that it can use the read/write block, read/write word, or read/write byte protocols to access this device.

A non-linear address device (such as the smart battery) defines each command value within the device to be a potentially different size. The ACPI driver treats such a device differently from a linear address device by only accessing command values with the specified protocol only. For example the smart battery device has a slave address of 0xB and a definition for the first two command values as follows:

Table 15-8 XE "smart battery:example command codes" Example Command Codes from the Smart Battery

Command Address
Data Type
Protocol to Access

0x0
Manufacture Access
Word Read/Write

0x1
Remaining Capacity Alarm
Word Read/Write

0x2
Remaining Time Alarm
Word Read/Write

…

0x20
Manufacture Name
Block Read/Write

0x21
Device Name
Block Read/Write

The Smart Battery uses a non-linear programming model. Each command register can be a different size and has a specific SMBus protocol associated with it. For example command register 0x0 contains a word of data (which in a linear device would take up two command registers 0 and 1) that represents the “Manufacture Access” and command register 0x1 contains the next word of data (which in a linear device would take up two command registers 0 and 1) that represents the “Remaining Capacity.” In a linear address model these registers would overlap; however, this is legitimate SMBus device definition. As a further example command register 0x20 can represent up to 32 bytes of data (block read/write) and command register 0x21 also represents up to 32 bytes of data.

15.2.3.3.1.9.3 SMBus Protocols

 XE "ASL:SMBus protocols" This section describes the different SMBus protocols and how the SMBus driver treats them. It also gives examples of how to define and then access such devices in ASL.

15.2.3.3.1.9.3.1 Quick Protocol (QuickAcc)

 XE "SMBus protocols:quick protocol (QuickAcc)" The SMBus Quick protocol does not transfer any data. This protocol is used to control simple devices and consists of the slave address with the R/W bit set high or low. Therefore, two types of Quick commands can be generated: QuickRead with the R/W protocol bit reset LOW or QuickWrite with the R/W protocol bit set HIGH. A device defined to use the quick protocol has no command registers, and consumes the entire 7-bit slave address.

To define a quick device an operation region is generated using the SMBus address type. Next a field is generated in the operation region using the “QuickAcc” access type. To generate a QuickWrite protocol to this device, ASL would generate a write to this field. To generate a QuickRead protocol to this device, ASL would generate a read to this field. Note that even though the ASL read the field and a QuickRead protocol was sent to the device, the device does not return any data and the numeric result returned by the SMB driver to the ASL will be 0. For example,

Device(_SB.EC0) {

Name(_HID, EISAID("PNP0C09"))

Name(_CRS,

ResourceTemplate(){

// port 0x62 and 0x66

IO(Decode16, 0x62, 0x62, 0, 1),

IO(Decode16, 0x66, 0x66, 0, 1)

}

)

Name(_GPE, Zero)

//EC is wired to bit 0 of GPE

Device (SMB1) {

Name(_ADR, "ACPI0001")

Name(_EC, 0x8030)

// EC offset(0x80), Query (0x30)

OperationRegion(PHO1, SMBus, 0x61, 0x1)

Device(DEVA){

Name(_ADR, 0x61)

// Slave Address 0x61

Field(PHO1, QuickAcc, NoLock, Preserve) {

QCKA,
1

}

}

// end of DEVA

}

// end of SMB1

}

// end of EC0

This example creates a quick SMBus device residing at slave address 0x61 called “QCKA”. Examples of generating the Quick0 and Quick1 commands from ASL is illustrated below:

Method(Test){

Store(1, QCKA)

// Generates a QuickRead command to slave address 0x61

Store(QCKA, Local0)
// Generates a QuickWrite command to slave address 0x61

}

15.2.3.3.1.9.3.2 Send/Receive Command Protocol (SMBSendRecvAcc)

 XE "SMBus protocols:send/receive command protocol (SMBusSendRecvAcc)" The SMBus Send/Receive protocol transfers a byte of data between the selected SMBus slave address and the ASL code performing a read/write to the field. The SMBus protocol for send-command is defined that the byte being written is presented in the “command” field, while the data returned from a read-command is defined to be the byte in the data field. The SMBus driver will read and write the data to a SMBSendRecvAcc field accordingly.

To define a send/receive command to a device an operation region is generated using the SMBus address type. Next a field is generated in the operation region using the “SMBSendRecvAcc” access type. To generate a send byte protocol to this device, ASL would generate a write to this field. To generate a receive byte protocol to this device, ASL would generate a read to this field. For example,

Device(_SB.EC0) {

Name(_HID, EISAID("PNP0C09"))

Name(_CRS,

ResourceTemplate(){

// port 0x62 and 0x66

IO(Decode16, 0x62, 0x62, 0, 1),

IO(Decode16, 0x66, 0x66, 0, 1)

}

)

Name(_GPE, Zero)

//EC is wired to bit 0 of GPE

Device (SMB1) {

Name(_ADR, "ACPI0001")

Name(_EC, 0x8030)

// EC offset(0x80), Query (0x30)

OperationRegion(PHO1, SMBus, 0x62, 0x1)

Device(DEVB){

Name(_ADR, 0x62)

// Slave Address 0x62

Field(PHO1, SMBSendRecvAcc, NoLock, Preserve) {

TSTA,
1,

TSTB,
1,

TSTC,
5

}

}

// end of DEVB

}

// end of SMB1

}

// end of EC0

This example creates a send/receive byte SMBus device residing at slave address 0x62. There are three fields that reference this single byte called “TSTA”, “TSTB” and “TSTC”. Examples of generating the send/receive byte protocols from ASL are illustrated below:

Method(Test){

Store(1, TSTA)

// Sets TSTA, preserved TSTB and TSTC, sendbyte

Store(0, TSTB)

// Clears TSTB, preserved TSTA and TSTC, sendbyte

Store(0x7, TSTC)

// Sets TSTC to 0111b, preserved TSTA and TSTB, sendbyte

Store(TSTA, Local0)
// returns 1, receive byte

Store(TSTB, Local0)
// returns 0, receive byte

Store(TSTC, Local0)
// returns 7, receive byte

}

Read/Write Byte Protocol (ByteAcc)

 XE "SMBus protocols:read/write byte protocol (ByteAcc)" The SMBus Read/Write Byte protocol transfers a byte of data between the selected SMBus slave address and command value. The command address is defined through the use of the AccessAs(AccessType, AccessAttribute) macro. In this case the AccessAtrribute represents the byte aligned command value, and AccessType would be set to ByteAcc.

To define a ByteAcc device an operation region is generated using the SMBus address type. Next a field is generated in the operation region using the “ByteAcc” access type. In the field list an AccessAs(ByteAcc, command_value) macro is used to define what command address is associated with this field. The absence of the macro assume a starting command value of 0. The SMBus driver assumes that after the AccessAs(ByteAcc, command_value) macro is declared, the next 8-bits represent this command register. If a field is defined that crosses over this 8-bit boundary, then the SMBus driver assumes this field resides in multiple byte-wide command registers with a command address value of command_value+1 (for each new register) using the ByteAcc protocol.

To generate a write byte protocol to this device, ASL would generate a write to this field. To generate a read byte protocol to this device, ASL would generate a read to this field. For example,

Device(_SB.EC0) {

Name(_HID, EISAID("PNP0C09"))

Name(_CRS,

ResourceTemplate(){

// port 0x62 and 0x66

IO(Decode16, 0x62, 0x62, 0, 1),

IO(Decode16, 0x66, 0x66, 0, 1)

}

)

Name(_GPE, Zero)

//EC is wired to bit 0 of GPE

Device (SMB1) {

Name(_ADR, "ACPI0001")

Name(_EC, 0x8030)

// EC offset(0x80), Query (0x30)

OperationRegion(PHO1, SMBus, 0x63, 0x1)

Device(DEVB){

Name(_ADR, 0x63)

// Slave Address 0x63

Field(PHO1, ByteAcc, NoLock, Preserve) {

AccessAs(ByteAcc, 0),

TSTA,
1,

TSTB,
1,

TSTC,
5,

TSTD,
4

// this field spans command address 0 and 1

}

}

// end of DEVB

}

// end of SMB1

}

// end of EC0

This example creates a read/write byte SMBus device residing at slave address 0x63. There are four fields that use two command registers (0 and 1), called “TSTA”, “TSTB”, “TSTC”, and “TSTD”. TSTA, TSTB and TSTC reference command register 0. TSTD references both command registers 0 and 1: bit0 of TSTD represents bit 7 of command register 0, while bits 1-3 of field TSTD represent bits 0-2 of command register 1. Examples of generating the read/write byte protocols from ASL is illustrated below:

Method(Test){

Store(1, TSTA)

// Sets TSTA, preserved TSTB and TSTC, write byte

Store(0, TSTB)

// Clears TSTB, preserved TSTA and TSTC, write byte

Store(0x7, TSTC)

// Sets TSTC to 0111b, preserved TSTA and TSTB, write byte

Store(0xF, TSTD)

// Sets TSTD to 0xF, command registers 0 and 1

Store(TSTA, Local0)
// returns 1, read byte

Store(TSTB, Local0)
// returns 0, read byte

Store(TSTC, Local0)
// returns 7, read byte

Store(TSTD, Local0)
// returns 0xF from command registers 0 and 1

}

15.2.3.3.1.9.3.3 Read/Write Word Protocol (WordAcc)

 XE "SMBus protocols:read/write word protocol (WordAcc)" The SMBus Read/Write Word protocol transfers a word of data between the selected SMBus slave address and command value. The command address is defined through the use of the AccessAs(AccessType, AccessAttribute) macro. In this case the AccessAttribute represents the byte aligned command value, and AccessType should be set to WordAcc.

To define a WordAcc device an operation region is generated using the SMBus address type. Next a field is generated in the operation region using the “WordAcc” access type. In the field list an AccessAs(WordAcc, command_value) macro is used to define what command address is associated with this field. The absence of the macro assume a starting command value of 0. The SMBus driver assumes that after the AccessAs(WordAcc, command_value) macro is declared, the next 16-bits represent this command register. If a field is defined that crosses over this 16-bit boundary, then the SMBus driver assumes this field resides in multiple word wide command registers with a command address value of command_value+2 (for each new register) using the WordAcc protocol.

To generate a write word protocol to this device, ASL would generate a write to this field. To generate a read word protocol to this device, ASL would generate a read to this field.

15.2.3.3.1.9.3.4 Read/Write Block Protocol (BlockAcc)

 XE "SMBus protocols:read/write block protocol (BlockAcc)" The SMBus Read/Write Block protocol transfers up to a 32 byte buffer of data between the selected SMBus slave address and command value. The command address is defined through the use of the AccessAs(AccessType, AccessAttribute) macro. In this case the AccessAttribute represents the byte aligned command value, and AccessType would be set to BlockAcc.

To define a BlockAcc device an operation region is generated using the SMBus address type. Next a field is generated in the operation region using the “BlockAcc” access type. In the field list an AccessAs(BlockAcc, command_value) macro is used to define what command address is associated with this field. The absence of the macro assume a starting command value of 0. The SMBus driver assumes that after the AccessAs(BlockAcc, command_value) macro is declared the command register is 32 bytes or less. Each block field must start on the a command_value boundary.

The SMBus driver passes block data to and from ASL through the buffer data type. The buffer is structured such that the byte count of the data to write is in record 0 followed by the buffer data. For example a 5 byte buffer with the contents of 1, 2, 3, 4 would be generated as:

Buffer(5){4, 1, 2, 3, 4}

Where the length of the buffer is its byte data width plus 1, and the first entry is the length of data (buffer length minus 1). On reads, ASL will return a buffer with the first entry set to the number of data bytes returned. For example,
Device(_SB.EC0) {

Name(_HID, EISAID("PNP0C09"))

Name(_CRS,

ResourceTemplate(){

// port 0x62 and 0x66

IO(Decode16, 0x62, 0x62, 0, 1),

IO(Decode16, 0x66, 0x66, 0, 1)

}

)

Name(_GPE, Zero)

//EC is wired to bit 0 of GPE

Device (SMB1) {

Name(_ADR, "ACPI0001")

Name(_EC, 0x8030)

// EC offset(0x80), Query (0x30)

OperationRegion(PHO1, SMBus, 0x65, 0x1)

Device(DEVB){

Name(_ADR, 0x65)

// Slave Address 0x65

Field(PHO1, BlockAcc, NoLock, Preserve) {

AccessAs(BlockAcc, 0),

FLD1,
128,

AccessAs(BlockAcc, 0x10),

FLD2,
32

}

}

// end of DEVB

}

// end of SMB1

}

// end of EC0

This example creates a read/write block SMBus device residing at slave address 0x65. There are two fields that use two command registers (0 and 0x10), called “FLD1”, and “FLD2”. Examples of generating the read/write block protocols from ASL is illustrated below:

Method(Test){

Name(BUF1, Buffer(){8, 1, 2, 3, 4, 5, 6, 7, 8}
// 8 is the number of bytes

Name(BUF2, Buffer(){4, 9, 10, 11, 12}

// 4 is the number of bytes

Store(BUF1, FLD1)

// Sets FLD1 SMBus device block register

Store(BUF2, FLD2)

// Sets FLD2 SMBus device block register

Store(FLD1, Local0)
// local0 contains buf: 8,1,2,3,4,5,6,7,8

Store(FLD2, Local0)
// local0 contains buf: 4,9,10,11,12

}

15.2.3.3.1.9.3.5 SMBus Memory Devices (AnyAcc)

 XE "SMBus protocols:SMBus memory devices (AnyAcc)" The AnyAcc access type allows any of the Read/Write byte, word or Block protocol transfers to be made to the selected SMBus slave address and command value. The combined slave and command value generates a single byte granular address space. The command address (A0-A7 of the 15-bit address) is defined through the use of the AccessAs(AccessType, AccessAtrribute) macro. In this case the AccessAttribute represents the byte aligned command value, and AccessType would be set to AnyAcc.

