[image: image3.png]

EFI Library Specification
DRAFT
[image: image2.png]

Extensible Firmware Interface

 Library Specification

Draft for Review

Version 0.99

April24, 2000
THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

A license is hereby granted to copy and reproduce this specification for internal use only.

No other license, express or implied, by estoppel or otherwise, to any other intellectual property rights is granted herein.

Intel disclaims all liability, including liability for infringement of any proprietary rights, relating to implementation of information in this specification. Intel does not warrant or represent that such implementation(s) will not infringe such rights.

† Third-party trademarks are the property of their respective owners.

Copyright (2000. Intel Corporation, All Rights Reserved.

Revision History

Revision
Revision History
Date
Author

0.1
Initial review draft
3/24/99
Intel

0.2
Updated to match 0.91.007 Sample Implementation
7/14/99
Intel

0.9
Updated to match 0.91.009 Sample Implementation
11/17/99
Intel

0.99
Updated to match 0.99.12.20 Sample Implementation
4/24/00
Intel

Table of Contents

111 Introduction

1.1
Organization of this Document
11
1.2
Goals

11
1.3
Target Audience
11
1.4
Prerequisite Specifications
12
1.5
Conventions Used in This Document
12
1.5.1
Data Structure Illustrations
12
1.5.2
Typographic Conventions
13
2 Constants
15
3 Global Variables
17
4 Functions and Macros
19
4.1
Initialization Functions
20
4.1.1
InitializeLib Function
21
4.1.2
InitializeUnicodeSupport Function
22
4.2
Linked List Support Macros
23
4.2.1
InitializeListHead Macro
24
4.2.2
IsListEmpty Macro
25
4.2.3
RemoveEntryList Macro
26
4.2.4
InsertTailList Macro
27
4.2.5
InsertHeadList Macro
28
4.3
String Functions
29
4.3.1
StrCmp Function
30
4.3.2
StrnCmp Function
31
4.3.3
StriCmp Function
32
4.3.4
StrCpy Function
33
4.3.5
StrCat Function
34
4.3.6
StrLen Function
35
4.3.7
StrSize Function
36
4.3.8
StrDuplicate Function
37
4.3.9
StrLwr Function
38
4.3.10
StrUpr Function
39
4.3.11
strlena Function
40
4.3.12
strcmpa Function
41
4.3.13
strncmpa Function
42
4.3.14
xtoi Function
43
4.3.15
Atoi Function
44
4.3.16
MetaMatch Function
45
4.3.17
MetaiMatch Function
46
4.3.18
ValueToString Function
48
4.3.19
ValueToHex Function
49
4.3.20
TimeToString Function
50
4.3.21
GuidToString Function
51
4.3.22
StatusToString Function
52
4.3.23
DevicePathToStr Function
54
4.4
Memory Support Functions
56
4.4.1
ZeroMem Function
57
4.4.2
SetMem Function
58
4.4.3
CopyMem Function
59
4.4.4
CompareMem Function
60
4.4.5
AllocatePool Function
61
4.4.6
AllocateZeroPool Function
62
4.4.7
ReallocatePool Function
63
4.4.8
FreePool Function
64
4.4.9
GrowBuffer Function
65
4.4.10
LibMemoryMap Function
67
4.5
CRC Support Functions
68
4.5.1
SetCrc Function
69
4.5.2
SetCrcAltSize Function
70
4.5.3
CheckCrc Function
71
4.5.4
CheckCrcAltSize Function
72
4.5.5
CalculateCrc Function
73
4.6
Text I/O Functions
74
4.6.1
Input Function
76
4.6.2
IInput Function
77
4.6.3
Output Function
78
4.6.4
Print Function
79
4.6.5
PrintAt Function
80
4.6.6
IPrint Function
81
4.6.7
IPrintAt Function
82
4.6.8
APrint Function
83
4.6.9
SPrint Function
84
4.6.10
PoolPrint Function
85
4.6.11
CatPrint Function
86
4.6.12
DumpHex Function
87
4.6.13
LibIsValidTextGraphics Function
88
4.6.14
IsValidAscii Function
89
4.6.15
IsValidEfiCntlChar Function
90
4.7
Math Functions
91
4.7.1
LshiftU64 Function
92
4.7.2
RshiftU64 Function
93
4.7.3
MultU64x32 Function
94
4.7.4
DivU64x32 Function
95
4.8
Spin Lock Functions
96
4.8.1
InitializeLock Function
97
4.8.2
AcquireLock Function
98
4.8.3
ReleaseLock Function
99
4.9
Handle and Protocol Support Functions
100
4.9.1
LibLocateHandle Function
101
4.9.2
LibLocateHandleByDiskSignature Function
103
4.9.3
LibLocateProtocol Function
105
4.9.4
LibInstallProtocolInterfaces Function
106
4.9.5
LibUninstallProtocolInterfaces Function
107
4.9.6
LibReinstallProtocolInterfaces Function
108
4.10
File I/O Support Functions
109
4.10.1
LibOpenRoot Function
110
4.10.2
LibFileInfo Function
111
4.10.3
LibFileSystemInfo Function
112
4.10.4
LibFileSystemVolumeLabelInfo Function
113
4.10.5
ValidMBR Function
114
4.10.6
OpenSimpleReadFile Function
115
4.10.7
ReadSimpleReadFile Function
117
4.10.8
CloseSimpleReadFile Function
118
4.11
Device Path Support Functions
119
4.11.1
DevicePathFromHandle Function
120
4.11.2
DevicePathInstance Function
121
4.11.3
DevicePathInstanceCount Function
122
4.11.4
AppendDevicePath Function
123
4.11.5
AppendDevicePathNode Function
124
4.11.6
AppendDevicePathInstance Function
125
4.11.7
FileDevicePath Function
126
4.11.8
DevicePathSize Function
127
4.11.9
DuplicateDevicePath Function
128
4.11.10
LibDevicePathToInterface Function
129
4.11.11
UnpackDevicePath Function
130
4.11.12
LibMatchDevicePaths Function
131
4.11.13
LibDuplicateDevicePathInstance Function
132
4.12
PCI Functions and Macros
133
4.12.1
PciFindDeviceClass Function
134
4.12.2
PciFindDevice Function
135
4.12.3
InitializeGlobalIoDevice Function
138
4.12.4
ReadPort Function
139
4.12.5
WritePort Function
140
4.12.6
ReadPciConfig Function
141
4.12.7
WritePciConfig Function
142
4.12.8
inp Macro
143
4.12.9
outp Macro
144
4.12.10
inpw Macro
145
4.12.11
outpw Macro
146
4.12.12
inpd Macro
147
4.12.13
outpd Macro
148
4.12.14
readpci8 Macro
149
4.12.15
writepci8 Macro
150
4.12.16
readpci16 Macro
151
4.12.17
writepci16 Macro
152
4.12.18
readpci32 Macro
153
4.12.19
writepci32 Macro
154
4.13
Miscellaneous Functions and Macros
155
4.13.1
LibGetVariable Function
156
4.13.2
LibGetVariableAndSize Function
157
4.13.3
CompareGuid Function
158
4.13.4
CR Macro
159
4.13.5
DecimaltoBCD Function
160
4.13.6
BCDtoDecimal Function
161
4.13.7
LibCreateProtocolNotifyEvent Function
162
4.13.8
WaitForSingleEvent Function
163
4.13.9
WaitForEventWithTimeout Function
164
4.13.10
RtLibEnableVirtualMappings Function
165
4.13.11
RtConvertList Function
166
4.13.12
LibGetSystemConfigurationTable Function
167

