Internationalization with the Visual C++ 2.0 Run-time Library

by Chris Weight

When you are ready to internationalize your product, the C run-time library from Microsoft Visual C++ 2.0 provides a range of services to assist you. These include routines for character and string conversion and classification, locale-specific date and time information, language-sensitive collation, and other support geared towards making it easier to market your product worldwide.

Visual C++ Version 2.0 is a 32-bit development environment; its run-time library can target any Win32 system, including Windows NT Version 3.1, NT Version 3.5 (“Daytona”), Windows 4.0 (“Chicago”), and Win32s�. The run-time library can be used to develop applications for any country/language supported by these operating systems. So with appropriate operating system support, a developer in the US can easily build applications for the Japanese market.

The run-time library can even detect the current country/language operating system defaults and use these values to initialize the library. If you are careful to isolate your country/language-dependent features (such as strings in a resource file), one ‘worldwide’ executable can be used for any country.

�
C runtime or Win32 API?

The services provided by the C runtime library and the Win32 API sets are very similar. However, there are some differences that may influence which you choose to use:

If you use only the ANSI/ISO C runtime functions, your program can be ported to any other compiler/library platform that supports the ANSI/ISO C standard.

The runtime library minimizes the differences between Win32 systems. For example, Windows 4.0 does not have full Unicode support, but most of the runtime functions that support Unicode will nevertheless work on Windows 4.0.

Some runtime functions use the Win32 API set and will usually be slower than a comparable Win32 call. But most runtime functions do not make Win32 calls and they will generally be faster than a comparable Win32 call.

The Win32 error return system is more comprehensive -- if a runtime function calls a Win32 API that fails, the translation of Win32 error codes to runtime error codes may not give as much information as when you use the API and obtain the Win32 error code directly.

�

Character Sets and Code Pages

ASCII - ASCII is a 7-bit character set that defines the characters 0x00 through 0x7F.

SBCS (Single-Byte Character Set) -- A character is represented as a fixed-width 8-bit value (0x00 - 0xFF). All SBCS systems share the ASCII character set for the range 0x32 to 0x7F and they define additional values outside this range as appropriate for the given language.

MBCS (Multi-Byte Character Set) -- A character is represented as either an 8-bit or 16-bit value. (MBCS is sometimes called Double Byte Character Set or DBCS). MBCS systems are used for languages with ideographic characters, such as Chinese, Japanese, or Korean, that cannot be represented in 256 characters. In MBCS, specific byte values are lead bytes and indicate that the following byte is a trail byte. A lead byte and trail byte together comprise a single character. Thus an MBCS string may consist of both single-byte and double-byte characters. All MBCS systems contain the ASCII character set in their single-byte range.

Unicode - A character is represented as a fixed-width 16-bit value. The Unicode Standard provides enough character encodings to represent all the world’s scripts and technical symbols in common use. Unicode is defined by the Unicode Consortium, which includes Microsoft. There is a direct mapping between the ASCII character set (0x00-0x7F) and the equivalent Unicode characters (0x0000-0x007F). The Microsoft C runtime often uses the term “wide character” and Unicode interchangeably.

A code page is the representation of a character set; you can think of a character set as an abstract definition and a code page as the instantiation. A given character value is meaningless without knowing the code page; the value 0x1234 can represent different characters depending on the code page.

The C runtime has two distinct code page variables -- the locale code page and the multibyte code page (MBCP). The locale code page is set by a call to setlocale(), while the multibyte code page is set by a call to _setmbcp().

�

A Word about Names

C runtime function names can be cryptic but, if you understand the naming conventions, you can tell a lot about a function just by the name.

strxxxx, isxxxx, toxxxx -- Traditional (SBCS) character and string functions. Many have been updated to handle MBCS but some, by their very nature, are not appropriate for MBCS use.

mbsxxxx, ismbbxxxx, ismbcxxxx mbctoxxxx -- Multibyte functions have been added to handle MBCS characters and strings. ismbb functions handle multi-byte bytes (ismbblead() for example) and ismbc functions deal with multi-byte characters (which can be either one or two bytes).

wcsxxxx, iswxxxx, towxxxx -- These functions handle wide (Unicode) characters and strings.

tcsxxxx, istxxxx, totxxxx -- Generic Text functions -- they can be compiled to any of the three character models (SBCS, MBCS or Unicode). See the section on tchar.h and the Generic Text functions for more information.