To define a AnyAcc device an operation region is generated using the SMBus address type. Next a field is generated in the operation region using the “AnyAcc” access type. In the field list an AccessAs(AnyAcc, command_value) macro is used to define what command address is associated with this field. The absence of the macro assume a starting command value of 0. The SMBus driver assumes that after the AccessAs(AnyAcc, command_value) macro is declared then command registers are byte-granular and linear. If a field is defined that crosses over a byte boundary, then the SMBus driver assumes this field resides in multiple command registers with a command address value of command_valuet+1 (for each new register). The SMBus driver will use the most appropriate protocol for accessing the registers associated with the fields. For example, if a field spans more than three bytes a read/write block protocol access can be made, while if only spanning a byte then the read/write byte protocol can be used.

For example, a 5-byte buffer with the contents of “ACPI” would be generated as:

Buffer(){“ACPI”}

On reads, ASL will return a buffer with the first entry set to the number of data bytes returned. For example,

Device(_SB.EC0) {

Name(_HID, EISAID("PNP0C09"))

Name(_CRS,

ResourceTemplate(){

// port 0x62 and 0x66

IO(Decode16, 0x62, 0x62, 0, 1),

IO(Decode16, 0x66, 0x66, 0, 1)

}

)

Name(_GPE, Zero)

//EC is wired to bit 0 of GPE

Device (SMB1) {

Name(_ADR, "ACPI0001")

Name(_EC, 0x8030)

// EC offset(0x80), Query (0x30)

OperationRegion(PHO1, SMBus, 0x66, 0x1)

Device(DEVB){

Name(_ADR, 0x66)

// Slave Address 0x66

Field(PHO1, AnyAcc, NoLock, Preserve) {

FLD1,
512,

FLD2,
256,

FLD3,
32,

FLD4,
16,

FLD5,
8

}

}

// end of DEVB

}

// end of SMB1

}

// end of EC0

This definition creates a linear SMBus device residing at slave address 0x66. There are six fields that use 102 command registers (0-101), called “FLD1”, “FLD2” , “FLD3”, “FLD4” and “FLD5”. FLD1 references command registers 0-63 (first 64 bytes) and will be accessed by the block protocol (data is over 3 bytes). FLD2 represents command registers 64-95 (next 32 bytes) and will be accessed by the block command protocol (data is over 3 bytes). FLD3 represents command registers 96-99 (next four bytes) and will be accessed by the block command protocol (data is over 3 bytes). FLD4 represents command registers 100-101 (next two bytes) and will be accessed by the word command protocol. FLD5 represents command register 102 (next byte) and will be accessed by the byte command protocol. Examples of generating the accesses from ASL is illustrated below:

Method(Test){

Name(BUF1, Buffer(){“Hannibal”}

Name(BUF2, Buffer(){“Scipio Africanus”}

Name(BUF3, Buffer(){“Zama”}

Store(BUF1, FLD1)

// writes “Hannibal” to linear addresses for FLD1

Store(BUF2, FLD2)

// writes “Scipio Africanus” to linear addresses for FLD2

Store(BUF3, FLD3)

// writes “Zama” to linear addresses for FLD3

Store(0xFF12, FLD4)
// sets FLD4 to 0xFF12

Store(0xEF, FLD5)

// sets FLD5 to 0xEF

Store(FLD1, Local0)
// local0 contains 64 byte buffer with: “Hannibal”,0,…

Store(FLD2, Local0)
// local0 contains 32 byte buffer with: “Scipio Africanus”,0,…

Store(FLD3, Local0)
// local0 contains 4 bytes: “Zama”

Store(FLD4, Local0)
// local0 contains 2 bytes: 0xFF12

Store(FLD5, Local0)
// local0 contains 1 byte: 0xEF

}

15.2.3.3.1.9.3.6 Mixed Example (AnyAcc)

 XE "SMBus protocols:example of multiple protocols" Some devices can be accessed through multiple protocols. This section gives an example of such a device.

Device(\SB._EC0) {

Name(_HID, EISAID("PNP0C09"))

Name(_CRS,

ResourceTemplate(){

// port 0x62 and 0x66

IO(Decode16, 0x62, 0x62, 0, 1),

IO(Decode16, 0x66, 0x66, 0, 1)

}

)

Name(_GPE, Zero)

//EC is wired to bit 0 of GPE

Device (SMB1) {

Name(_ADR, "ACPI0001")

Name(_EC, 0x8030)

// EC offset(0x80), Query (0x30)

OperationRegion(PHO1, SMBus, 0x67, 0x1)

Device(DEVB){

Name(_ADR, 0x67)

// Slave Address 0x67

Field(PHO1, ByteAcc, NoLock, Preserve) {

AccessAs(AnyAcc, 0),

FLD1,
512,

FLD2,
256,

FLD3,
32,

AccessAs(WordAcc, 0x70),

FLD4,
16,

AccessAs(ByteAcc, 0x80),

FLD5,
8

}

}

// end of DEVB

}

// end of SMB1

}

// end of EC0

This definition creates an SMBus device using various protocols residing at slave address 0x67. There are three fields that use four command registers (0, 1, 2 and 3), called “FLD1”, “FLD2” and “FLD3”. FLD1 references command registers 0-1 (32 bytes per command register) and will be accessed by the byte, word and block linear protocols. FLD2 represents command register 064 and will be accessed by the byte, word and block linear protocols. FLD3 represents command register 96 and will be accessed by the byte, word and block linear protocols. FLD4 represents command register 0x70 and will be accessed by the word command protocol. FLD5 represents command register 0x80 and will be accessed by the byte command protocol.

15.2.3.3.1.10 IndexField - Declare Index/Data Fields

IndexFieldTerm
:= IndexField(

IndexName,
//NameString

DataName,
//NameString

AccessType,
//AccessTypeKeyword

LockRule,
//LockRuleKeyword

UpdateRule
//UpdateRuleKeyword
) {FieldUnitList}

 XE "ASL:IndexField-Declare Index/Data Fields"

 XE "IndexField-Declare Index/Data Fields" \t "See ASL" Creates a series of named data objects whose data values are fields within a larger object accessed by an index/data-style reference to IndexName and DataName.

This encoding is used to define named data objects whose data values are fields within an index/data register pair. This provides a simple way to declare register variables that occur behind a typical index and data register pair.

Accessing the contents of an indexed field data object will automatically occur through the DataName object by using an IndexName object aligned on an AccessType boundary, with synchronization occurring on the operation region which contains the index data variable, and on the global lock if specified by LockRule.

AccessType, LockRule, UpdateRule, and FieldList are the same format as the Field term.

The following is a block of ASL sample code using IndexField:
· Creates an index/data register in system I/O space made up of 8-bit registers.

· Creates a FET0 field within the indexed range.

Method(_EX1){

// define 256-byte operational region in SystemIO space

// and name it GIO0

OperationRegion (GIO0, 1, 0x125, 0x100)

// create field named Preserve structured as a sequence

// of index and data bytes

Field (GIO0, ByteAcc, NoLock, WriteAsZeros) {

IDX0, 8,

DAT0, 8,

.

.

.

}

// Create an IndexField within IDX0 & DAT0 which has

// FETs in the first two bits of indexed offset 0,

// and another 2 FETs in the high bit on indexed

// 2f and the low bit of indexed offset 30

IndexField (IDX0, DAT0, ByteAcc, NoLock, Preserve) {

FET0, 1,

FET1, 1,

Offset(0x2f),

// skip to byte offset 2f

, 7,

// skip another 7 bits

FET3, 1,

FET4, 1

}

// Clear FET3 (index 2f, bit 7)

Store (Zero, FET3)

}

15.2.3.3.1.11 Method - Declare Control Method

MethodTerm
:= Method(

MethodName,
//NameString

NumArgs,
//Nothing | ByteConst

SerializeRule
//Nothing |

//SerializeRuleKeyword
) {TermList}

 XE "ASL:Method - Declare control method"

 XE "Method - Declare control method" \t "See ASL" Declares a named package containing a series of object references that collectively represent a control method, which is a procedure that can be invoked to perform computation. Method opens a name scope.

System software executes a control method by referencing the objects in the package in order. For more information on
control method execution, see section 5.5.3.

The current name space location used during name creation is adjusted to be the current location on the name space tree. Any names created within this scope are “below” the name of this package. The current name space location is assigned to the method package, and all name space references that occur during control method execution for this package are relative to that location.

If a method is declared as Serialized, an implicit mutex associated with the method object is acquired at SyncLevel 0. The serialize-rule can be used to prevent re-entering of a method. This is especially useful if the method creates name space objects. Without the serialize-rule, the re-entering of a method will fail when it attempts to create the same name space object.

Also note that all name space objects created by a method have temporary lifetime. When method execution exits, the created objects will be destroyed.

The following block of ASL sample code shows a use of Method for defining a control method that turns on a power resource.

Method(_ON) {

Store (One, GIO.IDEP)

// assert power

Sleep (10)

// wait 10ms

Store (One, GIO.IDER)

// de-assert reset#

Stall (10)

// wait 10us

Store (Zero, GIO.IDEI)

// de-assert isolation

}

15.2.3.3.1.12 Mutex - Declare Synchronization / Mutex Object

MutexTerm
:= Mutex(

MutexName,
//NameString

SyncLevel
//ByteConst
)

 XE "ASL:Mutex - Declare Synchronization/Mutex Object"

 XE "Mutex - Declare Synchronization/Mutex Object" \t "See ASL" Creates a data mutex synchronization object named MutexName, with level from 0 to 15 specified by SyncLevel.

A synchronization object provides a
control method with a mechanism for waiting for certain events. To prevent deadlocks, wherever more than one synchronization object must be owned, the synchronization objects must always be released in the order opposite the order in which they were acquired. The SyncLevel parameter declares the logical nesting level of the synchronization object. All Acquire terms must refer to a synchronization object with an equal or greater SyncLevel to current level, and all Release terms must refer to a synchronization object with equal or lower SyncLevel to the current level.

Mutex synchronization provides the means for mutually exclusive ownership. Ownership is acquired using an Acquire term and is released using a Release term. Ownership of a Mutex must be relinquished before completion of any invocation. For example, the top level
control method cannot exit while still holding ownership of a Mutex. Acquiring ownership of a Mutex can be nested. The SyncLevel check is not performed on a Mutex when the ownership count is nesting.

The SyncLevel of a thread before acquiring any mutexes is zero. The SyncLevel of the global lock (_GL) is zero. A method marked serialized has an inherent mutex of SyncLevel 0.

15.2.3.3.1.13 OperationRegion - Declare Operation Region

OpRegionTerm
:= OperationRegion(

RegionName,
//NameString

RegionSpace,
//RegionSpaceKeyword

Offset,
//TermArg=>DWordConst

Length
//TermArg=>DWordConst
)

 XE "ASL:OperationRegion - Declare Operation Region"

 XE "OperationRegion - Declare Operation Region" \t "See ASL" Declares an operation region. Offset is the offset within the selected RegionSpace at which the region starts (byte-granular), and Length is the length of the region in bytes.

An Operation Region is a type of data object where read or write operations to the data object are performed in some hardware space. For example, the Definition Block can define an Operation Region within a bus, or system IO space. Any reads or writes to the named object will results in accesses to the IO space.

Operation regions are regions in some space that contain hardware registers for exclusive use by ACPI control methods. In general, no hardware register (at least byte granular) within the operation region accessed by an ACPI control method can be shared with any accesses from any other source, with the exception of using the Global Lock to share a region with the firmware. The entire Operation Region can be allocated for exclusive use to the ACPI subsystem in the host OS.

Operation Regions have “virtual content” and are only accessible via Field objects Operation Region objects may be defined down to actual bit controls using Field data object definitions. The actual bit content of a Field are bits from within a larger Buffer that are normalized for that field (i.e., shifted down and masked to the proper length), and as such the data type of a Field is Buffer. Therefore fields which are 32 bits or less in size may be read and stored as Integers.
An Operation Region object implicitly supports Mutex synchronization. Updates to the object, or a Field data object for the region, will automatically synchronize on the Operation Region object; however, a control method may also explicitly synchronize to a region to prevent other accesses to the region (from other control methods). Note that, according to the control method execution model, control method execution is non-preemptive. Because of this, explicit synchronization to an Operation Region needs to be done only in cases where a control method blocks or yields execution and where the type of register usage requires such synchronization.

Originally there were five Operation Region types specified in ACPI:

0 = SystemMemory

1 = SystemIO

2 = PCI_Config

3 = EmbeddedControl

4 = SMBus
These are now extended to include vendor-defined Operation Regions, with 0x80 to 0xFF user defined.

The following example ASL code shows the use of OperationRegion combined with Field to describe IDE 0 and 1 controlled through general IO space, using one FET.

