Driver Components

The ACPI driver will consist of the following components:

Static table reader – (acpiinit.c) This component will be called at initialization time to locate and read the ACPI tables. After the interpreter has initialized it will read the Differentiated System Description Block within the DSDT.

AML interpreter – (amli subproject) This component is called to read definition blocks and run control methods. It will also have functions that locate objects within the ACPI name space (which it builds when reading definition blocks).

ACPI Timer Handler – (acpitimr.c) This component will provide an internal service to retrieve the current value of the ACPI timer, and will use the Timer Overflow event to extend the 24 or 32 bit hardware timer to 64 bits in software.

CPU Power Manager – (acpicpu.c) This component provides internal services to low the power state of the CPU. Logic for determining when this is necessary and what C state to enter resides in the OS specific portion of the ACPI driver (or in the OS kernel).

ACPI Event Handler – (acpievnt.c) This component is called as an event scheduled by the SCI interrupt handler. It will check the PM and GP status bits to determine the cause(s) of an SCI and call a handler for the event that bit indicates. In the case of General Purpose status bits, it will call the interpreter to run a control method (corresponding to the bit location within the GP_STS register) which in some cases will use the Notify mechanism to alert the OS as to the real nature of the interrupt.

Global Lock Manager – (acpilock.c) This component will supply functions to acquire and release the Global Lock which is used to serialize access to the embedded controller.

Power Resource Manager – (acpipowr.c) This component will contain functions that will be called each time a device’s power state changes. This function will determine how the power resource requirements have changed, and if any Power Resources can be turned on or off as a result.

Device Power Manager – (acpidev.c) This component will be called to place an ACPI managed device in a different device power state using the appropriate control method for that device.

Thermal Management – (acpithrm.c) This component is responsible for maintaining reasonable thermal conditions using methods dictated by user preferences. It is notified via a GP SCI whenever a thermal zone boundary is crossed.

Sleep State Selection and Notification - (acpizzzz.c) This component is responsible for selecting the appropriate sleep state and notifying the system.

The following components exist in the OS specific portion of the ACPI driver.

S2/S3 Wakeup Handler – This code will get called in real mode by the BIOS upon resume from S2 or S3 and will need to switch the processor into protected mode and restore some system context (depending the S state).

SCI Handler - There will be OS specific code to hook and handle SCI’s. This code will call functions within the shared portion of the ACPI driver to disable SCI events, and to see if the event was actually triggered by ACPI.

The following components exist ONLY in the Win9x implementation of ACPI:

VPOWERD Interface – This will be the communication mechanism between ACPI and VPOWERD so that legacy VPOWERD aware drivers continue to work.

CONFIGMG Interface – This will be the communication mechanism between ACPI and Win9x CONFIGMG.

Detailed Component Descriptions

Static Table Reader

This portion of the ACPI driver is run at initialization time in response to the CONFIG_START message, and is responsible for detecting the presence of ACPI, reading various tables accessed through the Root System Description Table, and storing useful information from the tables in the ACPIInformation structure.

The presence of ACPI is determined by searching the E0000-FFFFF physical address range (on 16 byte boundaries) for something that matches the format of the Root System Description Table Pointer. This format begins with the eight byte signature ‘RSD PTR ’ and also contains a checksum byte. We use those two properties to identify the structure. If found, it will contain the physical address of the Root System Description Table. This table is essentially a variable length array of physical addresses of other tables. It also contains a header which identifies the table and its length. For each physical address in the RSDT, the ACPI driver will convert the address, and see if the signature of the table matches one of the tables with which the ACPI driver is concerned. If it is a known table type, the ACPI driver will store the linear address of the table in the ACPIInformation structure and then call a table specific function to read any necessary information from the table.

The ACPIInformation structure is a global structure which looks like this:

typedef struct _ACPIInformation {

PRSDT RootSystemDescTable; // Linear address of Root System Description Table

PFADT FixedACPIDescTable; // Linear address of Fixed ACPI Description Table

PFACS FirmwareACPIControlStructure; // Linear address of the FACS

PDSDT DiffSystemDescTable; // Linear address of Differentiated System Description Table

PULONG GlobalLock; // Linear address of GlobalLock dword

PKEVENT GlobalLockEventHandle; // Event object used for waiting on release of the Global Lock

BOOLEAN ACPIOnly; // Did we find SCI_EN set when we loaded ?

IOBLK PM1a_BLK; // I/O address of PM1a_BLK

IOBLK PM1b_BLK; // I/O address of PM1b_BLK

IOBLK PM1a_CTRL_BLK; // I/O address of PM1a_CNT_BLK

IOBLK PM1b_CTRL_BLK; // I/O address of PM1b_CNT_BLK

IOBLK PM2_CTRL_BLK; // I/O address of PM2_CNT_BLK

IOBLK PM_TMR; // I/O address of PM_TMR

IOBLK GP0_BLK;

IOBLK GP1_BLK;

IOBLK P_BLK;

USHORT pm1_en_bits; // Bit mask of enabled PM1 events.