Note: All Microsoft-specific C runtime functions start with a leading underscore (_mbsrev for example). This means that they are not ANSI/ISO C-mandated functions; the leading underscore makes their names ANSI/ISO C-conformant.

�

What’s New in VC++ 2.0

While previous library versions had limited international support, you can now write entirely multibyte, entirely Unicode, or mixed-model applications. Most of the existing library functions have been ‘internationalized’ and many totally new international functions have been added:

the locale-dependent functions -- most runtime functions now behave appropriately for the operating environment

a complete set of multibyte functions -- counterparts to traditional single-byte character and string functions

a complete set of functions that support Unicode -- counterparts to traditional single-byte character and string functions

generic text functions that provide a convenient way to conditionally internationalize your program

Locale-dependent functions

A locale is a collection of information about a specific country, language, and code page. Locale-dependent functions are those functions affected by a change of locale.

The C run-time function setlocale() allows you to change the current run-time locale to any locale supported by the operating system. For example, you can call setlocale(LC_ALL, "french") at any time during program execution. Or call setlocale(LC_ALL,"") and the run-time will query the operating system to determine the current system default values for country and locale -- all locale-dependent functions will then behave appropriately for the target machine.

By default, all C programs operate in the “C” locale as defined by the ANSI/ISO C standard. In the “C” locale, the locale-dependent functions behave as defined by the C standard, but their behavior changes when the locale is changed. For example, isalpha() has traditionally returned TRUE for the characters 'a'-'z' and 'A'-'Z' but no others. In the “C” locale, isalpha() continues to behave this way. But in the French locale, isalpha() also returns TRUE for other characters, such as 'é'.

Multibyte functions

The C run time also provides a complete set of multibyte character and string processing functions. Many of the traditional SBCS functions now handle MBCS appropriately, but all SBCS functions not appropriate for MBCS processing have MBCS counterparts. For example, _fullpath() now handles MBCS strings, but strtok() does not, so _mbstok() has been added.

There are also a number of functions that are unique to MBCS processing. For example, _mbsncmp() compares n characters of two multibyte strings while _mbsnbcmp() compares n bytes of two multibyte strings.

There are a limited number of locale-dependent multibyte functions—mbtowc(), mbstowcs(), wctomb(), wcstombs(), mblen(), and _mbstrlen()—that use the locale code page for their character and string processing. (Except for _mbstrlen(), they are all ANSI/ISO C functions that are defined to be locale-dependent.) All other multibyte functions use the multibyte code page (MBCP).

At program startup, the MBCP is automatically set to the system default code page. During program execution, you can set the code page to any supported multibyte code page by calling _setmbcp().

Since the MBCP is automatically set to the system default code page, one executable program can be used in any country; the MBCP will be set as appropriate to the target machine and all multibyte functions behave appropriately for that code page. Because the MBCP can be set to a ‘single byte’ code page, this target country can even be European or the U.S.

Functions that support Unicode

The C run time provides a complete set of character and string processing functions that process Unicode. Virtually every SBCS character or string function has a Unicode counterpart. Many of these functions are specified in an upcoming amendment to the ISO/ANSI C standard (ISO/IEC 9899, Amendment 1).

Since Unicode can represent virtually all languages of the world in one code set, there are no code pages in programming for Unicode. Only functions (such as wcsftime()) that depend on language or regional preferences are locale-dependent. Therefore, most Unicode functions are not locale-dependent.

A very useful feature of the wide character formatted I/O functions (wprint and wscan family) and the traditional formatted I/O functions (print and scan family) is the ability to handle strings of different types. They handle SBCS, MBCS, and Unicode strings when given the appropriate format specifier.

You can now write a completely Unicode program—even your program arguments and environment variables can be Unicode! If you define wmain() rather than main() (and use the appropriate run-time entry point), your program arguments and the environment strings will be Unicode. You can then use _wputenv() and _wgetenv() to maintain the wide environment.