OperationRegion (GIO, SystemIO, 0x125, 0x1)

Field (GIO, ByteAcc, NoLock, Preserve) {

IDEI,
1,

// IDEISO_EN - isolation buffer

IDEP,
1,

// IDE_PWR_EN - power

IDER,
1

// IDERST#_EN - reset#

}

15.2.3.3.1.14 PowerResource - Declare Power Resource

PowerResTerm
:= PowerResource(

ResourceName,
//NameString

SystemLevel,
//ByteConst

ResourceOrder
//WordConst
) {ObjectList}

 XE "ASL:PowerResource"

 XE "Power Resource - Declare Power Resource" \t "See ASL" Declares a power resource. PowerResource opens a name scope.

For a definition of the PowerResource term, see section 7.1.

15.2.3.3.1.15 Processor - Declare Processor

ProcessorTerm
:= Processor(

ProcessorName,
//NameString

ProcessorID,
//ByteConst

PBlockAddress,
//DWordConst

PblockLength
//ByteConst
) {ObjectList}

 XE "ASL:Processor - Declare Processor"

 XE "Processor - Declare Processor" \t "See ASL" Declares a named processor object. Processor opens a name scope. Each processor is required to have a unique ProcessorID value from any other ProcessorID value.

The ACPI BIOS declares one processor object per processor in the system under the _PR name space. PBlockAddress provides the system IO address for the processors register block. Each processor can supply a different such address. PBlockLength is the length of the processor register block, in bytes which is either 0 (for no P_BLK) or 6. With one exception, all processors are required to have the same PBlockLength. The exception is that the boot processor can have a non-zero PBlockLength when all other processors have a zero PBlockLength.

The following block of ASL sample code shows a use of the Processor term.

Processor(

_PR.CPU0,

// name space name

1,

0x120,

// PBlk system IO address

6

// PBlkLen

)

{ }

15.2.3.3.1.16 ThermalZone - Declare Thermal Zone

ThermalZoneTerm
:= ThermalZone(

ThermalZoneName
//NameString
) {ObjectList}

 XE "ASL:ThermalZone - Declare Thermal Zone"

 XE "ThermalZone - Declare Thermal Zone" \t "See ASL" Declares a named Thermal Zone object. ThermalZone opens a name scope.

Each use of a ThermalZone term declares one thermal zone in the system. Each thermal zone in a system is required to have a unique ThermalZoneName.

For sample ASL code that uses a ThermalZone statement, see section Error! Reference source not found..

15.2.3.3.2 Name Space Modifiers

 XE "ASL:Name Space Modifier Terms"

 XE "Name Space Modifier Terms" \t "See ASL" The name space modifiers are as follows:

Table 15-9 Name Space Modifiers

ASL Statement
Description

Alias
Defines a name alias

Name
Defines a global name and attaches a buffer, literal data item, or package to it.

Scope
Declares the placement of one or more object names in the ACPI name space when the definition block that contains the Scope statement is loaded.

15.2.3.3.2.1 Alias - Declare Name Alias

AliasTerm
:= Alias(

SourceObject,
//NameString

AliasObject
//NameString
)

 XE "ASL:Alias - Declare Name Alias"

 XE "Alias - Declare Name Alias" \t "See Alias - Declare Name Alias" Creates a new name, AliasObject, which refers to and acts exactly the same as SourceObject.
AliasObject is created as an alias of SourceObject in the name space. The SourceObject name must already exist in the name space. If the alias is to a name within the same definition block the SourceObject name must be logically ahead of this definition in the block. The following example shows use of an Alias term:

Alias(\SUS.SET.EVEN, SSE)

15.2.3.3.2.2 Name - Declare Named Object

NameTerm
:= Name(

ObjectName,
//NameString

Object
//DataObject
)

 XE "Name - Declare Named Object" \t "See ASL"

 XE "ASL:Name - Declare Named Object" \t "" Attaches Object to ObjectName in the Global ACPI name space.

This encoding is to create ObjectName in the name space, which references the Object.

The following example creates the name PTTX in the root of the name space that references a package.

Name(\PTTX,

// Port to Port Translate Table

Package() { Package() { 0x43, 0x59 }, Package() { 0x90, 0xff }}

)

The following example creates the name CNT in the root of the name space that references an integer data object with the value 5.

Name(\CNT, 5)

15.2.3.3.2.3 Scope - Declare Name Scope

ScopeTerm
:= Scope(

Location
//NameString
) {ObjectList}

 XE "ASL:Scope - Declare Name Scope"

 XE "Scope - Declare Name Scope" \t "See ASL" Gives a base scope to a collection of objects. All object names defined within the scope act relative to Location. Note that Location does not have to be below the surrounding scope. Note also that the Scope term does not create objects, but only locates objects in the name space; the located objects are created by other ASL terms.

The Scope term alters the current name space location to Location. This causes the defined objects within TermList to occur relative to the new location in the name space.

The following example ASL code

Scope(\PCI0) {

Name(X, 3)

Scope(\) {

Method(_RQ) { Return(0) }

}

Name(^Y, 4)

}

places the defined objects in ACPI name space as shown in the following:

\PCI0.X

_RQ

\Y

15.2.3.4 Opcode Terms

 XE "ASL:Operator Terms"

 XE "ASL:Type 1 Operator Term" There are two types of ASL opcode terms: Type 1 opcodes and Type 2 opcodes.

· A Type1 opcode term can only be used standing alone on a line of ASL code; because these types of terms do not return a value, they cannot be used as a term in an expression.

· A Type2 opcode term can be used in an expression because these types of terms return a value. When used in an expression the argument that names the object in which to store the result can be optional.

Note that in the opcode definitions below, when the definition says “result is stored in” this literally means that the Store operator is assumed and the “execution result” is the Source operand to the Store opcode.

15.2.3.4.1 Type 1 Opcodes

Type1Opcode
:= BreakTerm | BreakPointTerm | FatalTerm | IfElseTerm | LoadTerm | NoOpTerm | NotifyTerm | ReleaseTerm | ResetTerm | ReturnTerm | SignalTerm | SleepTerm | StallTerm | UnloadTerm | WhileTerm

The Type 1 opcodes are listed in the following table.

Table 15-10 Type 1 Opcodes

ASL Statement
Description

Break
Stop executing the current code package at this point

BreakPoint
Used for debugging. Stops execution in the debugger

Else
Else

Fatal
Fatal check

If
If

Load
Load differentiating definition block

Noop
No operation

Notify
Notify the OS that a specified notification value for a NotifyObject has occurred

Release
Release a synchronization object

Reset
Reset a synchronization object

Return
Return from a control method, optionally setting a return value

Signal
Signal a synchronization object

Sleep
Sleep n milliseconds (yields the processor)

Stall
Delay n microseconds (does not yield the processor)

Unload
Unload differentiating definition block

While
While

15.2.3.4.1.1 Break - Break

BreakTerm
:= Break

 XE "ASL:Break - Break"

 XE "Break - Break" \t "See ASL" The break operation causes the current package execution to complete.

15.2.3.4.1.2 BreakPoint - BreakPoint

BreakPointTerm
:= BreakPoint

 XE "ASL:BreakPoint - BreakPoint" Used for debugging, the Breakpoint opcode stops the execution and enters the AML debugger. In the retail version of the interpreter, BreakPoint is equivalent to Noop.

15.2.3.4.1.3 Else - Else Operator

ElseTerm
:= Nothing | <Else {TermList}>

 XE "ASL:Else - Else Operator"

 XE "Else - Else Operator" \t "See ASL" In an If term, if Predicate evaluates to 0, it is false, and the term list in the Else term is executed. If Predicate evaluates to Not 0 on the If term, then it is considered true, and the term list in the Else term is not executed.

The following example checks Local0 to be zero or non-zero. On non-zero, CNT is incremented; otherwise, CNT is decremented.

If (Local0) {

Increment (CNT)

} Else {

Decrement (CNT)

}

15.2.3.4.1.4 Fatal - Fatal Check

FatalTerm
:= Fatal(

Type,
//ByteConst

Code,
//DWordConst

Arg
//TermArg=>Integer
)

 XE "ASL:Fatal - Fatal Check"

 XE "Fatal - Fatal Check" \t "See ASL" This operation is used to inform the OS that there has been an OEM-defined fatal error. In response, the OS must log the fatal event and perform a controlled OS shutdown in a timely fashion.

15.2.3.4.1.5 If – If Operator

IfTerm
:= If(

Predicate
//TermArg=>Integer
) {TermList}

Predicate is evaluated as an integer. If the integer is non-zero, the term list of the If term is executed.

 XE "ASL:If - If Operator"

 XE "If - If Operator" \t "See ASL" The following examples all check for bit 3 in Local0 being set, and clear it if set.

// example 1

if (And(Local0, 4)) {

XOr (Local0, 4, Local0)

}

// example 2

Store(4, Local2)

if (And(Local0, Local2)) {

XOr (Local0, Local2, Local0)

}

15.2.3.4.1.6 Load - Load Differentiated Definition Block

LoadTerm
:= Load(

Object,
//NameString

DDBHandle
//SuperName
)

 XE "ASL:Load - Load Differentiated Definition Block"

 XE "Load Differentiated Definition Block" \t "See ASL" Performs a run time load of a Definition Block. The Object parameter can either refer to an operation region field or an operation region directly. If the object is an operation region, the operation region must be in SystemMemory space. The Definition Block should contain a DESCRIPTION_HEADER of type SSDT or PSDT. The Definition Block must be totally contained within the supplied operational region or operation region field. This table is read into memory, the checksum is verified, and then it is loaded into the ACPI name space. The DDBHandle parameter is the handle to the Differentiating Definition Block that can be used to unload the Definition Block at a future time.

The OS can also check the OEM Table ID and Revision ID against a database for a newer revision Definition Block of the same OEM Table ID and load it instead.

The default name space location to load the Definition Block is relative to the current name space. The new Definition Block can override this by specifying absolute names or by adjusting the name space location using the Scope operator.

Loading a Definition Block is a synchronous operation. Upon completion of the operation, the Definition Block has been loaded. The control methods defined in the Definition Block are not executed during load time.

15.2.3.4.1.7 Noop Code - No Operation

NoOpTerm
:= Noop

 XE "ASL:Noop Code - No Operation"

 XE "Noop Code - No Operation" \t "See ASL" This operation has no effect.

15.2.3.4.1.8 Notify - Notify

NotifyTerm
:= Notify(

Object,
//SuperName

NotificationValue
//TermArg=>ByteConst
)

 XE "ASL:Notify - Notify"

 XE "Notify - Notify" \t "See ASL" Notifies the OS that the NotificationValue for the Object has occurred. Object must be a reference to a device or thermal zone object.

Notification values are determined by the Object type. For example, the notify values for a thermal zone object are different from the notify values used for a device object. Undefined notification values are treated as reserved and are ignored by the OS.

For lists of defined Notification values, see section Error! Reference source not found..

15.2.3.4.1.9 Release - Release a Mutex Synchronization Object

ReleaseTerm
:= Release(

SyncObject
//SuperName
)

 XE "ASL:Release - Release a Mutex Synchronization Object"

 XE "Release - Release a Mutex Synchronization Object" \t "See ASL" SynchObject must be a mutex synchronization object. If the mutex object is owned by the current invocation, ownership for the Mutex is released once. It is fatal to release ownership on a Mutex unless it is currently owned. A Mutex must be totally released before an invocation completes.

15.2.3.4.1.10 Reset - Reset an Event Synchronization Object

ResetTerm
:= Reset(

SyncObject
//SuperName
)

SynchObject must be an Event synchronization object. This encoding is used to reset an event synchronization object to a non-signaled state. See also the Wait and Signal function operator definitions XE "ASL:Reset - Reset an Event Synchronization Object"

 XE "Reset - Reset an Event Synchronization Object" \t "See ASL" .

15.2.3.4.1.11 Return - Return

ReturnTerm
:= Return(

Arg
//TermArg=>DataObject
)

 XE "ASL:Return - Return"

 XE "Return - Return" \t "See ASL" Returns control to the invoking control method, optionally returning a copy of the object named in Arg.

15.2.3.4.1.12 Signal - Signal a Synchronization Event

SignalTerm
:= Signal(

SyncObject
//SuperName
)

 XE "ASL:Signal - Signal a Synchronization Event"

 XE "Signal - Signal a Synchronization Event" \t "See ASL" SynchObject must be an Event synchronization object. The Event object is signaled once, allowing one invocation to acquire the event.

15.2.3.4.1.13 Sleep - Sleep

SleepTerm
:= Sleep(

MilliSecs
//TermArg=>Integer
)

 XE "ASL:Sleep - Sleep"

 XE "Sleep - Sleep" \t "See ASL" The Sleep term is used to implement long-term timing requirements. Execution is delayed for at least the required number of milliseconds. The implementation of Sleep is to round the request up to the closest sleep time supported by the OS and relinquish the processor.

15.2.3.4.1.14 Stall - Stall for a Short Time

StallTerm
:= Stall(

MicroSecs
//TermArg=>Integer
)

 XE "ASL:Stall - Stall for a Short Time" \t " The Stall term is used to implement short-term timing requirements. Execution is delayed for at least the required number of microseconds. The implementation of Stall is OS-specific, but must not relinquish control of the processor. Because of this, delays longer than 100 microseconds must use Sleep instead of Stall.

15.2.3.4.1.15 Unload - Unload Differentiated Definition Block

UnloadTerm
:= Unload(

DDBHandle
//SuperName
)

 XE "ASL:Unload - Unload Differentiated Definition Block"

 XE "Unload - Unload Differentiated Definition Block" \t "See ASL" Performs a run time unload of a Definition Block that was loaded using a Load term. Loading or unloading a Definition Block is a synchronous operation, and no control method execution occurs during the function. On completion of the Unload operation, the Definition Block has been unloaded (all the name space objects created as a result of the corresponding Load operation will be removed from the name space).

