ACPI Source Language (ASL) Compiler Design Architecture

The ASL Compiler consists of the following components organized in layers:

Generic Line Stream Layer (line.c): This layer abstracts the source file into a stream of source lines. It provides buffering for a line so that if any syntax or semantics error occurs, the source line can be printed and the error pinpointed.

ASL Scanner Layer (scan
asl
.c): This layer provides the ASL specific scanner functions for the Tokenizer layer to scan various ASL tokens (e.g. Symbols, Strings, Numbers, Identifiers and Characters).

Generic Tokenizer Layer (token.c): This layer is a generic token parsing engine which interacts with the Line Stream layer and calls the functions provided by the ASL specific Scanner layer to tokenize ASL tokens.

ASL Argument Data Parser Layer (parsearg.c): This layer parses the corresponding data arguments of an ASL statement according to the given ASLTERM info.

ASL
Parser Layer
 (parseasl.c): This layer parses the individual ASL statements. Once a statement keyword is recognized, the ASLTERM table is searched for argument information. Then the ASLTERM info. is passed to the ASL Argument Data Parser layer to parse all the arguments for the ASL statement. After all the arguments are parsed and collected, the semantics are checked. If the statement is a Named Object Creator, the corresponding Name Space object is created. Then, the code generator layer for the statement is called. This layer recursively calls itself if the ASL statement allows nested statements. At the end of the recursion call, it computes the package length for the code generated.

AML Code Generator Layer (gencode.c): This layer generates the code for the statement and stores the code in the associated Name Space object.

List Management functions (list.c):
The
siblings of
N
ame
S
pace objects
 are linked
 together in a circular doubly-linked list.
This component
 provide
s the
list management functions including

ListRemoveEntry, ListRemoveHead, ListRemoveTail,
ListInsertHead, ListInsertTail
.

Name Space Manipulation functions (acpins.c): This component
provide
s all the Name Space object manipulation functions including
CreateNa
meSpaceObject
and
 FreeNameSpaceObjects
. Note that this component does not explicitly provide Name Space navigation functions. Instead, the Name Space navigation functions are provided as a set of macros
.

Generic Command Line Options Parser (options.c): This component parses the compiler command line options and sets up the compiler environment appropriately.

Detailed Data Structure Descriptions

Line Stream Structure (LINE)

#define MAX_LINE_LEN 255

#define LINEF_LONGLINE 0x0001

typedef struct line_s

{

 FILE *pfileSrc;

 WORD wfLine;

 WORD wLineNum;

 WORD wLinePos;

 WORD wLineLen;

 char szLineBuff[MAX_LINE_LEN + 1];

} LINE, *PLINE;

When a source file is opened, a line structure is created and associated with the opened file. The pfileSrc field is to store the opened file handle. The wfLine flags indicates the status of the line (e.g. LINEF_LONGLINE indicates the line in szLineBuff is only part of a long line). The wLineNum field keeps track of the line number of the line read. The wLinePos keeps track of the position in szLineBuff for the next unread character. The wLineLen field keeps track of the length of the current line in szLineBuff.

Token Structure (TOKEN)

//Token flags values

#define TOKF_NOIGNORESPACE 0x0001

typedef int (*PFNTOKEN)(int, PTOKEN);

typedef struct token_s

{

 PLINE pline;

 PFNTOKEN *papfnToken;

 WORD wfToken;

 int iTokenType;

 LONG lTokenValue;

 WORD wTokenLine;

 WORD wTokenPos;

 WORD wErrLine;

 WORD wErrPos;

 WORD wTokenLen;

 char szToken[MAX_TOKEN_LEN + 1];

 #ifdef TUNE

 WORD *pawcTokenType;

 #endif

} TOKEN, *PTOKEN;

The pline field is to store the associated Line Stream structure. The papfnToken field stores the language specific (i.e. ASL in this case) table of scanner functions. The tokenizer layer will call each scanner function to scan an ASL term until one of the functions claims the token is its type. The wfToken flags is currently unused in the ASL compiler. The iTokenType field indicates the type of token scanned. The lTokenValue field stores the token value. If the token type is a number, the token value is the value of the number. If the token is an identifier, then the token value is the ordinal of the identifier etc. The wTokenLine field stores the line number of the scanned token. The wTokenPos field stores the column position of the scanned token in the line. The wErrLine and wErrPos fields store the line number and column position of the error
if a syntax error is found. The wTokenLen field indicates the length of the token string. The szToken field stores the token string. The pawcTokenType field holds an array of token type counters for tuning purposes.

Generic Circular Doubly-Linked List (LIST)

typedef struct _List

{

 struct _List *plistPrev;

 struct _List *plistNext;

} LIST, *PLIST, **PPLIST;

This structure is used in the Name Space object structure to link all the siblings together in a circular link list.