Generic text characters -- TCHAR.H

The header file TCHAR.H provides a convenient way to create separate executable files that can process SBCS, MBCS, or Unicode characters from the same source file. You use generic text ‘functions’ (these are actually macros) in your source code, and these ‘functions’ are mapped to the appropriate function by the pre-processor (depending on whether you have _UNICODE, _MBCS, or neither defined).

With only one version of the source code to maintain, you can write generic code that is initially compiled for SBCS, but that can later be compiled as MBCS or Unicode at the flip of a switch. Also, you can have two executable versions -- one for international use (MBCS or Unicode), and one for domestic use (SBCS) -- but only one version of the source code to maintain.

This is a partial list of TCHAR.H mappings:

Generic Text�
SBCS�
MBCS�
Unicode�
�
�
�
�
�
�
_TCHAR�
char�
char�
wchar_t�
�
_T(“string”)�
“string”�
“string”�
L”string”�
�
_tmain�
main�
main�
wmain�
�
_tgetenv�
getenv�
getenv�
_wgetenv�
�
_tprintf�
printf�
printf�
wprintf�
�
_tcsrev�
strrev�
_mbsrev�
wcsrev�
�

Here is a generic text example program that demonstrates many of the new international features of the runtime library:

The use of TCHAR.H to write generic programs that can be compiled to any of the three character models.

The symmetry that exists among the SBCS, MBCS, and Unicode environments—a string reversing function exists for each model.

The ability of both printf and wprintf to handle single byte, multibyte, and Unicode strings.

Some traditional functions (getenv() & printf() in this example) that are now MBCS-enabled.

A completely Unicode program -- even the environment strings and program arguments are Unicode.

�

Generic text example program

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <tchar.h>

int _tmain(int argc, _TCHAR **argv, _TCHAR **envp)

{

	_TCHAR *str = _T("Astring");

	char *amsg = "Reversed";

	wchar_t *wmsg = L"Is";

	_tprintf(_T("My name is: '%s'\n"), argv[0]);

	printf("Current path is: ");

	_tprintf(_T("'%s'\n"), _tgetenv(_T("path")));

	_tprintf(_T("'%s' %hs %ls: "), str, amsg, wmsg);

	_tprintf(_T("'%s'\n"), _tcsrev(str));

	return 0;

}

Unicode version

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <tchar.h>

int wmain(int argc, wchar_t **argv, wchar_t **envp)

{

	wchar_t *str = L"Astring";

	char *amsg = "Reversed";

	wchar_t *wmsg = L"Is";

	wprintf(L"My name is: '%s'\n", argv[0]);

	printf("Current path is: ");

	wprintf(L"'%s'\n", _wgetenv(L"path"));

	wprintf(L"'%s' %hs %ls: ", str, amsg, wmsg);

	wprintf(L"'%s'\n", _wcsrev(str));

	return 0;

}

Multibyte version

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <tchar.h>

int main(int argc, char **argv, char **envp)

{

	char *str = "Astring";

	char *amsg = "Reversed";

	wchar_t *wmsg = L"Is";

	printf("My name is: '%s'\n", argv[0]);

	printf("Current path is: ");

	printf("'%s'\n", getenv("path"));

	printf("'%s' %hs %ls: ", str, amsg, wmsg);

	printf("'%s'\n", _mbsrev(str));

	return 0;

}

Single-byte version

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <tchar.h>

int main(int argc, char **argv, char **envp)

{

	char *str = "Astring";

	char *amsg = "Reversed";

	wchar_t *wmsg = L"Is";

	printf("My name is: '%s'\n", argv[0]);

	printf("Current path is: ");

	printf("'%s'\n", getenv("path"));

	printf("'%s' %hs %ls: ", str, amsg, wmsg);

	printf("'%s'\n", _strrev(str));

	return 0;

}

� Visual C++ Version 2.0 can even target the Macintosh! The run-time library in the Visual C++ 2.0 Cross-Development Edition for Macintosh provides complete multibyte functionality but does not support the locale model or Unicode.

�PAGE�6�	�title �Languages Business Unit�

Mi
