ACPI Machine Language (AML) Interpreter Design Architecture

The AML Interpreter consists of the following components:

Exported
AMLI
APIs (amliapi.c):
Although the interpreter is not a simple component, it has a very small set of exported APIs. These APIs are primarily for the core driver
.

 It
includ
es
 functions to initialize the Interpreter component, load/unload description blocks and access to
the
ACPI N
ame
S
pace
 (
e.g.
AMLIInitialize, AMLITerminate, AMLILoadDDB, AMLIUnloadDDB, AMLIGetNameSpaceObject, AMLIEvalNameSpaceObject
)
 and macros to navigate
 in the ACPI N
ame
S
pace (e.g.
NSGETPARENT, NSGET
FIRST
CHILD, NSGETPREVSIBLING, NSGETNEXTSIBLING
)
.
 Later on, there may also be APIs (i.e. hooks) for the HCTs which allow the test component to control the level of parse error checking and reporting.

Parser Common Code (parseaml.c): This component contains parser code common to all AML instructions. For example, it contains the main parser entry point (a function to parse an
AML instruction including all nested levels)
. It also contains a gene
ric argument data parser
 which parses
and assembles
all different argument data
 types
for the AML instruction
before
it
is executed.

Named Objects Parser Code
 (
namedobj.c): This component
 parses all
“N
amed
O
bject
C
reator
”
 instructions and creates
corresponding
name space objects.

“Named Object Creator
” instructions includes
Alias, Name, Scope, Device, Field,
IndexField, Method, Mutex, Operation
Region, Power
Resource
, Processor, Thermal
 etc.

Virtual Machine Operators and Function Operator functions
 (
amlop
.c): This component parses
and
executes
all the
Virtual Machine Operator and Function Operator instructions
 such as

Acquire
,
Add,
And,
Break, Concatenate, CondRefStore, CreateField, Debug, Decrement,
Divide
,
Equal, Fatal, FromBCD, If, IfElse, Increment, Index, L
a
nd,
 L
e
qual,
 L
g
reater,
 LGreaterEqual, L
l
ess,
 LLessEqual, L
Not, LNotEqual, Load, L
o
r,
 Match, Multiply, N
a
nd,
 N
o
r,
 Not, Notify, ObjectType, One, Ones, Or, Release, ReturnValue, Revision, ShiftLeft, ShiftRight, Signal, Sleep, Stall, Store, StoreRef, Subtract, ToBCD, Unload, Wait, While, X
or
.

String utility functions (string.c): Since the AML Interpreter is part of the ACPI core driver which is a WDM driver, it cannot make any calls to VxD helper functions (i.e. VMM calls)
. T
he run-time string functions pro
vided by NTKERN is
also
very limited.
 Because of all these and the fact that the Interpreter does very intensive string manipulation during parsing
, it becomes apparent that a generic string fu
nction library is needed. The string library includes fundamental string functions such as
StrLen, StrCpy, StrCat, StrCmp, StrChr and StrRChr
.

List Management functions (list.c): Although NT provides some list management macros, they ar
e not suitable to manage the
Name

Space
 Object structure
because it involves two doubly-linked list in
 the same node. This component
 provide
s the suitable list management functions including

ListRemoveEntry, ListRemoveHead, ListRemoveTail,
ListInsertHead, ListInsertTail
.

Name Space Manipulation functions (acpins.c): This component
provide
s all the Name Space object manipulation functions including
CreateNa
meSpaceObject
and
 FreeNameSpaceObjects
. Note that this component does not explicitly provide Name Space navigation functions. Instead, the Name Space navigation functions are provided as a set of macros
as part of the exported Interpreter APIs
.

AML Debugger functions (debugger.c):
This component
only exists in the debug version of the Interpreter. It
provides all the AML debugger functions. This includes dumping the content of the
entire ACPI Name Space or a speci
fied Name Space object, unassembling AML code, setting
/clearing
/
disabling/enabling/
listing
 break point
s
 in the AML code, single stepping the AML code.
 The AML debugger is not a standalone component. It complements the kernel debugger (wdeb386.exe), therefore, it does not duplicate any functions that can be found in the kernel debugger.

