ACPI IRP’s live under IRP_MJ_ACPI (which I’ll probably define as 0x17 which is currently not used).
<KR: The ACPI IRPs should be IOCTL codes passed on either the DEVICE_CONTROL or INTERNAL_DEVICE_CONTROL major code>
Extensions to existing interfaces:

A driver may use IRP_MJ_PNP_POWER & IRP_MN_QUERY_INTERFACE to obtain the ACPI_INTERFACES structure. This structure contains entry points for several direct call interfaces as well as the ACPI driver DeviceObject so that a driver may send IRP’s directly to the ACPI driver.

typedef struct ACPI_INTERFACES {

USHORT Size;

USHORT Version;

// this is version 1
PVOID

AcpiDeviceObject;
PINTERFACE_REFERENCE

InterfaceReference;

PINTERFACE_DEREFERENCE
InterfaceDereference;

PGPE_CONNECT_VECTOR

GPE_Connect_Vector;

PGPE_DISCONNECT_VECTOR

GPE_Disconnect_Vector;

PGPE_CLEAR_STATUS

GPE_Clear_Status;

PREGISTER_FOR_DEVICE_NOTIFICATIONS
RegisterForDeviceNotifications;

PUNREGISTER_FOR_DEVICE_NOTIFICATIONS
UnregisterForDeviceNotifications;

} ACPI_INTERFACES, *PACPI_INTERFACES;

The following is a list of direct call interfaces whose entry point can be obtained using IRP_MN_QUERY_INTERFACE:

// Connect to GPE

typedef

NTSTATUS

(*PGPE_CONNECT_VECTOR)(

IN PDEVICE_OBJECT AcpiDeviceObject,

IN ULONG GpeVector,

IN KINTERRUPT_MODE GpeMode,

IN BOOLEAN Sharable,

IN PGPE_SERVICE_ROUTINE ServiceRoutine,

IN PVOID ServiceContext,

OUT PVOID *GpeVectorObject

);

typedef

BOOLEAN
(*PGPE_SERVICE_ROUTINE) (

IN PVOID GpeVectorObject,

IN PVOID ServiceContext

);

// Service routine is called at IRQL = DISPATCH_LEVEL

Service routine returns TRUE if the event was handled, else FALSE. <KR: This allows the vector to be shared if we ever want to make the code support it>

// Disconnect from GPE

typedef

VOID

(*PGPE_DISCONNECT_VECTOR) (

IN PVOID GpeVectorObject

);

// Clear GP_STS Bit. N.B. Caller must be the only device on the GPE vector to make this call

typedef

NTSTATUS

(*PGPE_CLEAR_STATUS)(

IN PDEVICE_OBJECT AcpiDeviceObject,

IN PVOID GpeVectorObject
);
// Register to receive device notifications
typedef

 NTSTATUS

(*PREGISTER_FOR_DEVICE_NOTIFICATIONS)(

IN PDEVICE_OBJECT AcpiDeviceObject,

IN PDEVICE_OBJECT DeviceObject,

IN PDEVICE_NOTIFY_CALLBACK DeviceNotify,

IN PVOID DeviceNotifyContext,

OUT PVOID *DeviceNotifyObject

);
DEVICE_OBJECT needs to be the same object which the QUERY_INTERFACE was issued in order to obtain this interface.
typedef

VOID

(*PDEVICE_NOTIFY_CALLBACK)(

IN PVOID DeviceNotifyObject,

IN PVOID Context,

IN ULONG NotificationValue

);

// Notify callback is called at IRQL = DISPATCH_LEVEL

typedef

VOID

(*PUNREGISTER_FOR_DEVICE_NOTIFICATIONS)(

OUT PVOID *DeviceNotifyObject

);

This IRP will also return the DeviceObject for ACPI that can be used to send the below IRPs directly to the ACPI driver.

IRP_MN_RUN_CONTROL_METHOD

Send this IRP to run a control method that lives in the ACPI name space beneath the device associated with DeviceObject.

IRP stack parameters for IRP_MN_RUN_CONTROL_METHOD

struct {

PSTR ControlMethod;
// Name of control method to run.

USHORT ArgumentCount;
// Number of elements in OBJDATA array

POBJDATA Arguments
// an array of ArgumentCount OBJDATA structures

// representing the arguments for this control method.

}

<KR: Clearly I’m not involved enough with the code to know if this interface is fine. The doc seems to be a little to determine it as well. In any case, how are arguments returned to the caller?>
IRP_MN_ACQUIRE_GLOBAL_LOCK

Send this IRP to request the Global Lock. This IRP will return when the lock has been acquired or the timeout (if passed in by the caller) has expired.

IRP stack parameters for IRP_MN_ACQUIRE_GLOBAL_LOCK

struct {

PVOID AcpiContext;
// what should this be ?

ULONG TimeOut;
// ms to wait before completing the IRP without acquiring the Global

// Lock. Specify 0 for no timeout.

} AcquireGlobalLock;

<KR: AcpiConext will be a value passed from ACPI to drivers which provide operational regions to ACPI. If you don’t have a context, then NULL is passed in and the caller can not recurs ownership of the global lock >

<KR: I would remove the timeout. I don’t think any driver is going to need it and if they really want one, then they can implement their own timeout (and cancel the pending IRP)>

IRP_MN_RELEASE_GLOBAL_LOCK

Send this IRP to release the Global Lock.

The request does not have any IRP stack parameters.

<does this need to specify the Context value used to acquire the lock ?>

<KR: I doubt it’s required but I would have them pass it as a sanity check. E.g., make sure the guy decrementing the lock count is really its owner>
