Required Functions for OS specific module of ACPI driver

In addition to the below required functions, the Win95 specific module performs actions such as, PNP for the ACPI device (starting, stopping, and enumerating the ACPI bus), hooking the SCI vector, receiving the SCI and scheduling a call to ACPIInterruptProcessing (which is in the shared module), getting idle notifications and selecting which C state to put the machine into, interfacing with win95’s VPowerD (for compatibility reasons).

OS modules initialization entry point

VOID OSInitialize(PDRIVER_OBJECT DriverObject);

This routine is called by the shared portion of the driver during the DriverEntry phase of initialization.

It is intended for any initialization that is not required by both NT and W9x. For example, the NT version may use the DriverObject to add some additional IRP entry points that are not needed by W9x.

Hooking the SCI vector

BOOLEAN OSInterruptVector(USHORT Vector);

This routine is called to hook the interrupt vector associated with the SCI using some OS specific method. Vector is the hardware IRQ value (0-15).

(jasoncl: Is it sufficient to pass in Vector on a non x86 platform or do we need something more general ?).

This function should return TRUE if the interrupt vector was successfully hooked. A return value of FALSE will cause the ACPI driver to fail to load.

OS Specific file I/O routines

These are used by the interpreter module.

ULONG __cdecl

OSOpenFile(PSZ pszFile, ULONG dwfOpenMode, ULONG dwfCreateAttr, ULONG dwfAction,

 PHANDLE phFile);

This function opens a file, optionally creating the file if it does not exist.

Parameters:

pszFile ANSI string containing the file name.

dwfOpenMode is a combination of the following flags:

OF_READONLY		opens the file for reading

OF_WRITEONLY 		opens the file for writing

OF_READWRITE 		opens the file for reading & writing

OF_SHARE_DENYALL 	allows others to open the file but not read or write

OF_SHARE_DENYWRITE 	allows others to open the file for reading only

OF_SHARE_DENYREAD 	allows others to open the file but for writing only

OF_SHARE_DENYNONE 	allows others to open the file with no restrictions

(there are a few others but they should not be used by the interpreter)

dwfCreateAttr is only relevant if a file is created as a result of this call and may contain the following flags:

	CF_READONLY 		create a file with the read only attribute

CF_HIDDEN 		create a file with the hidden attribute

CF_SYSTEM 		create a file with the system attribute

CF_VOL_LABEL 		create a volume label

CF_ARCHIVE 		create a file with the archive attribute

dwfAction is a combination of the following flags:

	AF_EXIST_FAIL 		fail the call if the file currently exists

AF_EXIST_OPEN 		if the file exists open it

AF_EXIST_REPLACE 	if the file exists replace it and open the new file

AF_NOTEXIST_FAIL 	if the file does not exist fail the call

AF_NOTEXIST_CREATE 	if the file does not exist create and open it

If successful the functions returns 0 and sets *phFile to the file handle, otherwise the function returns non-zero.

ULONG __cdecl OSCloseFile(HANDLE hFile);

This function closes the file identified by hFile. If successful the function returns zero, otherwise it returns a non-zero value.

ULONG __cdecl

OSReadFile(HANDLE hFile, ULONG dwFilePos, PUCHAR pbBuff, ULONG dwLen,

 PULONG pdwcbRead);

This function tries to read dwLen bytes of file hFile starting at offset dwFilePos into a buffer pointed to by pbBuff and returns the actual number of bytes read in pdwcbRead. This function will return zero if it was able to read anything even if it was less than dwLen. It will return non-zero if the file cannot be found or if read access to the file is denied.

ULONG __cdecl

OSWriteFile(HANDLE hFile, ULONG dwFilePos, PUCHAR pbBuff, ULONG dwLen,

 PULONG pdwcbWritten);

This function tries to write dwLen bytes in file hFile starting at dwFilePos from a buffer pointed to by pbBuff and returns the actual number of bytes writing in pdwcbWritten. This function