Exported
 Data Structure Descriptions

Generic
Circular
Doubly-Linked List
 (LIST)

typedef struct _List

{

 struct _List *plistPrev;

 struct _List *plistNext;

} LIST, *PLIST, **PPLIST;

This
structure is used in various structure
s
 that
require double link lists. For example, it is used in both the DDBOBJ structure as well as
the Name Space object structure which will be described more fully in their respective sections.

Device Description Block Object (DDBOBJ)

#define SIG_DDBOBJ 0x4f424444 //"DDBO"

typedef struct _DDBObj

{

 LIST list;
//NOTE: list must be first in structure

 ULONG dwSig;

 PDSDT pDSDT;

} DDBOBJ, *PDDBOBJ, **PPDDBOBJ;

Whenever AMLILoadDDB is called with a
DSDT, a
new DDBOBJ structure is created. The purpose of the DDBOBJ is to track ownership of Name Space
o
bjects so that if a
dynamic
DDB is unloaded
, all Name Space objects
 owned by the DDB are destroyed as well. All DDB objects are linked in a doubly-link list. A new DDB is always appended at the tail of the list.

Name Space Object (NSOBJ)

#define SIG_NSOBJ 0x5f534e5f //"_NS_"

typedef struct _NSObj

{

 LIST
 list;
//NOTE: list must be first in structure

 struct _NSObj *pnsParent;

 struct _NSObj *pns
First
Child
;

 ULONG dwSig;

 PDDBOBJ pddbOwner;

 ULONG dwNameSeg;

 OBJDATA ObjData;

} NSOBJ, *PNSOBJ, **PPNSOBJ;

The ACPI Name Space is a hierarchical space of objects (i.e. a tree of objects). Each object must have a parent (except for the
“root
” object) and optionally one or more children. Since the number of children of an object can vary, all children of an object are link
ed into a circular double-link list.
 The parent object only points to the first child object in the list. A Name Space object can be of various type
s.
T
he
 ObjData field in the structure determines the type of object and the associated data. More detail description of the data types is in the following section.

Name Space Object Data (OBJDATA)

#define DATATYPE_UNKNOWN 0

#define DATATYPE_UNUSABLE 1 //???

#define DATATYPE_INTEGER 2

#define DATATYPE_BUFFER 3

#define DATATYPE_STRING 4

#define DATATYPE_FIELD 5 //???

#define DATATYPE_VIRTUAL 6 //???Operation Region???

#define DATATYPE_DATA 7

#define DATATYPE_CODE 8 //???

#define DATATYPE_METHOD 9

#define DATATYPE_DEVICE 10 //no data???

#define DATATYPE_POWERRES 11

#define DATATYPE_THERMALZONE 12

#define DATATYPE_ALIAS 100

typedef struct _ObjData

{

 ULONG dwDataType;

 ULONG dwEvalResult;

ULONG dwDataLen;

 union

 {

 ULONG

dwData;

 PUCHAR pbData;

 } Data;

} OBJDATA, *POBJDATA;

As mentioned in the above section, a Name Space object can be one of several types. The data types are defined above. These types are loosely related to the type
information
returned by the
AML instruction
“
ObjectType
”
.
 Some of the object type
s
 requir
e buffer of various lengths to hold the associated data. Therefore, an indirect data pointer (i.e.
Data.
pbData
) is used to point to the extra
data buffer with its length stored in
dwDataLen
. Some of the data types such as
“Integer
”
or object data structure
s
 which
have
a length of four or less can store their data directly
into Data.dwData and have
 no associated data buffer.
In these cases, dwDataLen is always zero indicating no associated buffer.
 Als
o, some of the data types can be evaluated (e.g. a control method). The result of such evaluation
is
 stored in
the
dw
EvalResult
 field
.

Various Named Object Structures

These are the named objects defined in the AML language in the DDB. After the corresponding object definition instruction is parsed, the associated attributes of the object is stored in these structures.
 Note that if the object structure has a length of four or less, the entire object structure is stored in the Data.dwData field
of the OBJDATA structure
directly so that no buffer allocation is necessary.

typedef struct _FieldObj

{

 UCHAR bFieldFlags;

 UCHAR bStartBitPos;

 UCHAR bNumBits;

} FIELDOBJ, *PFIELDOBJ;

The F
ield objects describe various bit fields of the parent object. Each field de
scribes the starting bit position and the bit length relative to the parent object.