15.2.3.4.1.16 While - While

WhileTerm
:= While(

Predicate
//TermArg=>Integer
) {TermList}

 XE "ASL:While - While"

 XE "While - While" \t "See ASL" Predicate is evaluated as an integer. If the integer is non-zero, the list of terms in TermList is executed. The operation repeats until the Predicate evaluates to zero.

15.2.3.4.2 Type 2 Opcodes

Type2Opcode
:= AcquireTerm | AddTerm | AndTerm | ConcatTerm | CondRefOfTerm | DecTerm | DerefOfTerm | DivideTerm | FindSetLeftBitTerm | FindSetRightBitTerm | FromBCDTerm | IncTerm | IndexTerm | LAndTerm | LEqualTerm | LGreaterTerm | LGreaterEqualTerm | LLessTerm | LLessEqualTerm | LNotTerm | LNotEqualTerm | LOrTerm | MatchTerm | MultiplyTerm | NAndTerm | NOrTerm | NotTerm | ObjectTypeTerm | OrTerm | RefOfTerm | ShiftLeftTerm | ShiftRightTerm | SizeOfTerm | StoreTerm | SubtractTerm | ToBCDTerm | WaitTerm | XorTerm | UserTerm

 XE "ASL:Type 2 Operators"

 XE "Type 2 Operators" \t "See ASL" The ASL terms for Type 2 Opcodes are listed in the following table.

Table 15-11 Type 2 Opcodes

ASL Statement
Description

Acquire
Acquire a synchronization object

Add
Add two values

And
Bitwise And

Concatenate
Concatenate two strings

CondRefOf
Conditional reference to an object

Decrement
Decrement a value.

DerefOf
Dereference of an object reference

Divide
Divide

FindSetLeftBit
Index of first set Lsb

FindSetRightBit
Index of first set Msb

FromBCD
Convert from BCD to numeric

Increment
Increment a value

Index
Reference the nth element of a package

LAnd
Logical And

LEqual
Logical Equal

LGreater
Logical Greater

LGreaterEqual
Logical Not less

LLess
Logical Less

LLessEqual
Logical Not greater

LNot
Logical Not

LNotEqual
Logical Not equal

LOr
Logical Or

Match
Search for match in package array

Multiply
Multiply

NAnd
Bitwise Nand

NOr
Bitwise Nor

Not
Bitwise Not

ObjectType
Type of object

Or
Bitwise Or

RefOf
Reference to an object

ShiftLeft
Shift value left

ShiftRight
Shift value right

SizeOf
Get the size of a buffer, string, or package

Store
Store value

Subtract
Subtract values

ToBCD
Convert numeric to BCD

Wait
Wait

Xor
Bitwise Xor

15.2.3.4.2.1 Acquire - Acquire a Mutex Synchronization Object

AcquireTerm
:= Acquire(

SyncObject,
//SuperName

TimeoutValue
//WordConst
) => Boolean
//Ones means timed-out

 XE "ASL:Acquire - Acquire a Mutex Synchronization Object"

 XE "Acquire - Acquire a Mutex Synchronization Object" \t "See ASL" SynchObject must be a mutex synchronization object. It refers to the mutex to be acquired.

Ownership of the Mutex is obtained. If the Mutex is already owned by a different invocation, the processor is relinquished until the owner of the Mutex releases it or until at least TimeoutValue milliseconds have elapsed. A Mutex can be acquired more than once by the same invocation.

This operation returns a non-zero value if a timeout occurred and the mutex ownership was not acquired. A TimeoutValue of 0xFFFF indicates that there is no time out and the operation will wait indefinitely.

15.2.3.4.2.2 Add - Add

AddTerm
:= Add(

Addend1,
//TermArg=>Integer

Addend2,
//TermArg=>Integer

Result
//Nothing | SuperName
) => Integer

 XE "ASL:Add - Add"

 XE "Add - Add" \t "See ASL" Addend1 and Addend2 are evaluated as integer data types and are added, and the result is optionally stored into Result. Overflow conditions are ignored.

15.2.3.4.2.3 And - Bitwise And

AndTerm
:= And(

Source1,
//TermArg=>Integer

Source2,
//TermArg=>Integer

Result
//Nothing | SuperName
) => Integer

 XE "ASL:And - Bitwise And"

 XE "And - Bitwise And" \t "See ASL" Source1 and Source2 are evaluated as integer data types, a bit-wise AND is performed, and the result is optionally stored into Result.

15.2.3.4.2.4 Concatenate - Concatenate

ConcatTerm
:= Concatenate(

Source1,
//TermArg=>ComputationalData

Source2,
//TermArg=>ComputationalData

Result
//Nothing | SuperName
) => ComputationalData

 XE "ASL:Concatenate - Concatenate"

 XE "Concatenate - Concatenate" \t "See ASL" Source1 and Source2 are evaluated. Source1 and Source2 must be of the same data type (that is, both integers, both strings, or both buffers). Source2 is concatenated to Source1 and the result data is optionally stored into Result.

Table 15-12 Concatenate Data Types
Source1 Data Type
Source2 Data Type
Result Data Type

Integer
Integer
Buffer

String
String
String

Buffer
Buffer
Buffer

15.2.3.4.2.5 CondRefOf - Conditional Reference Of

CondRefOfTerm
:= CondRefOf(

Source,
//SuperName

Destination
//SuperName
) => Boolean

 XE "ASL:CondRefOf - Conditional Reference Of"

 XE "CondRefOf - Conditional Reference Of" \t "See ASL" Attempts to set Destination to refer to Source. The Source of this operation can be any object type (e.g., data package, device object, etc.). On success, the Destination object is set to refer to Source and the execution result of this operation is the constant Ones object. On failure the execution result of this operation is the constant Zero object and the Destination object is unchanged. This can be used to reference items in the name space which may appear dynamically (e.g., from a dynamically loaded differentiation definition block).

CondRefOf is equivalent to RefOf except that if the Source object does not exist, it is fatal for RefOf but not for CondRefOf.

15.2.3.4.2.6 Decrement - Decrement

DecTerm
:= Decrement(

Addend
//SuperName
) => Integer

This operation decrement the XE "ASL:Decrement - Decrement" \t "See Add" Addend by one and the result is stored back to Addend.

15.2.3.4.2.7 DerefOf – Dereference Of Operator

DerefOfTerm
:= DerefOf(

Source
//TermArg=>ObjectReference
) => ObjectReference

 XE "ASL:DerefOf - Dereference Of Operator"

 XE "DerefOf - Dereference Of Operator" \t "See ASL" Returns the object referred by the Source object reference. The object returned can be any object type (for example, a package, a device object, and so on).

15.2.3.4.2.8 Divide - Divide

DivideTerm
:= Divide(

Dividend,
//TermArg=>Integer

Divisor,
//TermArg=>Integer

Remainder,
//Nothing | SuperName

Result
//Nothing | SuperName
) => Integer
//returns Result

 XE "ASL:Divide - Divide"

 XE "Divide - Divide" \t "See ASL" Dividend and Divisor are evaluated as integer data. Dividend is divided by Divisor, then the resulting remainder is optionally stored into Remainder and the resulting quotient is optionally stored into Result. Divide-by-zero exceptions are fatal.

15.2.3.4.2.9 FindSetLeftBit – Find Set Left Bit

FindSetLeftBitTerm
:= FindSetLeftBit(

Source,
//TermArg=>Integer

Result
//Nothing | SuperName
) => Integer

 XE "ASL:FindSetLeftBit - Find Set Left Bit"

 XE "FindSetLeftBit - Find Set Left Bit" \t "See ASL" Source is evaluated as integer data type, and the one-based bit location of the first MSb (most significant set bit) is optionally stored into Result. The result of 0 means no bit was set, 1 means the left-most bit set is the first bit, 2 means the left-most bit set is the second bit, and so on.

15.2.3.4.2.10 FindSetRightBit - Find Set Right Bit

FindSetRightBitTerm
:= FindSetRightBit(

Source,
//TermArg=>Integer

Result
//Nothing | SuperName
) => Integer

 XE "ASL:FindSetRightBit - Find Set Right Bit"

 XE "FindSetRightBit - Find Set Right Bit" \t "See ASL" Source is evaluated as integer data type, and the one-based bit location of the most LSb (least significant set bit) is optionally stored in Result. The result of 0 means no bit was set, 32 means the first bit set is the 32nd bit, 31 means the first bit set is the 31st bit, and so on.

15.2.3.4.2.11 FromBCD - Convert from BCD

FromBCDTerm
:= FromBCD(

BCDValue,
//TermArg=>Integer

Result
//Nothing | SuperName
) => Integer

 XE "ASL:FromBCD - Convert from BCD"

 XE "FromBCD - Convert from BCD" \t "See ASL" The FromBCD operation is used to convert BCDValue to a numeric format and store the numeric value in Result.

15.2.3.4.2.12 Increment - Increment

IncTerm
:= Increment(

Addend
//SuperName
) => Integer

 XE "ASL:Increment - Increment" \t "See Add" Equivalent to Add(Addend, 1, Addend)

15.2.3.4.2.13 Index - Index

IndexTerm
:= Index(

Source,
//TermArg=>

//<BufferTerm | PackageTerm>

Index,
//TermArg=>Integer

Destination
//Nothing | SuperName
) => ObjectReference

 XE "ASL:Index - Index"

 XE "Index - Index" \t "See ASL" Source is evaluated to either buffer or package data type. Index is evaluated to an integer. The object at Index within Source is optionally stored as a reference into Destination. The following example ASL code shows a way to use the Index term to store into a local variable the sixth element of the first package of a set of nested packages:

Name(IO0D, Package() {

 Package() {

 0x01, 0x03F8, 0x03F8, 0x01, 0x08, 0x01,

 0x25, 0xFF, 0xFE, 0x00, 0x00

 },

 Package() {

 0x01, 0x02F8, 0x02F8, 0x01, 0x08, 0x01,

 0x25, 0xFF, 0xBE, 0x00, 0x00

 },

 Package() {

 0x01, 0x03E8, 0x03E8, 0x01, 0x08, 0x01,

 0x25, 0xFF, 0xFA, 0x00, 0x00

 },

 Package() {

 0x01, 0x02E8, 0x02E8, 0x01, 0x08, 0x01,

 0x25, 0xFF, 0xBA, 0x00, 0x00

 },

 Package() {

 0x01, 0x0100, 0x03F8, 0x08, 0x08, 0x02,

 0x25, 0x20, 0x7F, 0x00, 0x00,

 }

})

//Get the 6th element of the first package

Store(DeRefOf(Index(DeRefOf(Index(IO0D, 0)), 5)), Local0)

The following example ASL code shows a way to store into the 3rd byte of a buffer:

Name(BUFF, Buffer() {

0x01, 0x02, 0x03, 0x04, 0x05

})

//Store 0x55 into the third byte of the buffer

Store(0x55, Index(BUFF, 2))

15.2.3.4.2.14 LAnd - Logical And

LAndTerm
:= LAnd(

Source1,
//TermArg=>Integer

Source2
//TermArg=>Integer
) => Boolean

 XE "ASL:LAnd - Logical And"

 XE "LAnd - Logical And" \t "See ASL" Source1 and source2 are evaluated as integers. If both values are non-zero, the constant object Ones is returned, otherwise the constant object Zero is returned.

15.2.3.4.2.15 LEqual - Logical Equal

LEqualTerm
:= LEqual(

Source1,
//TermArg=>Integer

Source2
//TermArg=>Integer
) => Boolean

 XE "ASL:LEqual - Logical Equal"

 XE "LEqual - Logical Equal" \t "See ASL" Source1 and Source2 are evaluated as integers. If the values are equal, the constant object Ones is returned; otherwise, the constant object Zero is returned.

15.2.3.4.2.16 LGreater - Logical Greater

LGreaterTerm
:= LGreater(

Source1,
//TermArg=>Integer

Source2
//TermArg=>Integer
) => Boolean

 XE "ASL:LGreater - Logical Greater"

 XE "LGreater - Logical Greater" \t "See ASL" Source1 and Source2 are evaluated as integers. If Source1 is greater than Source2, the constant object Ones is returned; otherwise, the constant object Zero is returned.

15.2.3.4.2.17 LGreaterEqual - Logical Greater Than Or Equal

LGreaterEqualTerm
:= LGreaterEqual(

Source1,
//TermArg=>Integer

Source2
//TermArg=>Integer
) => Boolean

 XE "ASL:LGreaterEqual - Logical Greater Than Or Equal"

 XE "LGreaterEqual - Logical Greater Than Or Equal" \t "See ASL" Source1 and Source2 are evaluated as integers. If Source1 is greater than or equal to Source2, the constant object Ones is returned; otherwise, the constant object Zero is returned.

15.2.3.4.2.18 LLess - Logical Less

LLessTerm
:= LLess(

Source1,
//TermArg=>Integer

Source2
//TermArg=>Integer
) => Boolean

 XE "ASL:LLess - Logical Less"

 XE "LLess - Logical Less" \t "See ASL" Source1 and Source2 are evaluated as integers. If Source1 is less than Source2, the constant object Ones is returned; otherwise, the constant object Zero is returned.