ULONG ACPI_Flags; // see below for bit descriptions.

} ACPIInformation;

The ACPI_Flags fields contains flags indicating which Sleeping and CPU states are supported on the machine.

The last table to be read is the DSDT which is read by calling the interpreter module’s AMLIInitialize to interpret the AML in the Differentiated Definition Block. See the description for the interpreter for more information.

AML Interpreter

The interpreter has its very own spec, see amli\amliarch.doc.

ACPI Timer Handler

The ACPI timer is a 24 or 32 bit counter residing in system i/o space (part of PM1_BLK) operating at 3.579545 MHz. An event is generated whenever the most significant bit changes (high to low or low to high). The OS uses this event to extend the hardware timer to a 64 bit software timer, the upper 40 bits of which are managed by software. When the ACPI driver initializes it will enable the timer overflow interrupt. When the event handler detects this as the cause of an SCI it will call ACPIHandleTimerOverflow (VOID) which will update the software managed 64 bit timer

The ACPI Timer Handler module has two entry points:

ULONGLONG ACPIGetTimerValue (VOID);

This function is an internal ACPI driver service which is used primarily by the ACPI Idle handler to measure how long the system stays in a particular CPU state. When called it returns the current value of the 64 bit timer.

VOID ACPIHandleTimerOverflow (VOID);

This function is called by the ACPI event handler module in response to finding the TMR_STS bit set in the PM_STS register. It is responsible for updating the upper bits of the 64 bit timer.

CPU Power Manager

Processor power management allows the power state (C state) of the processor to be adjusted. The C1 state is entered by executing the STI - HALT sequence of instructions. The C2 state is entered by reading the P_LVL2 register in system i/o space. The C3 state is entered by reading the P_LVL3 register in system i/o space. The latencies associated with entering and exiting (and therefore their desirability) are stated in the FADT. In the C3 state processor cache coherency is not maintained if there is bus master activity. The ACPI driver needs to disable the system arbiter (using the ARB_DIS bit in PM2_CNTRL) prior to entering the C3 state. Also the ACPI driver will set the BM_RLD bit in the PM1_CNTRL register which will cause a bus master request to automatically exit the processor back to the C0 state. The ACPI driver will use the BM_STS bit in the PM1_STS register to determine the amount of bus master activity (and therefore the likelihood of prematurely exiting the C3 state) and only enter the C3 state if there has been no recent bus master activity. The OS kernel will invoke C1 as part of its normal idle loop. When the Kernel detects an increased level of idleness it will call an OS dependent idle routine in the ACPI driver which will then call either ACPIEnterC2 (PPBLK ProcessorBlock) or ACPIEnterC3 (PPBLK ProcessorBlock). All processor states (except C0, obviously) can be exited for any reason and will always be exited upon generation of an (unmasked) interrupt.

ACPI Event Handler

At initialization the ACPI driver will install an interrupt handler for the SCI interrupt (whose vector is identified in the FADT). It will also set the enable bit for most of the events. Upon receiving an SCI some OS specific code will schedule an event to determine the nature of the SCI. When the event fires the ACPI driver will read & clear the various status registers and call the handler for each of the set status bits. There will be at most one pending interrupt processing event scheduled by the driver. This event will check and deal with each event in a predefined priority order.

If a status bit in the GP_STS register is set the ACPI driver will need to locate and execute the OEM supplied _GPE._Lxx control method, where xx corresponds to the zero based bit position of the set status bit.

The event handler has several entry points:

VOID ACPIInterruptDisable (VOID);

This function is called by the OS Specific ISR to disable all ACPI events.

BOOLEAN ACPIInterruptTestOurs(VOID);

This function is called by the OS Specific ISR to determine if the ACPI hardware actually generated a SCI. This is done by looking at the PM_STS and GP_STS bits to see if any are set. If none are set the interrupt is passed on to the next handler, otherwise an event is scheduled to process the interrupt.

void _cdecl ACPIInterruptProcessing (ULONG holder);

This function is called to snapshot & clear the status bits, re-enable ACPI interrupts and then process each set status bit. For set GP_STS bits this means calling a function in the AML interpreter to run the control method associated with that bit.