typedef struct _IndexFieldObj

{

 USHORT wLen;

 PNSOBJ

pns
Index;

 PNSOBJ
 pns
Data;

} INDEXFIELDOBJ, *PINDEXFIELDOBJ;

The I
ndex
F
ield object describes a data object which is accessed via Index/Data style of reference
.
 It describes the
length of the indexed object block, the
Name Space Objects
 of the Index and Data access ports.

typedef struct _MethodObj

{

 UCHAR bMethodFlags;

 UCHAR abCodeBuff[ANYSIZE_ARRAY];

} METHODOBJ, *PMETHODOBJ;

The M
ethod object contains
the code for the control method as well as the
b
MethodFlags
 which specifies
 information such as the number of arguments to the control method.

t
ypedef
struct _Mutex
Obj

{

 UCHAR bLevel
;

}
 MUTEXOBJ
, *PMUTEXOBJ;

The Mutex object describes
the
 level
in the bLevel field.

typedef struct _OpRegionObj

{

 UCHAR bRegionSpace;

 ULONG dwOffset;

 ULONG dwLen;

} OPREGIONOBJ, *POPREGIONOBJ;

The Operation Region object
 describes an operation reg
ion in a given region space (e.g. System Memory, System I/O, PCI Config., Embedded Control) with the given
offset
in the region space
and the length of the region.

typedef struct _PowerResObj

{

 NAMESEG dwSystemLevel;

 UCHAR bResOrder;

} POWERRES, *PPOWERRES;

The Power

Resource
object describes the power resource and its associated system level (e.g. S0, S1, S2, S3 etc.) and the resource order.

typedef struct _ProcessorObj

{

 UCHAR bProcessorFlags;

 UCHAR bApicID;

 ULONG dwPBlk;

 ULONG dwPBlkLen;

} PROCESSOROBJ, *PPROCESSOROBJ;

The Processor object describes the processor
with

the associated
processor flags
, Apic ID, PBlk and PBlk length.

typedef struct _ThermalObj

{

 UCHAR bTBD; //???

} THERMALOBJ, *PTHERMAL;

TBD in v0.72 spec.

Internal Data Structure Descriptions

AML Term
Table
Entry (AMLTERM)

// pszArgTypes characters

#define ARGTYPE_NAME 'N' //namestr

#define ARGTYPE_DATA 'D'

#define ARGTYPE_KEYWORD 'K'

// dwfOpcode flags

#define OF_VARIABLE_LIST 0x00000001

typedef NTSTATUS (LOCAL *PFNOP)(PDDBOBJ, PUCHAR *, PUCHAR, POBJDATA);

typedef struct _amlterm

{

 ULONG dwOpcode;

 PCHAR pszArgTypes;

 ULONG dwfOpcode;

 PFNOP pfnOpcode;

} AMLTERM, *PAMLTERM;

The AMLTERM structure is used to describe the information about an AML instruction.
The dwOpcode field
contains the opcode for the instruction
.

T
he
pszArgTypes
 field contains a string of characters
 each of which indicates the type of expected argument
. Therefore, the number of arguments for the instruction is implicitly indicated by the string length. For example, the
“
Alias
” instruction needs two arguments: the one must be a
“
namestr
”
and

the second one is
“
data
” and the
psz
ArgTypes
 string
is
“ND
”. This string is used by the generic argument parser to parse and assemble various argument types
for the instruction.

The
d
wfOpcode

field
contains
 flags for the instruction. For example,
OF_VARIABLE_LIST
 indicates whether the instruction has a variable list part. Finally, the pfnOpcode field contains the function pointer to handle the instruction.

Opcode Map
 Table Entry (OPCODEMAP)

typedef struct _opcodemap

{

 ULONG dwOpcode;

 PAMLTERM pterm;

} OPCODEMAP, *POPCODEMAP;

For fast
first level
parsing, a lookup table of 256 entries of
AMLTERM
pointer
is built
, one
f
or
 each possible opcode. For invalid opcodes in the table, a NULL pointer is stored.
 For those two-byte instructions (i.e. the ones with a prefix code of 0x5b), the number of instructions in this category is just 20+. It may be too wasteful to build another 256-entry table. Instead,
a table of
20+ entries of OPCODEMAP is built. When a prefixed instruction is encountered, a linear search in this table is required to locate the corresponding AMLTERM entry.