15.2.3.4.2.19 LLessEqual - Logical Less Than Or Equal

LLessEqualTerm
:= LLessEqual(

Source1,
//TermArg=>Integer

Source2
//TermArg=>Integer
) => Boolean

 XE "ASL:LLessEqual - Logical Less Than Or Equal"

 XE "LLessEqual - Logical Less Than Or Equal" \t "See ASL" Source1 and Source2 are evaluated as integers. If Source1 is less than or equal to Source2, then the constant object Ones is returned; otherwise, the constant object Zero is returned.

15.2.3.4.2.20 LNot - Logical Not

LNotTerm
:= LNot(

Source,
//TermArg=>Integer
) => Boolean

 XE "ASL:LNot - Logical Not"

 XE "LNot - Logical Not" \t "See ASL" Source1 is evaluated as an integer. If the value is non-zero, the constant object Zero is returned; otherwise, the constant object Ones is returned.

15.2.3.4.2.21 LNotEqual - Logical Not Equal

LNotEqualTerm
:= LNotEqual(

Source1,
//TermArg=>Integer

Source2
//TermArg=>Integer
) => Boolean

 XE "ASL:LNot Equal - Logical Not Equal"

 XE "LNot Equal - Logical Not Equal" \t "See ASL" Source1 and Source2 are evaluated as integers. If Source1 is not equal to Source2, then the constant object Ones is returned; otherwise, the constant object Zero is returned.

15.2.3.4.2.22 LOr - Logical Or

LOrTerm
:= LOr(

Source1,
//TermArg=>Integer

Source2
//TermArg=>Integer
) => Boolean

 XE "ASL:LOr - Logical Or"

 XE "LOr - Logical Or" \t "See ASL" Source1 and Source2 are evaluated as integers. If either values is non-zero, the constant object Ones is returned; otherwise, the constant object Zero is returned.

15.2.3.4.2.23 Match - Find Object Match

MatchTerm
:= Match(

SearchPackage,
//TermArg=>Package

Op1,
//MatchOpKeyword

MatchObject1,
//TermArg=>Integer

Op2,
//MatchOpKeyword

MatchObject2,
//TermArg=>Integer

StartIndex
//TermArg=>Integer
) => Ones | Integer

 XE "ASL:Match - Find Object Match"

 XE "Match - Find Object Match" \t "See ASL" SearchPackage is evaluated to a package object and is treated as a one-dimension array. A comparison is performed for each element of the package, starting with the index value indicated by StartIndex (0 is the first element). If the element of SearchPackage being compared against is called P[i], then the comparison is:

if (P[i] Op1 MatchObject1) and (P[i] Op2 MatchObject2) then Match => i is returned.

If the comparison succeeds, the index of the element that succeeded is returned; otherwise, the constant object Ones is returned.

Op1 and Op2 have the following values and meanings listed in the following table.

Table 15-13 Match Term Operator Meanings

Operator
Encoding
Macro

TRUE - a don’t care, always returns TRUE
0
MTR

EQ - returns TRUE if P[i] == MatchObject
1
MEQ

LE - returns TRUE if P[i] <= MatchObject
2
MLE

LT - returns TRUE if P[i] < MatchObject
3
MLT

GE - returns TRUE if P[i] >= MatchObject
4
MGE

GT - returns TRUE if P[i] > MatchObject
5
MGT

Following are some example uses of Match:

Name(P1,

Package() {1981, 1983, 1985, 1987, 1989, 1990, 1991, 1993, 1995, 1997, 1999, 2001}

)

// match 1993 == P1[i]

Match(P1, MEQ, 1993, MTR, 0, 0)
// -> 7, since P1[7] == 1993

// match 1984 == P1[i]

Match(P1, MEQ, 1984, MTR, 0, 0)
// -> ONES (not found)

// match P1[i] > 1984 and P1[i] <= 2000

Match(P1, MGT, 1984, MLE, 2000, 0) // -> 2, since P1[2]>1984 and P1[2]<=2000

// match P1[i] > 1984 and P1[i] <= 2000, starting with 3rd element

Match(P1, MGT, 1984, MLE, 2000, 3) // -> 3, first match at or past Start

15.2.3.4.2.24 Multiply - Multiply

MultiplyTerm
:= Multiply(

Multiplicand,
//TermArg=>Integer

Multiplier,
//TermArg=>Integer

Result
//Nothing | SuperName
) => Integer

 XE "ASL:Multiply - Multiply"

 XE "Multiply - Multiply" \t "See ASL" Multiplicand and Multiplier are evaluated as integer data types. Multiplicand is multiplied by Multiplier, and the result is optionally stored into Result. Overflow conditions are ignored.

15.2.3.4.2.25 NAnd - Bit-wise NAnd

NAndTerm
:= NAnd(

Source1,
//TermArg=>Integer

Source2
//TermArg=>Integer

Result
//Nothing | SuperName
) => Integer

 XE "ASL:NAnd - Bit-wise NAnd"

 XE "NAnd - Bit-wise NAnd" \t "See ASL" Source1 and Source2 are evaluated as integer data types, a bit-wise NAND is performed, and the result is optionally stored in Result.
15.2.3.4.2.26 NOr - Bitwise NOr

NOrTerm
:= NOr(

Source1,
//TermArg=>Integer

Source2
//TermArg=>Integer

Result
//Nothing | SuperName
) => Integer

 XE "ASL:NOr - Bitwise NOr"

 XE "NOr - Bitwise NOr" \t "See ASL" Source1 and Source2 are evaluated as integer data types, a bit-wise NOR is performed, and the result is optionally stored in Result.
15.2.3.4.2.27 Not - Not

NotTerm
:= Not(

Source,
//TermArg=>Integer

Result
//Nothing | SuperName
) => Integer

 XE "ASL:Not - Not"

 XE "Not - Not" \t "See ASL" Source1 is evaluated as an integer data type, a bit-wise NOT is performed, and the result is optionally stored in Result.

15.2.3.4.2.28 ObjectType - Object Type

ObjectTypeTerm
:= ObjectType(

Object
//SuperName
) => Integer

 XE "ASL:ObjectType - Object Type"

 XE "ObjectType - Object Type" \t "See ASL" The execution result of this operation is an integer that has the numeric value of the object type for Object. The object type codes are listed in the following table. Note that if this operation is performed on an object reference such as one produced by the Alias, Index or RefOf statements, the object type of the base object is returned. For typeless objects such as scope names, type value “Uninitialized” is returned.

Table 15-14 Values Returned By the ObjectType Operator

Value
Meaning

0
Uninitialized

1
Integer

2
String

3
Buffer

4
Package

5
Field Unit

6
Device

7
Event

8
Method

9
Mutex

10
Operation Region

11
Power Resource

12
Processor

13
Thermal Zone

14
Buffer Field

15
DDB Handle

16
Debug Object

>16
Reserved

15.2.3.4.2.29 Or - Bit-wise Or

OrTerm
:= Or(

Source1,
//TermArg=>Integer

Source2
//TermArg=>Integer

Result
//Nothing | SuperName
) => Integer

 XE "ASL:Or - Bit-wise Or"

 XE "Or - Bit-wise Or" \t "See ASL" Source1 and Source2 are evaluated as integer data types, a bit-wide OR is performed, and the result is optionally stored in Result.
15.2.3.4.2.30 RefOf - Reference Of

RefOfTerm
:= RefOf(

Object
//SuperName
) => ObjectReference

 XE "ASL:RefOf - Refernce Of"

 XE "RefOf - Refernce Of" \t "See ASL" Returns an object reference to Object. Object can be any object type (for example, a package, a device object, and so on).

If the Object does not exist, the result of a RefOf operation is fatal. Use the CondRefOf term in cases where the Object might not exist.

The primary purpose of RefOf() is to allow an object to be passed to a method as an argument to a method without the object being evaluated at the time of the method was loaded.

15.2.3.4.2.31 ShiftLeft - Shift Left

ShiftLeftTerm
:= ShiftLeft(

Source,
//TermArg=>Integer

ShiftCount
//TermArg=>Integer

Result
//Nothing | SuperName
) => Integer

 XE "ASL:ShiftLeft - Shift Left"

 XE "ShiftLeft - Shift Left" \t "See ASL" Source and ShiftCount are evaluated as integer data types. Source is shifted left with the least significant bit zeroed ShiftCount times. The result is optionally stored into Result.
15.2.3.4.2.32 ShiftRight - Shift Right

ShiftRightTerm
:= ShiftRight(

Source,
//TermArg=>Integer

ShiftCount
//TermArg=>Integer

Result
//Nothing | SuperName
) => Integer

 XE "ASL:ShiftRight - Shift Right"

 XE "ShiftRight - Shift Right" \t "See ASL" Source and ShiftCount are evaluated as integer data types. Source is shifted right with the most significant bit zeroed ShiftCount times. The result is optionally stored into Result.
15.2.3.4.2.33 SizeOf - SizeOf Data Object

SizeOfTerm
:= SizeOf(

DataObject
//SuperName=>DataObject
) => Integer

See ASL" XE "ASL:SizeOf - Size Of Data Object"
Returns the size of a buffer, string, or package data object. For a buffer it returns the size in bytes of the data. For a string, it returns the size in bytes of the string NOT counting the trailing NULL. For a package, it returns the number of elements.

15.2.3.4.2.34 Store - Store

StoreTerm
:= Store(

Source,
//TermArg=>DataObject

Destination
//SuperName
) => DataObject

 XE "ASL:Store - Store"

 XE "Store - Store" \t "See ASL" This operation evaluates Source converts to the data type of Destination and writes the results into Destination. If the Destination is of the type Uninitialized, then the Destination object is initialized as shown in the following table.

Table 15-15 Store Operator Initialization Data Types for Uninitialized Destinations

Data Type
Description

Integer
Destination initialized as integer.

Buffer
Destination initialized as buffer.

String
Destination initialized as string.

The Buffer data type is a fixed length data type. If the source argument has a greater length than the destination size, extra data are truncated. If the source argument has a smaller length than the destination size, the rest of the destination data are zeroed. Stores to Operational Region Field data types may relinquish the processor depending on the region type.

All stores (of any type) to the constant zero, constant one, or constant ones object are not allowed. Stores to read-only objects are fatal. The execution result of the operation is the same as the data written to Destination.
The following example creates the name CNT that references an integer data object with the value 5 and then stores CNT to Local0. After the Store operation, Local0 is an integer object with the value 5.

Name(CNT, 5)

Store(CNT, Local0)

15.2.3.4.2.35 Subtract - Subtract

SubtractTerm
:= Subtract(

Addend1,
//TermArg=>Integer

Addend2,
//TermArg=>Integer

Result
//Nothing | SuperName
) => Integer

 XE "ASL:Subtract - Subtract"

 XE "Subtract - Subtract" \t "See ASL" Addend1 and Addend2 are evaluated as integer data types. Addend2 is subtracted from Addend1, and the result is optionally stored into Result. Underflow conditions are ignored.

15.2.3.4.2.36 ToBCD - Convert to BCD

ToBCDTerm
:= ToBCD(

Value,
//TermArg=>Integer

Result
//Nothing | SuperName
) => Integer

 XE "ASL:ToBCD - Convert to BCD"

 XE "ToBCD - Convert to BCD" \t "See ASL" The ToBCD operation is used to convert Value from a numeric format to a BCD format and optionally store the numeric value in Result.

15.2.3.4.2.37 Wait - Wait for a Synchronization Event

WaitTerm
:= Wait(

SyncObject,
//SuperName

TimeoutValue
//TermArg=>Integer
) => Boolean

 XE "ASL:Wait - Wait for a Synchronization Event"

 XE "Wait - Wait for a Synchronization Event" \t "See ASL" SynchObject must be an event synchronization object. The calling method blocks waiting for the event to be signaled.

The pending signal count is decremented. If there is no pending signal count, the processor is relinquished until a signal count is posted to the Event or until at least TimeoutValue milliseconds have elapsed.

This operation returns a non-zero value if a timeout occurred and a signal was not acquired. A TimeoutValue of 0xFFFF indicates that there is no time out and the operation will wait indefinitely.

15.2.3.4.2.38 XOr - Bitwise XOr

XOrTerm
:= XOr(

Source1,
//TermArg=>Integer

Source2
//TermArg=>Integer

Result
//Nothing | SuperName
) => Integer

 XE "ASL:XOr - Bit-wise XOr" \t "See"

 XE "XOr - Bit-wise XOr" \t "See ASL" Source1 and Source2 are evaluated as integer data types, a bit-wise XOR is performed, and the result is optionally stored in Result.
15.2.3.5 User Terms

UserTerm
:= NameString(
//NameString=>MethodTerm

ArgList
) => DataObject

NameString must be referring to an existing method object in the Name Space. It can either be an absolute Name Space path or else it must be accessible at the current scope of invocation. The number of arguments in ArgList must match the number of arguments declared in the method object. XE "ASL:XOr - Bit-wise XOr" \t "See"

 XE "XOr - Bit-wise XOr" \t "See ASL"
15.2.3.6 Data Objects

There are four different types of data objects:

· Buffer terms

· Package terms

· Literal data terms

· Data macros

15.2.3.6.1 Buffer – Declare Buffer Object

BufferTerm
:= Buffer(

BuffSize
//Nothing |

//TermArg=>Integer
) {String | ByteList}

Declares a Buffer, of size BuffSize and initial value of Initializer (ByteList).
The optional BuffSize parameter specifies the size of the buffer and the initial value is specified in Initializer ByteList. If BuffSize is not specified, it defaults to the size of initializer. If the count is too small to hold the value specified by initializer, initializer size is used. For example, all four of the following examples generate the same datum in name space, although they have different ASL encodings:

Buffer(10) {“P00.00A”}

Buffer(Arg0) {0x50 0x30 0x30 0x2e 0x30 0x30 0x41}

Buffer(10) {0x50 0x30 0x30 0x2e 0x30 0x30 0x41 0x00 0x00 0x00}

Buffer() {0x50 0x30 0x30 0x2e 0x30 0x30 0x41 0x00 0x00 0x00}

15.2.3.6.2 Package – Declare Package Object

PackageTerm
:= Package(

NumElements
//Nothing |

//ByteConst
) {PackageList}

Declares an unnamed aggregation of data items, constants, and/or references to control methods. The size of the package is NumElements. PackageList contains the list data items, constants, and/or control method references used to initialize the package. If NumElements is absent, it is set to match the number of elements in the PackageList. If NumElements is present and greater than the number of elements in the PackageList, the default entry Undefined is used to initialize the package elements beyond those initialized from the PackageList. Evaluating an undefined element will yield an error, but they can be assigned values to make them defined. It is an error for NumElements to be less than the number of elements in the PackageList

There are two types of package elements in the PackageList: data objects and references to control methods.