Name Space Object (NSOBJ)

#define SIG_NSOBJ 0x5f534e5f //"_NS_"

typedef struct _NSObj

{

 LIST list; //NOTE: list must be first in structure

 struct _NSObj *pnsParent;

 struct _NSObj *pnsFirstChild;

 ULONG dwSig;

 ULONG dwNameSeg;

 PUCHAR pbFixedCode;

} NSOBJ, *PNSOBJ, **PPNSOBJ;

The ACPI Name Space is a hierarchical space of objects (i.e. a tree of objects). Each object must have a parent (except for the “root” object) and optionally one or more children. Since the number of children of an object can vary, all children of an object are linked into a circular double-link list. The parent object only points to the first child object in the list. Each name space object contains some generated AML code. Each ASL statement consists of a fixed part (i.e. arguments to the instruction) and a variable part (i.e. nested instructions). The code generated for the fixed part is stored in a buffer pointed to by the pbFixedCode field. The variable part will be stored in the corresponding children nodes as fixed code of each nested instructions.

Name Space Object Data (OBJDATA)

#define DATATYPE_UNKNOWN 0

#
define DATATYPE_INTEGER 1

#
define DATATYPE_BUFFER 2

#
define DATATYPE_STRING 3

typedef struct _ObjData

{

 ULONG dwDataType;

ULONG dwDataLen;

 union

 {

 ULONG

dwData;

 PUCHAR pbData;

 } Data;

} OBJDATA, *POBJDATA;

As mentioned in the above section, a Name Space object can be one of several types. The data types are defined above.
Some of the object type
s
 requir
e buffer of various lengths to hold the associated data. Therefore, an indirect data pointer (i.e.
Data.
pbData
) is used to point to the extra
data buffer with its length stored in
dwDataLen
.
The
data type
DATATYPE_INTEGER

can store
its
 data directly
into Data.dwData and have
 no associated data buffer.
In these cases, dwDataLen
indicates the number of bytes used in Data.dwData (1 for BYTE, 2 for WORD, 4 for DWORD)
.

AML Term Table Entry (AMLTERM)

// pszArgTypes characters

#define ARGTYPE_NAME 'N' //namestr

#define ARGTYPE_DATA 'D'

#define ARGTYPE_KEYWORD 'K'

// dwfOpcode flags

#define OF_VARIABLE_LIST 0x00000001

typedef NTSTATUS (LOCAL *PFNOP)(POBJDATA);

typedef struct _amlterm

{

 ULONG dwOpcode;

 ULONG dw
Optional
Arg
s;

 PCHAR pszArgTypes;

 ULONG dwfOpcode;

 PFNOP pfnOpcode;

} AMLTERM, *PAMLTERM;

The AMLTERM structure is used to describe the information about an AML instruction. The dwOpcode field contains the opcode for the instruction.
The dw
OptionalArgs
 field
 is a bit vector indicating if any of the arguments are required or optional. In the case of optional argum
ents, the
compiler will provide
appropriate
default value
s
.
The pszArgTypes field contains a string of characters each of which indicates the type of expected argument. Therefore, the number of arguments for the instruction is implicitly indicated by the string length. For example, the “Alias” instruction needs two arguments: the one must be a “namestr” and the second one is “data” and the pszArgTypes string is “ND”. This string is used by the generic argument parser to parse and assemble various argument types for the instruction. The dwfOpcode field contains flags for the instruction. For example, OF_VARIABLE_LIST indicates whether the instruction has a variable list part. Finally, the pfnOpcode field contains the function pointer to handle the code generation of the AML term. There will be a AMLTERM structure associated with each ASL term identifier. Therefore, when an AML term identifier is parsed a table is used to look up the corresponding AMLTERM structure so that the argument for the term can be parsed and the code generator function for the term can be called.

Program Information Structure (PROGINFO)

#define DEF_SWITCHCHARS "/-"

#define DEF_SEPARATORS ":="

typedef struct proginfo_s

{

 char *pszSwitchChars;
/
/if null, DEF_SWITCHCHARS is used

 char *pszSeparators;
//if null, DEF_SEPARATORS is used

 char *pszProgPath;
//ParseProgInfo set this ptr to prog. path

 char *pszProgName;
//ParseProgInfo set this ptr to prog. name

} PROGINFO
, *PPROGINFO
;

The pszSwitchChars field
specifies
 the option switch lead character, by default it is either
‘-
’ or
‘
/
’.

The pszSeparators field specifies the separator character
used
between the option name and
the option data. By default, the separator character is either
‘:
’ or
‘=
’.