Detailed Component Descriptions

Exported
AMLI
APIs

AMLIEvalNameSpaceObject

NTSTATUS AMLIEvalNameSpaceObject(PNSOBJ pns, POBJDATA pdata)

Evaluate a name space object.

This function evaluate a given object. If the given object is a control method, it will execute it. If the given object is a data object, the data value is returned in a given buffer.

Defined in: F:/P/PNP/VXD/ACPI/AMLI/AMLIAPI.C

Return Value

SUCCESS - Returns STATUS_SUCCESS.

FAILURE - Returns NT status code.

Parameters

pns

Pointer to the object to be evaluated.

pdata

Pointer to the data object to hold the result of evaluation. The type of data returned depends on the type of object evaluated. pdata->dwDataLen must be initialized to zero unless there is a buffer attached to pdata->pbDataBuff in which case pdata->dwDataLen must be initialize to indicate the size of the buffer. This procedure will modify pdata->dwDataLen to reflect the real data length copied to the buffer. Note that if the expected data is of OBJTYPE_INTEGER, no buffer is required. Instead, pdata->dwDataLen is initialized to zero. Then this procedure will return the integer in pdata->dwDataValue and update the pdata->dwDataLen to show the data size (1 for BYTE, 2 for WORD, 4 for DWORD).

AMLIGetNameSpaceObject

NTSTATUS AMLIGetNameSpaceObject(PCHAR pszObjPath, PPNSOBJ ppns)

Find an object in the ACPI name space.

This function accepts an absolute object path as well as a relative object path in the form of an ASCIIZ string. It will search through the name space in the appropriate scope for the given object path and returns the object pointer when it is found.

Defined in: F:/P/PNP/VXD/ACPI/AMLI/AMLIAPI.C

Return Value

SUCCESS - Returns STATUS_SUCCESS.

FAILURE - Returns NT status code.

Parameters

pszObjPath

Pointer to an ASCIIZ string specifying the object path.

ppns

Pointer to a variable to hold the object point.

AMLIInitialize

NTSTATUS AMLIInitialize(void)

AML Interpreter initialization.

This function must be called before any AML interpreter functions can be called. This function will typically allocate and initialize global resources, create the ACPI name space etc. It is typically called in the initialization of the ACPI core driver.

Defined in: F:/P/PNP/VXD/ACPI/AMLI/AMLIAPI.C

Return Value

SUCCESS - Returns STATUS_SUCCESS.

FAILURE - Returns NT status code.

AMLILoadDDB

NTSTATUS AMLILoadDDB(PDSDT pDSDT, PPDDBOBJ ppddbObj)

Load Differentiated Definition Block.

This function loads and parses the given Differentiated System Description Table as well as any dynamic Differentiated Definition Block. It will parse the DDB and populate the ACPI name space accordingly.

Defined in: F:/P/PNP/VXD/ACPI/AMLI/AMLIAPI.C

Return Value

SUCCESS - Returns STATUS_SUCCESS.

FAILURE - Returns NT status code if encountering parse error.

Parameters

pDSDT

Pointer to a DSDT block.

ppddbObj

Pointer to the variable that will receive the DDBOBJ pointer.

Developer Notes

The whole DDB will be unloaded even though the parse error occurs towards the end of the DDB block. In other words, there will not be partial DDB loaded.

AMLITerminate

VOID AMLITerminate(void)

AML Interpreter termination.

This function is called to clean up all the global resources used by the AML interpreter.

Defined in: F:/P/PNP/VXD/ACPI/AMLI/AMLIAPI.C

Return Value

None.

AMLIUnloadDDB

VOID AMLIUnloadDDB(PDDBOBJ pddbObj)

Unload the Differentiated Definition Block.

This function is called to unload the given dynamic DDB object and
clean it out of the name space. Note that this function does not differentiate between a DSDT from a dynamic DDB, so it is the caller's responsibility to not freeing the DSDT accidentally.

Defined in: F:/P/PNP/VXD/ACPI/AMLI/AMLIAPI.C

Return Value

None.

Parameters

pddbObj

Pointer to the DDB object returned by AMLILoadDDB.