Note: If non method code package objects are implemented in an ASL compiler, evaluations of these objects are performed within the scope of the invoking method, and are performed when the containing definition block is loaded. This means that the targets of all stores, loads, and references to the locals, arguments, or constant terms are in the same name scope as the invoking method.

Example 1:

Package () {

3,

9,

“ACPI 1.0 COMPLIANT”,

Package () {

“CheckSum=>”,

Package () {

7,

9

}

},

0

}

Example 2: This example defines and initializes a two-dimensional array.

Package () {

Package () {11, 12, 13},

Package () {21, 22, 23}

}

Example 3: This example is a legal encoding, but of no apparent use.

Package (){}

Example 4: This encoding allocates space for ten things to be defined later (see the Name and Index term definitions).

Package (10) {}

15.2.3.6.3 Literal Data Terms

Literal Data terms include:

· Integers

· Strings

· Constant data terms

15.2.3.6.3.1 Integers

Integer
:= ByteConst | WordConst | DWordConst

ByteConst
:= 0x00-0xff

WordConst
:= 0x0000-0xffff

DWordConst
:= 0x00000000-0xffffffff

Using the above grammar to define an object containing the value of integer causes the ASL compiler to automatically generate the proper width of the defined integer (Byte, Word, or DWord).

15.2.3.6.3.2 Strings

String
:= ‘”’ AsciiCharList ‘”’

AsciiCharList
:= Nothing | <AsciiChar AsciiCharList>

AsciiChar
:= 0x01-0x7f

NullChar
:= 0x00

The above grammar can be used to define an object containing a read-only string value. The default string value is the null string, which has 0 bytes available for storage of other values.

Since literal strings are read-only constants, the following ASL statement (for example) is not supported:

Store(“ABC”, ”DEF”)

However, the following sequence of statements is supported:

Name(STR, ”DEF”)

...

Store(“ABC”, STR)

15.2.3.6.3.3 Constant Data Terms

ConstTerm
:= Zero | One | Ones | Revision

 XE "constant terms" \t "See ASL"

 XE "ASL:constant terms" \t "" The constant declaration terms are Zero, One, Ones, and Revision.

15.2.3.6.3.3.1 Zero - Constant Zero Object

 XE "Zero-constant zero object" \t "See ASL"

 XE "ASL:Zero-constant zero object" \t "" The constant Zero object is an object of type Integer that will always read as all bits clear. Writes to this object are not allowed.

15.2.3.6.3.3.2 One - Constant One Object

 XE "ASL:one constant one object"

 XE "one constant one object" \t "See ASL" The constant One object is an object of type Integer that will always read the LSb as set and all other bits as clear (that is, the value of 1). Writes to this object are not allowed.

15.2.3.6.3.3.3 Ones - Constant Ones Object

 XE "ones constant ones object" \t "See ASL"

 XE "ASL:one constant one object" \t "" The constant Ones object is an object of type Integer that will always read as all bits set. Writes to this object are not allowed.

15.2.3.6.3.3.4 Revision – Constant Revision Object

The constant Revision object is an object of type Integer that will always read as the revision of the AML interpreter.

15.2.3.6.4 Data Macors

The data macros XE "data object declaration terms" \t "See ASL"

 XE "ASL:data object declaration terms" \t "" are:

· EISAID terms.

· ResourceTemplate terms.

15.2.3.6.4.1 EISAID Macro - Convert EISA ID String To Integer

EISAIDTerm
:= EISAID(

EISAIDString
//String
) => DWordConst

 XE "ASL:EISAID - Convert EISA ID"

 XE "EISAID - Convert EISA ID" \t "See ASL" Converts EISAIDString, a 7-character text string argument, into its corresponding 4-byte numeric EISA ID encoding. The can be used when declaring IDs for devices that have EISA IDs.

15.2.3.6.4.2 ResourceTemplate Macro – Convert Resource To Buffer Format

ResourceTemplateTerm
:= ResourceTemplate() {ResourceMacroList} => BufferTerm

For a full definition of the ResourceTemplateTerm macro, see section 6.4.1.

15.2.3.7 Miscellaneous Objects

Miscellaneous objects include:

· Debug objects

· ArgX objects

· LocalX objects

15.2.3.7.1 Debug Data Object

DebugTerm
:= Debug
The debug data object XE "ASL:debug data object"

 XE "debug data object" \t "See ASL" is a virtual data object. Writes to this object provide debugging information. On at least debug versions of the interpreter any writes into this object are appropriately displayed on the system’s native kernel debugger. All writes to the debug object are otherwise benign. If the system is in use without a kernel debugger, then writes to the debug object are ignored. The following table relates the ASL term types that can be written to the Debug object to the format of the information on the kernel debugger display.

Table 15-16 Debug Object Display Formats

ASL Term Type
Display Format

Numeric data object
All digits displayed in hexadecimal format.

String data object
String is displayed

Object reference
Information about the object is displayed (for example, object type and object name), but the object is not evaluated.

The Debug object is a write-only object; attempting to read from the debug object is not supported.

15.2.3.7.2 ArgX – Argument Data Objects

ArgTerm
:= Arg0 | Arg1 | Arg2 | Arg3 | Arg4 | Arg5 | Arg6
Up to 7 argument object references can be passed to a control method. On entry to a control method, only the argument objects that are passed are usable.

15.2.3.7.3 LocalX - Local Data Objects

LocalTerm
:= Local0 | Local1 | Local2 | Local3 | Local4 | Local5 | Local6 | Local7

Up to 8 local objects can be referenced in a control method. On entry to a control method these objects are uninitialized and cannot be used until some value or reference is stored into the object. Once initialized, these objects are preserved in the scope of execution for that control method.

16. ACPI Machine Language (AML) Specification

 XE "ACPI Machine Language (AML):specification"

 XE "AML:specification" This section formally defines the ACPI Control Method Machine Language (AML) language. AML is the ACPI Control Method virtual machine language, machine code for a virtual machine which is supported by an ACPI-compatible OS. ACPI control methods can be written in AML, but humans ordinarily write control methods in ASL.

AML is the language processed by the ACPI method interpreter. It is primarily a declarative language. It’s best not to think of it as a stream of code, but rather as a set of declarations that the ACPI interpreter will compile into the ACPI name space at definition block load time. For example, notice that DefByte allocates an anonymous integer variable with a byte size initial value in ACPI space, and passes in an initial value. The byte in the AML stream that defines the initial value is not the address of the variable’s storage location.

An OEM or BIOS vendor needs to write ASL and be able to single step AML for debugging. (Debuggers and other ACPI control method language tools are expected to be AML level tools, not source level tools.) An ASL translator implementer must understand how to read ASL and generate AML. An AML interpreter author must understand how to execute AML.

AML and ASL XE "AML and ASL:relation between" are different languages though they are closely related.

All ACPI-compatible OSes must support AML. A given user can define some arbitrary source language (to replace ASL) and write a tool to translate it to AML. However, the ACPI group will support a single translator for a single language, ASL.

16.1 Notation Conventions

 XE "AML:notation conventions" The notation conventions in the table below help the reader to interpret the AML formal grammar.

Table 16-1 AML Grammar Notation Conventions

Notation Convention
Description
Example

0xdd
Refers to a byte value expressed as 2 hexadecimal digits.
0x21

Number in bold.
Denotes the encoding of the AML term.

Term => Evaluated Type
Shows the resulting type of the evaluation of Term.

Single quotes (‘ ’)
Indicate constant characters.
‘A’ => 0x41

Term := Term Term …
The term to the left of := can be expanded into the sequence of terms on the right.
aterm := bterm cterm means that aterm can be expanded into the two-term sequence of bterm followed by cterm.

Term Term Term …
Terms separated from each other by spaces form an ordered list.

Angle brackets (< >)
Used to group items.
<a b> | <c d> means either

a b or c d.

Bar symbol (|)
Separates alternatives.
aterm := bterm | [cterm dterm]
means the following constructs are possible:

 bterm
 cterm dterm

aterm := [bterm | cterm] dterm
means the following constructs are possible:

 bterm dterm
 cterm dterm

Dash character (-)
Indicates a range.
1-9 means a single digit in the range 1 to 9 inclusive.

Parenthesized term following another term.
The parenthesized term is the repeat count of the previous term.
aterm(3) means aterm aterm aterm.

bterm(N) means N number of bterms.

16.2 AML Grammar Definition

 XE "AML:grammer definition" This section defines the byte values that make up an AML byte stream.

AMLCode
:= DefBlockHdr TermList

DefBlockHdr
:= TableSig TableLen SpecCompliance CheckSum OemID OemTableID OemRev CreatorID CreatorRev

TableSig
:= DWordConst
//As defined in section 5.2.3.

TableLen
:= DwordConst
//Length of the table in bytes including the block
//header.

SpecCompliance
:= ByteConst
//The revision of the structure.

CheckSum
:= ByteConst
//Byte checksum of the entire table.

OemID
:= ByteConst(6)
//OEM ID of up to 6 characters. If the OEM ID is
//shorter than 6 characters, it can be terminated
//with a NULL character.

OemTableID
:= ByteConst(8)
//OEM Table ID of up to 8 characters. If the OEM
//Table ID is shorter than 8 characters, it can be
//terminated with a NULL character.

OemRev
:= DWordConst
//OEM Table Revision.

CreatorID
:= DWordConst
//Vendor ID of the ASL assembler. For example,
//the Microsoft provided assembler has a vendor
//ID “MSFT”.

CreatorRev
:= DWordConst
//Revision of the ASL assembler.

The AML encoding can be categorized in the following groups:

· Name objects encoding

· Data objects encoding

· Package length encoding

· Term objects encoding

· Miscellaneous objects encoding

16.2.1 Name Objects Encoding

LeadNameChar
:= ‘A’ | ‘B’ | ‘C’ | ‘D’ | ‘E’ | ‘F’ | ‘G’ | ‘H’ | ‘I’ | ‘J’ | ‘K’ | ‘L’ | ‘M’ | ‘N’ | ‘O’ | ‘P’ | ‘Q’ | ‘R’ | ‘S’ | ‘T’ | ‘U’ | ‘V’ | ‘W’ | ‘X’ | ‘Y’ | ‘Z’ | ‘_’

NameChar
:= ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’ | LeadNameChar

RootChar
:= ‘\’

ParentPrefixChar
:= ‘^’

‘A’-‘Z’
:= 0x41-0x5a
‘_’
:= 0x5f
‘0’-‘9’
:= 0x30-0x39
‘\’
:= 0x5c
‘^’
:= 0x5e
NameSeg
:= <LeadNameChar NameChar NameChar NameChar>
// Note that NameSegs shorter than 4 characters are
// filled with trailing ‘_’s.

