Cluster Service Account Password Utility

Introduction

This document represents the knowledge about changing user account passwords in Windows domain as of the time when the utility was written (around 7/99). Since then, we have had meetings with the security team to make this procedure more robust. The last section (Remaining Work Items) describe changes that need to be made to the current design.

Current Design

This utility attempts to change the password associated with the cluster service account on all nodes in the cluster. This involves a number of steps which include:

1. updating the password on the DC

2. updating the account's password in each node's LSA password cache so future security context negotiations by RPC will succeed

3. updating the password with each node's service control manager (SCM)

Password Updates at the DC

Password changes are usually initiated on the DC to which the node issuing the change has a secure channel but that is not always true. In any case, the DC accepting the password change synchronously forwards it to the PDC. If a cluster node has its secure channel with neither of these DCs, the node’s DC will have the old password until the password change is (lazily) replicated. This will cause security context generation to fail since a client with the new password may present these credentials during a context negotiation and the server’s DC is still using the old password.

To minimize the window of failure, the secure channel for each node can be set to the PDC. This is not always desirable as in the case where the service account is used for multiple clusters. This would have potential scaling problems since you could be redirecting hundreds of nodes to use the same DC for its secure channel.

There is still a race where netlogon decides to change the secure channel before the password has replicated. Obviously, if the DC that has the new password crashes, then various failure scenarios will manifest. More on that later.

Updating the LSA Password Cache

Step 2 means running a broker on each machine to update that node's LSA password cache. An NT service is used for this purpose. The service binary (cluspw.exe) is copied to each node's %windir% directory (\\node\admin$). When this step is invoked, the utility starts the service on each node, one at a time.

Other Details

The utility opens a named pipe on which the broker report any errors as well as its final status.

The mechanism for updating LSA's cached password does exist on NT4 so it would appear that this utility could work for NT4 and NT5. However, some of the APIs used in the NT5 version are not available on NT4. Right now, the utility checks if there are any NT4 nodes in the cluster and not run the utility if that is the case. This could be fixed by having the broker determine the version of the system on which it is running and using LoadLibrary to get pointers to the OS version appropriate APIs.

This utility has the potential to touch many nodes: the DC and each cluster node. It may not be possible to automatically recover if any of these crash while the utility is running. For this reason, a phase argument is provided in order to help the admin recover from problems.

Command Line Arguments

cluspw [/unattend] [/phase<1,2,3>] [/quiet] [/verbose] [cluster name [oldpw newpw]]

If no args are specified, a dialog is popped up asking for the appropriate information (not supported yet).

	Argument
	Description

	/unattend
	indicates unattended mode and is only valid if all parameters are specified on the command line (not implemented at this time). At the point where this turns into a windowed app, this will be used to allow it to run as a command line app.

	/phase X
	indicates the phase at which the process should start. X can be 1, 2, or 3.

	/quiet
	is quiet mode (no output unless bad stuff happens).

	/verbose
	verbose output; also passed to the broker app

In addition, there are other switches used for debugging and other purposes.

	Argument
	Description

	/z
	Passed to the broker by the utility. This argument is used to prevent the broker from running in an ad hoc fashion. For example, if an admin tried to start the service, it might cause some damage that the utility wouldn’t know about. This buys some additional insurance from the broker running inadvertently.

	/c
	Run the broker in cmd window. Redirects the output of the broker to a command window in order aid in debugging (you can see printfs this way). Requires interact with desktop to succeed and must be complied in by defining CMDWINDOW.

How It Works

Here's a rough outline of what currently happens in the utility:

1) Determine whether the process has been invoked as the utility or the broker service. See the next section if the started as the service.

2) Parse the arguments for the utility and create a Named Pipe and a thread to read its contents. The broker service sends output to the pipe to be displayed by the utility (useful for debugging as well).

