Netname Lock Usage

Overview

The netname resource uses two locks and a reference count to co-ordinate access to related data structures. The resource list lock is used to protect maintenance of the doubly linked list of resource blocks. In addition, it is used to synchronize a resource’s state changes (overkill, but simple). Additionally, it is used to synchronize the creation of the worker thread.

The refcount is used to protect the individual resource block when the resource list lock must be released. This is typically done when the worker thread is about to issue a query to the DNS server. We can’t have the resource block deleted while the query is in progress. I’ve seen DnsQuery take a very long (7 to 8 minutes) time to complete; during this time the resource’s pending timer has fired and the state has been forced to Offline. At this point, the resource can be deleted. Meanwhile, we’re still waiting for the query to finish, hence the need to refcount the block.

Each resource has a DNS list lock. The DNS lists are array of structures for each A and PTR record combination (this struct should have been generalized and contained only one type of record; the code explains why). This lock is used to protect the array of DNS list structs and their sub-structs (the DNS records used to register the records) at certain times. This lock was introduced to synchronize access to this data, e.g., RemoveDependentIpAddress can delete DNS records while the resource is online but the worker thread could be working on a query for that list. The ideal solution would be to refcount each DNS record but the DNS record struct definition is not under our control. At this point (Beta 2/Whistler), implementing that would cause too much code churn. Holding this lock while calling out to the DNS server only penalizes that specific resource as opposed to all netnames in the cluster.

The rest of the doc outlines the locks and refcount usage to illustrate how it all works together.

Resource List Lock

Protects resource block list operations and should not be held while making calls to DNS server.

NetNameWorker

WaitForMultipleObjects(terminate thread event, resource online pending event, timeout);

Acquire List Lock

While resource blocks in list…

· if state is online pending

· Release List Lock. No need to bump refcount since resource can't get delete call at this point. The following callback into resmon is very quick.

· call SetResourceStatus
· Acquire List Lock.

· Else if state is online

· refcount bumped. The query will hit the wire so we can’t hold the lock while waiting for the query to complete.

· Release List Lock
· call QueryDnsRecords.

· Acquire List Lock.

· If we’re holding the last reference (recount == 1)

· It’s possible that our query got stuck for a very long time; long enough for the pending timeout to occur which causes our Terminate routine to be called. At that point, the resource is offline and the user can delete the resource. Free resource block and restart poll at beginning of resource listhead

· Else If state changed to offline pending

· Offline was called while in the middle of a query. Keep our reference to this resource block by not dec’ing the refcount just yet. Set state to offline

· Release List Lock
· It’s possible that the name was changed while the resource was online. Normally, our Offline routine would delete the old DNS records but since we were in the middle of a query, we don’t want to change the records out from underneath of the query. If DeleteDnsRecords

· Call RemoveDnsRecords
· call SetResourceStatus.

· Acquire List Lock.

· Dec refcount. If zero, do standard cleanup
end While

Release List Lock
NetNameOnlineThread

Acquire List Lock / Release List Lock to sync creation of worker thread

Acquire List Lock / Release List Lock to sync setting of resource state

NetNamepOffline

Called by: NetNameOffline, NetNameTerminate
Acquire List Lock at entry

· set resource state to offline pending.

· take netbios names offline.

· if DNS query is not in progress (refcount == 1)

· set state to offline

· Network name property might have changed while online. If so, then need to delete old DNS records at server now. If DNS records to delete, bump refcount and set flag.

Release List Lock
If DNS records to delete

· call RemoveDnsRecords
· Acquire List Lock.

· Dec refcount. If zero, do resource block cleanup

· Release List Lock
NetNameOpen

Acquire List Lock / Release List Lock to add new resource block to resource list head

NetNameOnline

Acquire List Lock / Release List Lock to set resource state to online pending

NetNameTerminate

Acquire List Lock to check resource state

· if resource state is not offline and not offline pending

· Release List Lock
· call NetNamepOffline

· Acquire List Lock
· set state to offline

Release List Lock at exit

NetNameLooksAlive

Acquire List Lock

· netbios names are checked

· DNS status is checked

Release List Lock

NetNameClose

Acquire List Lock

· remove resource from resource list

Release List Lock

DNS List Lock

Protects the DNS List pointer and its count. Ideally, we shouldn’t hold this lock while calling out to the DNS server but in order to implement that scheme, the DNS record structs would require refcount’ing. Since the DNS record structs used to publish the records are defined by DNS, we can’t easily stuff a refcount field into the record. Trying to manage an array of refcounts in the DNS_LIST struct is possible but not something I want to take on at this time (Beta 2, Whistler). Consequently, all structs in the DNS list are locked while an operation on any member in the list takes place.

NetNameQueryDnsServer

Called by: NetNameWorker

Acquire DNS Lock
· Walks DNS lists. May call RegisterDnsRecords if finds a mismatch.

Release DNS Lock
NetNameCleanupDnsLists

Called by: NetNameReleaseResource, NetNameOnlineThread (2 times during error exit processing), RemoveDnsRecords.
Walks DNS lists to free DNS records. Eventually deletes DNS_LIST block. Lists do not need protection since this routine is called only when resource is being deleted or resource is in online pending state.

RemoveDependentIpAddress

Called when Remove Dependency cluster control is received (sent when state is not pending)

Acquire DNS Lock
· walk resource's DNS list looking for appropriate DNS record and calls DNS to remove records
Release DNS Lock
RemoveDnsRecords

Walks DNS lists to remove DNS records from server. Called:

· when resource is deleted

· by NetNameWorker or NetNamepOffline due to name change while resource is online

· by NetNameSetPrivateResProperties if the name is changing and the resource is offline

Acquire DNS Lock
· walk resource's DNS list deleting all DNS record and calls DNS to remove records
Release DNS Lock

Call NetNameCleanupDnsLists