Parser Common Code

NTSTATUS LOCAL
ParseAML
(PDDBOBJ pddb, PUCHAR *ppbOp, BOOL fExOp, POBJDATA pArgs)�
This function parses and executes one
complete AML instruction. This means that it will
parse and
execute all the nested instructions as well.

p
ddb
is to indicate the DDB owner
of the instruction
so that any new Name Space objects created as a result of the AML instruction can
also
be associated with the
same
owner.
p
pbOp

is
the pointer to the
“instruction pointer
”. After the AML instruction is executed,
*ppbOp
 will be updated to point to the next instruction.
fExOp
 indicates if an instruction prefix byte has been encountered so that the Extended Opcode Map should be used to look up the instruction.

pArgs
 points to
arguments array
provided by the caller so that this function can be re-entered.
 The argument array is empty storage space that this function will fill in by calling the generic argument parser. This function first look up the opcode pointed by
*ppbOp
 in appropriate opcode table to find the corresponding AMLTERM structure. It then passes the updated instruction pointer and the AMLTERM pointer to the generic argument parser which parses the arguments and fills the argument array. Then it calls the function indicated in the AMLTERM structure to parse and execute the instruction passing along the argument array and other information.
 The parse function for the instruction may recursively call this function if nested instructions are possible for that instruction.

NTSTATUS LOCAL ParseAMLEx(PDDBOBJ pddb, PUCHAR *ppbOp, PUCHAR pbOpNext, POBJDATA pArgs)
�This function is
the parse function for the extended instruction
prefix
opcode. It is
very similar to ParseAML except
that
it is called when an extended opcode prefix has been encountered
. It will call ParseAML with the fExOp argument set to
TRUE
.

PAMLTERM LOCAL FindOpcodeTerm(ULONG dwOp, POPCODEMAP pOpTable)�This function is called to look up the exten
ded prefix opcode from a given opcode map table. If the opcode is found, the corresponding AMLTERM pointer is returned, otherwise NULL is returned.

NTSTATUS LOCAL ParseArgs(PUCHAR *ppbOp, PAMLTERM pterm, POBJDATA pArgs)�This function determines the number of arguments by computing the string length of the pszArgTypes field in the given
pterm. Then for each argument with its type, the appropriate argument parse function is called.

Named Objects Parser Code

The functions in this module are the parse functions for the Named Object Creator instructions. The functions have the
following
format:

NTSTATUS
 LOCAL (*PFNOP)(PDDBOBJ
 pddb
, PUCHAR *p
pbOp, PU
CHAR pbOpNext, POBJDATA pArgs);

Since there are too many functions in this component, the detail implementation of each function is not included here.

Virtual Machine Operators and Function Operator functions

The functions in this module are the parse functions for the
Virtual Machine Operat
ors and Function Operator
 instructions. The functions have the
following
format:

NTSTATUS
 LOCAL (*PFNOP)(PDDBOBJ
 pddb
, PUCHAR *p
pbOp, PU
CHAR pbOpNext, POBJDATA pArgs);

Since there are too many functions in this component, the detail implementation of each function is not included here.

String utility functions

ULONG LOCAL StrLen(PSZ psz)
�This function computes the string length of a given ASCIIZ string.

PSZ LOCAL StrCpy(PSZ pszDst, PSZ pszSrc, ULONG n)�This function copies the source string to the destination string. If n is -1, the entire source string is copied. Otherwise, only
n
 characters or the length of the source string whichever
 is shorter is copied.

PSZ LOCAL StrCat(PSZ pszDst, PSZ pszSrc, ULONG n)�This function concatenates the source string to the end of the destination string.
If n is -1, the entire source string is
concatenated
. Otherwise, only
n
 characters or the length of the source string whichever
 is shorter is concatenated
.

LONG LOCAL StrCmp(PSZ psz1, PSZ psz2, ULONG n, BOOL fMatchCase)�This function compares the two given strings. If string 1 is greater than string 2, positive value is returned. If string 1 is less than string 2, a negative value is returned.
If the two strings
are equal, zero is returned.
If n is -1, the
two
entire
string
s

are

compared
. Otherwise, only
the first
n
 characters
of each string are compared
.

f
MatchCase
 indicates if the compare should match exact case or should be case insensitive.

PSZ LOCAL StrChr(PSZ pszStr, CHAR c)�This function searches the given string for the given character. If found, the pointer to the found character is returned. Otherwise, NULL is returned.