3) Verify that the components we need are up and that the user has sufficient access to manage the cluster as well as changing the cluster service config with each node's service controller. That entails:

a) call OpenCluster, enum'ing the nodes and noting the state of the cluster service. If no cluster name is specified on the cmd line, then we use NULL assuming that we on a node in a cluster. The cluster state must either be Up or Down; nodes that are joining, paused or are in an unknown state will cause the utility to abort. We don’t detect if a node changes cluster state after this point. Presumeably, the service on that node will have an authentication problem and die. Next time it restarts, it will logon with the correct credentials.

b) get SCM handles to the cluster service on every node. If this fails, we abort the utility since all nodes must be up in order to assure that the p/w update will mostly work (if a node crashes after this point, then backing out the changes might be problematic).

c) call QueryServiceConfig to get the service start name which is the domain account used to start the service.

d) create the broker service entry on every node.

e) call DsGetDcName using the domain name from step c to get the primary DC for this domain. The secure channel for each cluster node is set to the PDC.

f) copy the broker app to \\node\admin$ for each node that is part of the cluster. In order to distinguish between starting as the service vs. starting the utility with no args, the utility binary is copied to the target nodes as cluspwsvc.exe. This allows us to determine at process startup whether we’re running as the service or the utility.

4) Phase 1: change the p/w at the DC via NetUserChangePassword. If this fails, we abort the utility.

5) Phase 2: for each node that is up, start the broker service on that node to update the LSA password cache. The StartService API runs asynchronously to the actual service process so it is possible to get some of the brokers running in parallel. For a large number of nodes to process, it might be more beneficial to create a number of background threads to partition up the work. A node crash at this point means that the node won't start since its SCM password has not been changed.

There is code to poll each node’s SCM to determine the final status of the broker; once the broker has been started, these calls (QueryServiceStatusEx) fail with access denied. I’m not sure why; it might be due to not updating the password on the node running the utility (which doesn’t have to be a cluster node). In any case, I’m not sure that this is useful anyway: the service will report its problems via the named pipe and the utility should move on to other nodes as quickly as possible.

6) Phase 3: change the p/w with each node’s SCM. If this fails, then the cluster service on that node will fail to start due to having the old password. We could notify the user and ask if they want to wait until the node is available again (not yet implemented).

The service portion performs the following steps:

1) Call ClRtlInitialize to allow the service to log into the cluster log

2) Parse the args passed to the service broker and open the named pipe

3) Update the node’s password cache by issuing a change password request to LSA. This will probably change once the security team has done the work needed to make the password change more robust.

4) Write the final status to the named pipe and exit

Recovery

Recovery presents a challenge since there is a race condition between setting the p/w on the DC and a node crashing before the p/w has been updated with its SCM or password cache. The current phase ordering favors updating the password cache before the SCM password since, for a running system, it is more important to have the p/w cache aligned with the DC p/w as quickly as possible.

The other problem area is a crash before the SCM p/w has been updated. In this case, the cluster service will not start on that machine. The admin will need to change the password once the node is available again.

Remaining Work Items

Here’s what needs to done:

1) Understand the security team’s change and how it will narrow the race conditions that exist.

2) Identify the correct ordering of the phases. The security team’s work will probably affect this so we’ll need to consult with them to be sure that we have the correct order.

3) With the correct order, we can determine the failure cases where recovery to a known state is either automatic or requires manual work by the admin. The manual work cases have to be minimized since there could be a large number of nodes involved.

4) Figure out how to scale the utility to work with multiple clusters. If a customer has 40 4-node clusters, all using the same service account, then that means 160 nodes need to have their password caches and SCM passwords changed. It may be that we have to bound the total number of nodes due to the time lag introduced when handling large numbers of nodes. It may be the case where the longer it takes to update the nodes, the more likely we’ll run into a race condition.

5) Productize the code. This means providing as much output as needed in order to help the admin recover the cluster when manual intervention is required. This could simply be writing explanatory text to the output once the failure scenarios have been identified.