NameString
:= <RootChar NamePath> | <PrefixPath NamePath>

PrefixPath
:= Nothing | <‘^’ PrefixPath>

NamePath
:= NullName | NameSeg | DualNamePath | MultiNamePath

NullName
:= 0x00

DualNamePath
:= DualNamePrefix NameSeg NameSeg

DualNamePrefix
:= 0x2e

MultiNamePath
:= MultiNamePrefix SegCount NameSeg(SegCount)

MultiNamePrefix
:= 0x2f
SegCount
:= ByteData
// SegCount can be from 1 to 255.
// MultiNamePrefix(35) => 0x2f 0x23
// and following by 35 NameSegs.
// So, the total encoding length
// will be 1 + 1 + 35*4 = 142.
// Note that:
// DualNamePrefix NameSeg NameSeg
// has a smaller encoding than the
// equivalent encoding of:
//
 MultiNamePrefix(2) NameSeg NameSeg

SuperName
:= NameString | ArgObj | LocalObj | DebugObj | DefIndex

16.2.2 Data Objects Encoding

DataObject
:= LiteralData | DefBuffer | DefPackage

DataObjectList
:= Nothing | <DataObject DataObjectList>

LiteralData
:= ByteConst | WordConst | DWordConst | String | ConstObj | RevisionOp

ComputationalData
:= LiteralData | DefBuffer

ByteConst
:= BytePrefix ByteData

BytePrefix
:= 0x0a

WordConst
:= WordPrefix WordData

WordPrefix
:= 0x0b
DWordConst
:= DWordPrefix DWordData

DWordPrefix
:= 0x0c
String
:= StringPrefix AsciiCharList NullChar

StringPrefix
:= 0x0d
ConstObj
:= ZeroOp | OneOp | OnesOp

ByteList
:= Nothing | <ByteData ByteList>

ByteData
:= 0x00-0xff
WordData
:= ByteData ByteData
// 0x0000-0xffff

DWordData
:= ByteData ByteData ByteData ByteData
// 0x00000000-0xffffffff

AsciiCharList
:= Nothing | <AsciiChar AsciiCharList>

AsciiChar
:= 0x01-0x7f
NullChar
:= 0x00
ZeroOp
:= 0x00

OneOp
:= 0x01

OnesOp
:= 0xff
RevisionOp
:= ExtOpPrefix 0x30
ExtOpPrefix
:= 0x5b
16.2.3 Package Length Encoding

PkgLength
:= PkgLeadByte |
<PkgLeadByte ByteData> |
<PkgLeadByte ByteData ByteData> |
<PkgLeadByte ByteData ByteData ByteData>

PkgLeadByte
:= <bit 7-6: follow ByteData count>
<bit 5-4: reserved>
<bit 3-0: least significant package length byte>
// Note: The high 2 bits of the first byte reveal how
//
many follow bytes are in the PkgLength. If the
//
PkgLength has only one byte, bit 0 through 5 are
//
used to encode the package length (i.e. values
//
0-63). If the package length value is more than
//
63, more than one byte must be used for the
//
encoding in which case bit 5 and 4 of the
//
PkgLeadByte are reserved and must be zero. If
//
multiple bytes encoding is used, bits 3-0 of the
//
PkgLeadByte become the least significant 4 bits
//
of the resulting package length value. The next
//
ByteData will become the next least significant
//
8 bits of the resulting value and so on.

16.2.4 Term Objects Encoding

TermObj
:= NameSpaceModifierObj | NamedObj | Type1Opcode | Type2Opcode | UserTermObj

TermList
:= Nothing | <TermObj TermList>

TermArg
:= Type2Opcode | DataObject | UserTermObj | ArgObj | LocalObj

UserTermObj
:= NameString TermArgList

TermArgList
:= Nothing | <TermArg TermArgList>

ObjectList
:= Nothing | <Object ObjectList>

Object
:= NameSpaceModifierObj | NamedObj

16.2.4.1 Name Space Modifier Objects Encoding

NameSpaceModifierObj
:= DefAlias | DefName | DefScope

DefAlias
:= AliasOp NameString NameString

AliasOp
:= 0x06

DefName
:= NameOp NameString DataObject

NameOp
:= 0x08

DefScope
:= ScopeOp PkgLength NameString TermList

ScopeOp
:= 0x10

16.2.4.2 Named Objects Encoding

NamedObj
:= DefBankField | DefCreateBitField | DefCreateByteField | DefCreateDWordField | DefCreateField | DefCreateWordField | DefDevice | DefEvent | DefField | DefIndexField | DefMethod | DefMutex | DefOpRegion | DefPowerRes | DefProcessor | DefThermalZone

DefBankField
:= BankFieldOp PkgLength NameString NameString BankValue FieldFlags FieldList

BankFieldOp
:= ExtOpPrefix 0x87

BankValue
:= TermArg=>Integer

FieldFlags
:= ByteData
// bit 0-3: AccessType
// 0: AnyAcc
// 1: ByteAcc
// 2: WordAcc
// 3: DWordAcc
// 4: BlockAcc
// 5: SMBSendRecvAcc
// 6: SMBQuickAcc
// bit 4: LockRule
// 0: NoLock
// 1: Lock
// bit 5-6: UpdateRule
// 0: Preserve
// 1: WriteAsOnes
// 2: WriteAsZeros
// bit 7: reserved (must be 0)

FieldList
:= Nothing | <FieldElement FieldList>

FieldElement
:= NamedField | ReservedField | AccessField

NamedField
:= NameSeg PkgLength

ReservedField
:= 0x00 PkgLength

AccessField
:= 0x01 AccessType AccessAttrib

AccessType
:= ByteData
// Same as AccessType bits of FieldFlags

AccessAttrib
:= ByteData

DefCreateBitField
:= CreateBitFieldOp SourceBuff BitIndex NameString

CreateBitFieldOp
:= 0x8d
SourceBuff
:= TermArg=>BufferObj

BitIndex
:= TermArg=>Integer

DefCreateByteField
:= CreateByteFieldOp SourceBuff ByteIndex NameString

CreateByteFieldOp
:= 0x8c
ByteIndex
:= TermArg=>Integer

DefCreateDWordField
:= CreateDWordFieldOp SourceBuff ByteIndex NameString

CreateDWordFieldOp
:= 0x8a
DefCreateField
:= CreateFieldOp SourceBuff BitIndex NumBits NameString

CreateFieldOp
:= ExtOpPrefix 0x13
NumBits
:= TermArg=>Integer

DefCreateWordField
:= CreateWordFieldOp SourceBuff ByteIndex NameString

CreateWordFieldOp
:= 0x8b
DefDevice
:= DeviceOp PkgLength NameString ObjectList

DeviceOp
:= ExtOpPrefix 0x82
DefEvent
:= EventOp NameString

EventOp
:= ExtOpPrefix 0x02
DefField
:= FieldOp PkgLength NameString FieldFlags FieldList

FieldOp
:= ExtOpPrefix 0x81
DefIndexField
:= IndexFieldOp PkgLength NameString NameString FieldFlags FieldList

IndexFieldOp
:= ExtOpPrefix 0x86
DefMethod
:= MethodOp PkgLength NameString MethodFlags TermList

MethodOp
:= 0x14

MethodFlags
:= ByteData
// bit 0-2: ArgCount (0-7)
// bit 3: SerializeFlag
// 0: NotSerialized
// 1: Serialized
// bit 4-7: reserved (must be 0)

DefMutex
:= MutexOp NameString SyncFlags

MutexOp
:= ExtOpPrefix 0x01

SyncFlags
:= ByteData
// bit 0-3: SyncLevel (0x00-0x0f)
// bit 4-7: reserved (must be 0)

DefOpRegion
:= OpRegionOp NameString RegionSpace RegionOffset RegionLen

OpRegionOp
:= ExtOpPrefix 0x80

RegionSpace
:= ByteData
// 0x00: SystemMemory
// 0x01: SystemIO
// 0x02: PCI_Config
// 0x03: EmbeddedControl
// 0x04: SMBus
// 0x80-0xff: user defined

RegionOffset
:= TermArg=>DWordData

RegionLen
:= TermArg=>DWordData

DefPowerRes
:= PowerResOp PkgLength NameString SystemLevel ResourceOrder ObjectList

PowerResOp
:= ExtOpPrefix 0x84

SystemLevel
:= ByteData

ResourceOrder
:= WordData

DefProcessor
:= ProcessorOp PkgLength NameString ProcID PBlkAddr PBlkLen ObjectList

ProcessorOp
:= ExtOpPrefix 0x83
ProcID
:= ByteData

PBlkAddr
:= DWordData

PBlkLen
:= ByteData

DefThermalZone
:= ThermalZoneOp PkgLength NameString ObjectList

ThermalZoneOp
:= ExtOpPrefix 0x85
16.2.4.3 Type 1 Opcodes Encoding

Type1Opcode
:= DefBreak | DefBreakPoint | DefFatal | DefIfElse | DefLoad | DefNoop | DefNotify | DefRelease | DefReset | DefReturn | DefSignal | DefSleep | DefStall | DefUnload | DefWhile

DefBreak
:= BreakOp

BreakOp
:= 0xa5
DefBreakPoint
:= BreakPointOp

BreakPointOp
:= 0xcc
DefElse
:= Nothing | <ElseOp PkgLength TermList>

ElseOp
:= 0xa1
DefFatal
:= FatalOp FatalType FatalCode FatalArg

FatalOp
:= ExtOpPrefix 0x32
FatalType
:= ByteData

FatalCode
:= DWordData

FatalArg
:= TermArg=>Integer

DefIfElse
:= IfOp PkgLength Predicate TermList DefElse

IfOp
:= 0xa0
Predicate
:= TermArg=>Integer

DefLoad
:= LoadOp NameString DDBHandleObject

LoadOp
:= ExtOpPrefix 0x20
DDBHandleObject
:= SuperName

DefNoop
:= NoopOp

NoopOp
:= 0xa3
DefNotify
:= NotifyOp NotifyObject NotifyValue

NotifyOp
:= 0x86
NotifyObject
:= SuperName

NotifyValue
:= TermArg=>Integer

DefRelease
:= ReleaseOp MutexObject

ReleaseOp
:= ExtOpPrefix 0x27
MutexObject
:= SuperName

DefReset
:= ResetOp EventObject

ResetOp
:= ExtOpPrefix 0x26
EventObject
:= SuperName

DefReturn
:= ReturnOp ArgObject

ReturnOp
:= 0xa4
ArgObject
:= TermArg=>DataObject

DefSignal
:= SignalOp EventObject

SignalOp
:= ExtOpPrefix 0x24
DefSleep
:= SleepOp MSecTime

SleepOp
:= ExtOpPrefix 0x22
MsecTime
:= TermArg=>Integer

DefStall
:= StallOp USecTime

StallOp
:= ExtOpPrefix 0x21
UsecTime
:= TermArg=>ByteData

DefUnload
:= UnloadOp DDBHandleObject

UnloadOp
:= ExtOpPrefix 0x2a
DefWhile
:= WhileOp PkgLength Predicate TermList

WhileOp
:= 0xa2
16.2.4.4 Type 2 Opcodes Encoding

Type2Opcode
:= DefAcquire | DefAdd | DefAnd | DefBuffer | DefConcat | DefCondRefOf | DefDecrement | DefDerefOf | DefDivide | DefFindSetLeftBit | DefFindSetRightBit | DefFromBCD | DefIncrement | DefIndex | DefLAnd | DefLEqual | DefLGreater | DefLGreaterEqual | DefLLess | DefLLessEqual | DefLNot | DefLNotEqual | DefLOr | DefMatch | DefMultiply | DefNAnd | DefNOr | DefNot | DefObjectType | DefOr | DefPackage | DefRefOf | DefShiftLeft | DefShiftRight | DefSizeOf | DefStore | DefSubtract | DefToBCD | DefWait | DefXOr

DefAcquire
:= AcquireOp MutexObject Timeout

AcquireOp
:= ExtOpPrefix 0x23
Timeout
:= WordData

DefAdd
:= AddOp Operand1 Operand2 Target

AddOp
:= 0x72

Operand1
:= TermArg=>Integer

Operand2
:= TermArg=>Integer

Target
:= SuperName | NullName

DefAnd
:= AndOp Operand1 Operand2 Target

AndOp
:= 0x7b
DefBuffer
:= BufferOp PkgLength BufferSize ByteList

BufferOp
:= 0x11

BufferSize
:= TermArg=>Integer

DefConcat
:= ConcatOp Data1 Data2 Target

ConcatOp
:= 0x73

Data1
:= TermArg=>ComputationalData

Data2
:= TermArg=>ComputationalData

DefCondRefOf
:= CondRefOfOp SuperName SuperName

CondRefOfOp
:= ExtOpPrefix 0x12
DefDecrement
:= DecrementOp SuperName

DecrementOp
:= 0x76
DefDerefOf
:= DerefOfOp ObjReference

DerefOfOp
:= 0x83
ObjReference
:= TermArg=>ObjectReference
//ObjectReference is an object produced by terms
//such as Index, RefOf or CondRefOf.