PSZ LOCAL StrRChr(PSZ pszStr, CHAR c)�This function is similar to
StrChr
 except that it searches the string in reverse direction starting from the end of the string.

List Management functions

VOID LOCAL ListRemoveEntry(PLIST plist, PPLIST pplistHead)
�This function removes the given entry from a
ci
r
cular doubly-linked list
. If the entry removed is at the head of the list,
*pplistHead
will be updated appropriately.

PLIST LOCAL ListRemoveHead(PPLIST pplistHead)�This function removes the first entry from a circular doubly-linked list and update
s
 the
*pplistHead
 appropriately.
 The removed entry is returned.

PLIST LOCAL ListRemoveTail(PPLIST pplistHead)�This function removes the last entry from a circular doubly-linked list. If the
removed entry is the only entry in the list,
*pplistHead
 is cleared. The removed entry is returned.

VOID LOCAL ListInsertHead(
PLIST plist, PPLIST pplistHead)�This function inserts the given entry to the head of a circular doubly-linked list and updates
 the
*pplistHead
 appropriately.

VOID LOCAL ListInsertTail(PLIST plist, PPLIST pplistHead)�This function inserts the given entry to the tail of a circular doubly-linked list and updates the
*pplistHead
 appropriately.

Name Space Manipulation functions

NTSTATUS LOCAL CreateNameSpaceObject(PSZ pszName, PPNSOBJ ppns, PDDBOBJ pddb)�This function first makes sure the given object path does
not already exist in the ACPI Name Space. If the object already exists, an error is returned. Then it examines the path to determine what scope the object
should be
 created under and look for the parent scope.
 If the parent scope is not found, an error is returned, otherwise, a new object is created under the parent scope. The new object created is marked owned by the given DDB.

VOID LOCAL AddNameSpaceChild(PNSOBJ pnsParent, PNSOBJ pnsChild)�This functio
n links
 the given child object to the parent object.

VOID LOCAL FreeNameSpaceObjects(PNSOBJ pnsObj, PDDBOBJ pddb)�This function walks the given Name Space subtree and free all the objects which are owned by the given DDB. If pddb is NULL, all objects are free regardless of ownership. Note that if the parent object is free, all children objects are also free regardless if some of the children are not owned by
the same DDB (i.e. there is no possibility of orphans).

AML Debugger functions

NTSTATUS LOCAL
DBG
DumpNameSpaceObject(PSZ pszName
, ULONG dwfDump
)
�This function dumps the content of the given Name Space
 object. If pszName is NULL,
“root
” is implied. If the
DUMPF_RECURSIVE
 flag
in
dwfDump

is set
, the
entire
subtree under
pszName is also dumped.

NTSTATUS LOCAL DBGUnassembleAML(PUCHAR *ppbOp)�This function unassembles an AML instruction pointed to by
*
*
ppbOp
.
*ppbOp is updated to point to the next instruction. This function will unassembles all nested i
nstruction with
in the top instruction. This function calls the ParseAML function with a global flag
DBGF_UNASSEMBLE
 set. When this flag is set, the ParseAML function will not execute the instruction. Instead, it will
 parse the arguments and print the instruction in ASL statement form.

VOID LOCAL DBGListBreakPoints(VOID)�This function lists all the break points set, their addresses and the break point status (i.e. enabled/disabled).

NTSTATUS
LOCAL DBGSetBreakPoint(PUCHAR *pbOp
, PUCHAR pbBPHandle
)�This functions sets

and enables
a
new
break point
at the given AML address and returns the break point handle in *pbBPHandle. If the break point table is full, an error is returned.

NTSTATUS LOCAL DBGClearBreakPoint(UCHAR bBPHandle)�This function clears the break point associated with the given break point handle.

NTSTATUS LOCAL DBGEnableBreakPoint(UCHAR bBPHandle)�This function enables the break point associated with the given break point handle.

NTSTATUS LOCAL DBGDisableBreakPoint(UCHAR bBPHandle)
�The function disables the break point associated with the given break point handle.

NTSTATUS LOCAL DBGSetSingleStepMode(BOOL fSingleStep)�This function sets the single step mode so that the control will go back to the debugger when an AML instruction
is executed. Note that if the AML instruction executed has nested instructions, the nested instructions will not be executed when single step mode is active.