Option
 Type Structure
 (OPTIONTYPE)

typedef int (*PFNOPTION
)(char **, P
OPTION
TYPE);

//
Option
 types

#define O
T_STRING 1

#define O
T_NUM 2

#define O
T_ENABLE 3

#define O
T_DISABLE 4

#define O
T_ACTION 5

//Parse flags

#define PF_NOI 0x0001
//No-Ignore-Case

#define PF_SEPARATOR 0x0002
//parse for separator

typedef
struct
_
option
type

{

 char *pszOption
ID;

//
option
 ID string

 unsigned uOption
Type;

//see
option
 types defined above

 unsigned uParseFlags;
//see parse flags defined above

 void *pv
Option
Data;

//
OT
_STRING: (char **)
-
ptr to string ptr

//OT
_NUM: (int *)
-
ptr to integer number

//OT
_ENABLE: (unsigned *)
-
ptr to flags

//OT
_DISABLE: (unsigned *)
-
ptr to flags

//OT
_ACTION: ptr to function

 u
nsigned uOption
Param;

//OT
_STRING: none

//
OT
_NUM: base

//OT
_ENABLE: flag bit mask

//OT
_DISABLE: flag bit mask

//OT
_ACTION: none

 PFNARG pfn
Option
Verify;
//pointer to
option
 verification
f
unc
.

 //this will be ignored for OT
_ACTION

};

Generic Line Stream Layer

PLINE EXPORT OpenLine(FILE *pfileSrc)�This function opens the source file, allocates and initialize the Line Stream structure.

VOID EXPORT CloseLine(PLINE pline)�This function closes the Line Stream and deallocate the Line Stream structure.

int EXPORT LineGetC(PLINE pline)�This function returns the next unread character from the Line Stream. If the line is empty, a new line is read from the source file into the line buffer and the line number is updated.

int EXPORT LineUnGetC(int c
, PLINE pline)�This function ungets a character back to the Line Stream.

VOID EXPORT LineFlush(PLINE pline)�This function flushes the current line in the Line Stream.

ASL Scanner Layer

PTOKEN EXPORT OpenScan(FILE *pfileSrc)�This function calls OpenToken to create the token stream. The created token stream structure is returned.

VOID EXPORT CloseScan(PTOKEN ptoken)�This function calls CloseToken to close and deallocate the token stream.

int LOCAL ScanSym(int c, PTOKEN ptoken)�
This function determines if the given character c is part of a symbol
 token. If
not, it returns
TOKERR_NO_MATCH
, otherwise, it will scan as many character
s
 as neces
sary to assemble a symbol token and fill in the token structure with the symbol ordinal, token string, token length etc.

int LOCAL ScanSpace
(int c, PTO
KEN ptoken)�This function determines if the given character c is part of a space token. If not, it returns TOKERR_NO_MATCH, otherwise, it will scan as many white space character as necessary and returns a NULL token (i.e.
TOKTYPE_NULL
).

int LOCAL ScanID(int c, PTOKEN ptoken)�This function determines if the given character c is part of an identifier token. If not, it returns TOKERR_NO_MATCH, otherwise, it will scan as many characters
 as necessary to assemble an identifier token. Then, it looks the identifier up in the reserved identif
i
er table
. If one is found, the associated ID is returned, else
it is a user defined identif
i
er and
ID_USER is returned
.

int LOCAL ScanNum(int c, PTOKEN ptoken)�This function determines if the given character c is part of a number token. If not, it returns TOKERR_NO_MATCH, otherwise, it will scan as many characters as necessary to assemble a number token. This function can handle decimal numbers a
s well as hexadecimal numbers. This function also converts the number token into binary form and saves it in as the token value.

int LOCAL ScanString(int c, PTOKEN ptoken)�This function determines if the given character c is part of a string token. If not, it returns TOKERR_NO_MATCH, otherwise, it will scan as many characters as necessary to assemble a string token. This function can handle escaped characters with the string (i.e. back-slash characters).

int LOCAL ScanChar(int c, PTOKEN ptoken)�This function determines if the given character c is part of a character token. If not, it returns TOKERR_NO_MATCH, otherwise, it will scan as many characters as necessary to assemble a character token and save the character as the token value. This function can handle escaped character (i.e. back-slash character).

int LOCAL ProcessInLineComment(PTOKEN ptoken)
�This function flushes the rest of the line
to get rid of the in-line comment.

int LOCAL LookupSym(PTOKEN ptoken, int iTable)�This function determines if a symbol token may possibly be a multi-charact
er symbol. If so, it tries to get another character from the Line Stream to determine the real symbol. If the next character is not a symbol character, it is pushed back to the Line Stream (i.e.
LineUnGetC
).

int LOCAL LookupID(PTOKEN ptoken)�This function looks up the scanned identifier token in the reserved identifier table. If the token is found, the corresponding identifier ID
is returned, o
therwise, ID_USER is
returned
.

int LOCAL GetEscapedChar(PLINE pline)�This function is called when a back-slash character is read in a string or
a
character token.
 It will scan as many character as necessary to determined the real escaped character and return it.