The path of an ACPI interrupt

When an SCI is generated the OS specific interrupt handler is called, this function first call ACPIInterruptTestOurs to see if the interrupt was generated by the ACPI hardware, if it was the handler then calls ACPIInterruptDisable to prevent any further ACPI interrupts from happening. If another ACPI event were to occur at this point, the status bit would still get set so the event would get processed. The handler then schedules an event to be called at a time when pageable code can be executed. ACPIInterruptProcessing will be called when this event fires. This function will immediately take a snapshot of the ACPI status registers and re-set the set bits, and then re-enable ACPI interrupts.

Global Lock Manager

The global lock is used to serialize access to hardware that is shared between the SMI and OS environments. When the OS needs to access a shared piece of hardware (the embedded controller for example) it first checks the ownership bit of the global lock DWORD (located within the FACS), and if set (indicating someone else (SMI) owns the global lock) the OS sets the pending bit, and waits for the BIOS to signal that is has released the lock at which point we attempt to re-acquire the lock using the previously described sequence. When we relinquish the lock we check the pending bit and if set (indicating the BIOS wants the lock) we notify the BIOS that the lock is now free.

This component has two entry points:

AcquireGlobalLockMustSucceed (void) -- will not return until the global lock has been acquired.

ReleaseGlobalLock (void) -- 	releases the global lock, and if needed notifies the BIOS that the lock is now free.

If AcquireGlobalLockMustSucceed finds that the global lock is currently owned by the SMI environment, it waits on the GlobalLockEventHandle event object. This event is signaled by the ACPIEvent code upon detecting a set GBL_RLS bit in PM1_STS.

Power Resource Manager

Each power resource object will have a ULONG use count field in its descriptor (PwrResDes structure). This use count will be incremented each time a device transitions into a D state where it begins to need the power resource. Likewise the use count will decrement each time a Device transitions into a D state where it no longer needs the resource. You can determine a device’s supported D states by finding the corresponding _PRn (where n is the Device state) object in the ACPI name space under the particular device. This object will evaluate to a PowerResource object which contains the minimum S state required for the resource to remain in the ON state. When a resource’s use count falls to zero, the resource will be turned (if an off method exists for this resource). Likewise, when the use count goes from 0 to 1, the resource will need to be turned on. The function which handles power resource tracking will get called every time a main board device transitions to a different D state.

The PwrResDes structure is allocated and initialized by the interpreter when it discovers a Power Resource in a description block.

typedef struct	_PwrResDes	{

	

PwrResDes	*Next;	// pointer to next Power Resource in the list, or NULL for list termination.

ULONG		Name;	// four byte unique ID for this object (stated by OEM in the ASL)

MIN_S_STATE	MinSstate;	// Minimum S state at which this power resource can remain ON.

ULONG		Order;	//	An OEM supplied value which tells the OS in which order to turn the

//	various power resources on or off.

ULONG		UseCount;	// # of devices currently relying on this power resource.		

}	PwrResDes;

Sleep State Selection and Notification

A sleep state is selected after evaluating four criteria:

Which Sleep states are supported on the machine.

Requirements imposed by wake-up devices.

User preference (performance/power-savings).

Application required resume latency.

The first criteria is at initialization time, by searching for _Sn objects in the root of the ACPI name space. The existence of a _Sn object indicates that Sleeping States n is supported.

The second criteria is result of a wake-up device (or any device between it and the root of the hardware tree) having a minimum D state at which it is capable of waking the machine. The device will have certain power resource requirements at that D state, and those power resources will have a minimum S state at which they remain on.

The third criteria is set by the user in a control panel applet to indicate their performance/power preference.

The fourth criteria is set by an application (typically a service application) to express the maximum allowable resume time.

The appropriate sleep state will be selected by performing a logical AND on the allowable sleep state masks generated by evaluating criteria 1, 2 and 4. From the allowable sleep states, one is chosen by finding the closest match with criteria 3.

All devices not required for wake-up will be sent a message/IRP requesting that they transition to the D3 device state. If a device cannot transition to D3 it will be treated like a wake-up device in that its power requirements will have to be analyzed and a new minimum S state may be determined. It would normally not be necessary to cancel the previous device state change requests, since they will continue to need to transition to D3.

Once the process of selecting a sleep state and notifying the drivers has been completed, that machine will be transitioned to the selected S state by programming SLP_TYP and then setting SLP_EN.

S1 Sleep State

After setting SLP_EN the driver will spin waiting for the WAK_STS bit in PM1_STS to get set. Once it is set the hardware resume process is complete and the driver will schedule an event to call ACPIEvent which will check the various status registers to determine the cause of the resume.

S2-S4 Sleep States

Prior to entering this state the ACPI driver will lock the real-mode resume vector code, and fill in the physical address of this code into the Firmware Waking Vector location. This code will get called from the BIOS in real mode, and will need to transition the processor into protect mode prior to determining the cause of the re