DefDivide
:= DivideOp Dividend Divisor Remainder Quotient

DivideOp
:= 0x78
Dividend
:= TermArg=>Integer

Divisor
:= TermArg=>Integer

Remainder
:= Target

Quotient
:= Target

DefFindSetLeftBit
:= FindSetLeftBitOp Operand Target

FindSetLeftBitOp
:= 0x81
Operand
:= TermArg=>Integer

DefFindSetRightBit
:= FindSetRightBitOp Operand Target

FindSetRightBitOp
:= 0x82
DefFromBCD
:= FromBCDOp BCDValue Target

FromBCDOp
:= ExtOpPrefix 0x28
BCDValue
:= TermArg=>Integer

DefIncrement
:= IncrementOp SuperName

IncrementOp
:= 0x75

DefIndex
:= IndexOp BuffPkgObj IndexValue Target

IndexOp
:= 0x88
BuffPkgObj
:= TermArg=>Buffer or Package object

IndexValue
:= TermArg=>Integer

DefLAnd
:= LAndOp Operand1 Operand2

LAndOp
:= 0x90
DefLEqual
:= LEqualOp Operand1 Operand2

LEqualOp
:= 0x93
DefLGreater
:= LGreaterOp Operand1 Operand2

LGreaterOp
:= 0x94
DefLGreaterEqual
:= LGreaterEqualOp Operand1 Operand2

LGreaterEqualOp
:= LNotOp LLessOp

DefLLess
:= LLessOp Operand1 Operand2

LLessOp
:= 0x95
DefLLessEqual
:= LLessEqualOp Operand1 Operand2

LLessEqualOp
:= LNotOp LGreaterOp

DefLNot
:= LNotOp Operand

LNotOp
:= 0x92
DefLNotEqual
:= LNotEqualOp Operand1 Operand2

LNotEqualOp
:= LNotOp LEqualOp

DefLOr
:= LOrOp Operand1 Operand2

LOrOp
:= 0x91
DefMatch
:= MatchOp SearchPkg Opcode1 Operand1 Opcode2 Operand2 StartIndex

MatchOp
:= 0x89
SearchPkg
:= TermArg=>PackageObject

Opcode1
:= ByteData
// 0: MTR
// 1: MEQ
// 2: MLE
// 3: MLT
// 4: MGE
// 5: MGT

Opcode2
:= ByteData (same as Opcode1)

StartIndex
:= TermArg=>Integer

DefMultiply
:= MultiplyOp Operand1 Operand2 Target

MultiplyOp
:= 0x77
DefNAnd
:= NAndOp Operand1 Operand2 Target

NAndOp
:= 0x7c
DefNOr
:= NOrOp Operand1 Operand2 Target

NOrOp
:= 0x7e
DefNot
:= NotOp Operand Target

NotOp
:= 0x80
DefObjectType
:= ObjectTypeOp SuperName

ObjectTypeOp
:= 0x8e
DefOr
:= OrOp Operand1 Operand2 Target

OrOp
:= 0x7d
DefPackage
:= PackageOp PkgLength NumElements PackageElementList

PackageOp
:= 0x12
NumElements
:= ByteData

PackageElementList
:= Nothing | <PackageElement PackageElementList>

PackageElement
:= DataObject | NameString

DefRefOf
:= RefOfOp SuperName

RefOfOp
:= 0x71

DefShiftLeft
:= ShiftLeftOp Operand ShiftCount Target

ShiftLeftOp
:= 0x79

ShiftCount
:= TermArg=>Integer

DefShiftRight
:= ShiftRightOp Operand ShiftCount Target

ShiftRightOp
:= 0x7a
DefSizeOf
:= SizeOfOp SuperName

SizeOfOp
:= 0x87
DefStore
:= StoreOp Operand SuperName

StoreOp
:= 0x70
DefSubtract
:= SubtractOp Operand1 Operand2 Target

SubtractOp
:= 0x74

DefToBCD
:= ToBCDOp Operand Target

ToBCDOp
:= ExtOpPrefix 0x29
DefWait
:= WaitOp EventObject Timeout

WaitOp
:= ExtOpPrefix 0x25
DefXOr
:= XOrOp Operand1 Operand2 Target

XOrOp
:= 0x7f
16.2.5 Miscellaneous Objects Encoding

Miscellaneous objects include:

· Arg objects

· Local objects

· Debug objects

16.2.5.1 Arg Objects Encoding

ArgObj
:= Arg0Op | Arg1Op | Arg2Op | Arg3Op | Arg4Op | Arg5Op | Arg6Op

Arg0Op
:= 0x68
Arg1Op
:= 0x69

Arg2Op
:= 0x6a

Arg3Op
:= 0x6b

Arg4Op
:= 0x6c

Arg5Op
:= 0x6d

Arg6Op
:= 0x6e

16.2.5.2 Local Objects Encoding

LocalObj
:= Local0Op | Local1Op | Local2Op | Local3Op | Local4Op | Local5Op | Local6Op | Local7Op

Local0Op
:= 0x60

Local1Op
:= 0x61

Local2Op
:= 0x62

Local3Op
:= 0x63

Local4Op
:= 0x64

Local5Op
:= 0x65

Local6Op
:= 0x66

Local7Op
:= 0x67

16.2.5.3 Debug Objects Encoding

DebugObj
:= DebugOp

DebugOp
:= ExtOpPrefix 0x31
16.3 AML Byte Stream Byte Values

 XE "AML:byte stream"

 XE "AML:byte values" The following table lists all the byte values that can be found in an AML byte stream and the meaning of each byte value. This table is useful for debugging AML code.

Table 16-2 AML Byte Stream Byte Values

Encoding Value
Encoding Name
Encoding Group
Fixed List Arguments
Variable List Arguments

0x00
ZeroOp
Data Object
--
--

0x01
OneOp
Data Object
--
--

0x02-0x05
--
--
--
--

0x06
AliasOp
Term Object
NameString NameString
--

0x07
--
--
--
--

0x08
NameOp
Term Object
NameString DataObject
--

0x09
--
--
--
--

0x0A
BytePrefix
Data Object
ByteData
--

0x0B
WordPrefix
Data Object
WordData
--

0x0C
DwordPrefix
Data Object
DWordData
--

0x0D
StringPrefix
Data Object
AsciiCharList NullChar
--

0x0E-0x0F
--
--
--
--

0x10
ScopeOp
Term Object
NameString
TermList

0x11
BufferOp
Term Object
TermArg
ByteList

0x12
PackageOp
Term Object
ByteData
DataObjectList

0x13
--
--
--
--

0x14
MethodOp
Term Object
NameString ByteData
TermList

0x15-0x2D
--
--
--
--

0x2E (‘.’)
DualNamePrefix
Name Object
NameSeg NameSeg
--

0x2F (‘/’)
MultiNamePrefix
Name Object
ByteData NameSeg(N)
--

0x30-0x40
--
--
--
--

0x41-0x5A (‘A’-‘Z’)
NameChar
Name Object
--
--

0x5B (‘[’)
ExtOpPrefix
--
ByteData
--

0x5B 0x01
MutexOp
Term Object
NameString ByteData
--

0x5B 0x02
EventOp
Term Object
NameString
--

0x5B 0x12
CondRefOfOp
Term Object
SuperName SuperName
--

0x5B 0x13
CreateFieldOp
Term Object
TermArg TermArg TermArg NameString
--

0x5B 0x20
LoadOp
Term Object
NameString SuperName
--

0x5B 0x21
StallOp
Term Object
TermArg
--

0x5B 0x22
SleepOp
Term Object
TermArg
--

0x5B 0x23
AcquireOp
Term Object
SuperName WordData
--

0x5B 0x24
SignalOp
Term Object
SuperName
--

0x5B 0x25
WaitOp
Term Object
SuperName TermArg
--

0x5B 0x26
ResetOp
Term Object
SuperName
--

0x5B 0x27
ReleaseOp
Term Object
SuperName
--

0x5B 0x28
FromBCDOp
Term Object
TermArg Target
--

0x5B 0x29
ToBCD
Term Object
TermArg Target
--

0x5B 0x2A
UnloadOp
Term Object
SuperName
--

0x5B 0x30
RevisionOp
Data Object
--
--

0x5B 0x31
DebugOp
Debug Object
--
--

0x5B 0x32
FatalOp
Term Object
ByteData DWordData TermArg
--

0x5B 0x80
OpRegionOp
Term Object
NameString ByteData TermArg TermArg
--

0x5B 0x81
FieldOp
Term Object
NameString ByteData
FieldList

0x5B 0x82
DeviceOp
Term Object
NameString
ObjectList

0x5B 0x83
ProcessorOp
Term Object
NameString ByteData DWordData ByteData
ObjectList

0x5B 0x84
PowerResOp
Term Object
NameString ByteData WordData
ObjectList

0x5B 0x85
ThermalZoneOp
Term Object
NameString
ObjectList

0x5B 0x86
IndexFieldOp
Term Object
NameString NameString ByteData
FieldList

0x5B 0x87
BankFieldOp
Term Object
NameString NameString TermArg ByteData
FieldList

0x5C (‘\’)
RootChar
Name Object
--
--

0x5D
--
--
--
--

0x5E (‘^’)
ParentPrefixChar
Name Object
--
--

0x5F
--
--
--
--

0x60 (‘`’)
Local0Op
Local Object
--
--

0x61 (‘a’)
Local1Op
Local Object
--
--

0x62 (‘b’)
Local2Op
Local Object
--
--

0x63 (‘c’)
Local3Op
Local Object
--
--

0x64 (‘d’)
Local4Op
Local Object
--
--

0x65 (‘e’)
Local5Op
Local Object
--
--

0x66 (‘f’)
Local6Op
Local Object
--
--

0x67 (‘g’)
Local7Op
Local Object
--
--

0x68 (‘h’)
Arg0Op
Arg Object
--
--

0x69 (‘i’)
Arg1Op
Arg Object
--
--

0x6A (‘j’)
Arg2Op
Arg Object
--
--

0x6B (‘k’)
Arg3Op
Arg Object
--
--

0x6C (‘l’)
Arg4Op
Arg Object
--
--

0x6D (‘m’)
Arg5Op
Arg Object
--
--

0x6E (‘n’)
Arg6Op
Arg Object
--
--

0x6F
--
--
--
--

0x70
StoreOp
Term Object
TermArg SuperName
--

0x71
RefOfOp
Term Object
SuperName
--

0x72
AddOp
Term Object
TermArg TermArg Target
--

0x73
ConcatOp
Term Object
TermArg TermArg Target
--

0x74
SubtractOp
Term Object
TermArg TermArg Target
--

0x75
IncrementOp
Term Object
SuperName
--

0x76
DecrementOp
Term Object
SuperName
--

0x77
MultiplyOp
Term Object
TermArg TermArg Target
--

0x78
DivideOp
Term Object
TermArg TermArg Target Target
--

0x79
ShiftLeftOp
Term Object
TermArg TermArg Target
--

0x7A
ShiftRightOp
Term Object
TermArg TermArg Target
--

0x7B
AndOp
Term Object
TermArg TermArg Target
--

0x7C
NAndOp
Term Object
TermArg TermArg Target
--

0x7D
OrOp
Term Object
TermArg TermArg Target
--

0x7E
NOrOp
Term Object
TermArg TermArg Target
--

0x7F
XOrOp
Term Object
TermArg TermArg Target
--

0x80
NotOp
Term Object
TermArg Target
--

0x81
FindSetLeftBitOp
Term Object
TermArg Target
--

0x82
FindSetRightBitOp
Term Object
TermArg Target
--

0x83
DerefOfOp
Term Object
TermArg
--

0x84-0x85
--
--
--
--

0x86
NotifyOp
Term Object
SuperName TermArg
--

0x87
SizeOfOp
Term Object
SuperName
--

0x88
IndexOp
Term Object
TermArg TermArg Target
--

0x89
MatchOp
Term Object
TermArg ByteData TermArg ByteData TermArg TermArg
--

0x8A
CreateDWordFieldOp
Term Object
TermArg TermArg NameString
--

0x8B
CreateWordFieldOp
Term Object
TermArg TermArg NameString
--

0x8C
CreateByteFieldOp
Term Object
TermArg TermArg NameString
--

0x8D
CreateBitFieldOp
Term Object
TermArg TermArg NameString
--

0x8E
ObjectTypeOp
Term Object
SuperName
--

0x8F
--
--
--
--

0x90
LAndOp
Term Object
TermArg TermArg
--

0x91
LOrOp
Term Object
TermArg TermArg
--

0x92
LNotOp
Term Object
TermArg
--

0x92 0x93
LNotEqualOp
Term Object
TermArg TermArg
--

0x92 0x94
LLessEqualOp
Term Object
TermArg TermArg
--

0x95 0x92
LGreaterEqualOp
Term Object
TermArg TermArg
--

0x93
LEqualOp
Term Object
TermArg TermArg
--

0x94
LGreaterOp
Term Object
TermArg TermArg
--

0x95
LLessOp
Term Object
TermArg TermArg
--

0x96-0x9F
--
--
--
--

0xA0
IfOp
Term Object
TermArg
TermList

0xA1
ElseOp
Term Object
--
TermList

0xA2
WhileOp
Term Object
TermArg
TermList

0xA3
NoopOp
Term Object
--
--

0xA4
ReturnOp
Term Object
TermArg
--

0xA5
BreakOp
Term Object
--
--

0xA6-0xCB
--
--
--
--

0xCC
BreakPointOp
Term Object
--
--

0xCD-0xFE
--
--
--
--

0xFF
OnesOp
Data Object
--
--

16.4 AML Encoding of Names in the Name Space

Assume the following name space exists:

\

S0

MEM

SET

GET

S1

MEM

SET

GET

CPU

SET

GET

Assume further that a definition block is loaded that creates a node \S0.CPU.SET, and loads a block using it as a root. Assume the loaded block contains the following names:

STP1

^GET

^^PCI0

^^PCI0.SBS

\S2

\S2.ISA.COM1

^^^S3

^^^S2.MEM

^^^S2.MEM.SET

Scope(\S0.CPU.SET.STP1) {

XYZ

^ABC

^ABC.DEF

}

This will be encoded in AML as:

'STP1'

ParentPrefixChar 'GET_'

ParentPrefixChar ParentPrefixChar 'PCI0'

ParentPrefixChar ParentPrefixChar DualNamePrefix 'PCI0' 'SBS_'

RootChar 'S2__'

RootChar MultiNamePrefix 3 'S2__' 'ISA_' 'COM1'

ParentPrefixChar ParentPrefixChar ParentPrefixChar 'S3__'

ParentPrefixChar ParentPrefixChar ParentPrefixChar DualNamePrefix 'S2__' 'MEM_'

ParentPrefixChar ParentPrefixChar ParentPrefixChar MultiNamePrefix 3 'S2__' 'MEM_' 'SET_'

After the block is loaded, the name space will look like this (names added to the name space by the loading operation are shown in italics).

\

S0

MEM

SET

GET

CPU

SET

STP1

XYZ

ABC

DEF

GET

PCI0

SBS

S1

MEM

SET

GET

CPU

SET

GET

S2

ISA

COM1

MEM

SET

S3

Intel/Microsoft/Toshiba
Intel/Microsoft/Toshiba

_912256962.vsd

_912256961.vsd

_912256960.unknown

_912256959.unknown

_912256958.unknown