Generic Tokenizer Layer

PTOKEN EXPORT OpenToken(FILE *pfileSrc, PFNTOKEN *apfnToken)�This function creates
and allocates
and initializes
the Token Stream
. It also calls OpenLine to create the associated Line Stream.
 The afpnToken argument is the array of language specific scanner function pointers for this Token Stream.

VOID EXPORT CloseToken(PTOKEN ptoken)�This function closes the Token Stream and deallocates the structure. It also calls CloseLine to destroy the
associated
Line Stream.

int EXPORT GetToken(PTOKEN ptoken)�This function
gets the first character of the token and
calls the language specific scanner function
s one at a time to determine
the

token type by the first character of the token. If a scanner function claims the character, it will scan as many character as necessary to assemble the particular token.

int EXPORT MatchToken(PTOKEN ptoken, WORD wf, int iTokenType, LONG lTokenValue, PVOID pvRetValue)�This function calls GetToken
 to get a token and tries to match the token type with iTokenType
. If wf flags does not have the MTF_MATCHANY flag set, it will also try to match the scanned token value with lTokenValue. If
either
the toke
n is not the same
type
as the expected
or the
 token value is not
the same
as expected
,
the line number and position
 of the error token is
reported
and
an error is returned.

ASL Argument Data Parser Layer

int
LOCAL ParseArgs(
PTOKEN ptoken,
PAMLTERM pterm
)�This function determines the number of arguments by computing the string length of the pszArgTypes field in the given pterm. Then for each argument with its type, the appropriate ar
gument parse function is called and the parsed argument data is stored in the global argument array.

ASL
Parser Layer

int LOCAL ParseAML(
PTOKEN ptoken, POBJDATA pArgs)
�
This function calls MatchToken to an identifier token. If the identifier token is a res
erved identifier, the

AMLTERM
table is searched for the corresponding AMLTERM entry
. Then ParseArgs is called to parse appropriate arguments for the
AMLTERM.
If necessary, t
he Name Space component is
called to create the Name S
pace object. Then, the fixed code part is generated and stored in the Name Space object. This function will call itself recursively if the ASL statement has a variable part (i.e. nested statements).

AML Code Generator Layer

The functions in this module are the
code generator
 functions for the
various AML instructions
. The functions have the following format:

NTSTATUS LOCAL (*PFNOP)(
PNSOBJ pnsObj
);

Since there are too many functions in this component, the detail implementation of each function is not included here.

List Management functions

VOID LOCAL ListRemoveEntry(PLIST plist, PPLIST pplistHead)�This function removes the given entry from a circular doubly-linked list. If the entry removed is at the head of the list, *pplistHead will be updated appropriately.

PLIST LOCAL ListRemoveHead(PPLIST pplistHead)�This function removes the first entry from a circular doubly-linked list and updates the *pplistHead appropriately. The removed entry is returned.

PLIST LOCAL ListRemoveTail(PPLIST pplistHead)�This function removes the last entry from a circular doubly-linked list. If the removed entry is the only entry in the list, *pplistHead is cleared. The removed entry is returned.

VOID LOCAL ListInsertHead(PLIST plist, PPLIST pplistHead)�This function inserts the given entry to the head of a circular doubly-linked list and updates the *pplistHead appropriately.

VOID LOCAL ListInsertTail(PLIST plist, PPLIST pplistHead)�This function inserts the given entry to the tail of a circular doubly-linked list and updates the *pplistHead appropriately.

Name Space Manipulation functions

int
LOCAL CreateNameSpaceObject(PSZ pszName, PPNSOBJ ppns
)�This function first makes sure the given object path does not already exist in the ACPI Name Space. If the object already exists, an error is returned. Then it examines the path to determine what scope the object should be created under and look for the parent scope. If the parent scope is not found, an error is returned, otherwise, a new object is created under the parent scope. The new object created is marked owned by the given DDB.

VOID LOCAL AddNameSpaceChild(PNSOBJ pnsParent, PNSOBJ pnsChild)�This function links the given child object to the parent object.

VOID LOCAL FreeNameSpaceObjects(PNSOBJ pnsObj
)�This function
recursively frees a given Name Space object and all its children.

Generic Command Line Options Parser

VOID EXPORT ParseProgInfo(char *pszArg0, PPROGINFO pPI)�This function parses command line argument 0 for the program name, program path information and stores them in the PROGINFO structure.

int EXPORT ParseSwitches(int *pcArg, char ***pppszArg, P
OPTION
TYPE p
O
T, PPROGINFO pPI)�This function parses each command li
ne options and matches them in the
OPTION
TYPE
 table. According to the
OPTION
TYPE
 entry found, corresponding flags are set or values are parsed.