Tables

11Table 1-1.
Specification Organization and Contents

Table 4-1.
Initialization Functions
20
Table 4-2.
Linked List Support Macros
23
Table 4-3.
String Functions
29
Table 4-4.
EFI_STATUS Output Formats
53
Table 4-5.
Hardware Device Path Output Formats
54
Table 4-6.
Messaging Device Path Output Formats
55
Table 4-7.
Media Device Path Output Formats
55
Table 4-8.
BSS Device Path Output Formats
55
Table 4-9.
Memory Support Functions
56
Table 4-10.
CRC Support Functions
68
Table 4-11.
Format string attribute and argument specification
74
Table 4-12.
Text I/O Functions
75
Table 4-13.
EFI Control Characters
90
Table 4-14.
Math Functions
91
Table 4-15.
Spin Lock Functions
96
Table 4-16.
Handle and Protocol Support Functions
100
Table 4-17.
File I/O Support Functions
109
Table 4-18.
Device Path Support Functions
119
Table 4-19.
PCI Functions and Macros
133
Table 4-20.
Miscellaneous Functions and Macros
155

FIGURES
Figure 1-2. Memory Layout Conventions
12

1
Introduction

1The Extensible Firmware Interface (EFI) Specification describes a set of Application Program Interfaces (APIs) and data structures that are exported by a system’s firmware. During the development of a sample implementation of the EFI Specification, the need arose for a set of library functions to simplify the development process. These library functions are also useful in the implementation of EFI Shells, EFI Shell commands, EFI Applications, EFI OS loaders, and EFI Device Drivers. This document describes in detail each of the functions and macros present in the EFI Library along with the constants and global variables that are exported.

1.1 Organization of this Document

This specification is organized as follows: XE "organization, document"

 XE "contents, document"
 Table 1-1.
Specification Organization and Contents

Chapter

Description

Chapter 1: Introduction
Provides an overview of the EFI Library Specification.

Chapter 2: Constants
Definition of constants exported by the EFI Library.

Chapter 3: Global Variables
Definition of global variables allocated by the EFI Library.

Chapter 4: Functions and Macros
Definition of functions and macros exported by the EFI Library.

1.2 Goals

The primary goal of the EFI Library Specification is to provide documentation for the collection of library functions that are available to EFI firmware developers, EFI shell developers, EFI shell application developers, and shrink wrapped operating system boot loader developers. These library functions complement those APIs described in the EFI Specification. The combination of the EFI APIs and the EFI Library functions provide all the functions required for basic console I/O, basic disk I/O, memory management, linked list management, and string manipulation. In addition, there are miscellaneous functions for 64 bit math operations, CRC checks, spin locks, and helper functions used to managing device handle, device protocols, and device paths.

1.3 Target Audience

This document is intended for the following readers: XE "target audience"
· OEMs who will be creating Intel Architecture-based platforms intended to boot shrink-wrap operating systems.

· BIOS developers, either those who create general-purpose BIOS and other firmware products or those who modify these products for use in Intel Architecture-based products.

· Operating system developers who will be adapting their shrink-wrap operating system products to run on Intel Architecture-based platforms.

1.4 Prerequisite Specifications

Extensible Firmware Interface Specification Version 0.9, Intel Corporation, 1999.

1.5 Conventions Used in This Document

This document uses typographic and illustrative conventions described below. XE "conventions, document"

 XE "little endian"
1.5.1 Data Structure Illustrations

The Intel Architecture processors of the IA-32 family are “little endian” machines. This means that the low-order byte of a multibyte data item in memory is at the lowest address, while the high-order byte is at the highest address. Processors of the IA-64 family may be configured for both “little endian” and “big endian” operation.

For the purposes of this specification, illustrations of data structures in memory will always show the lowest addresses at the bottom and the highest addresses at the top of the illustration, as shown in Figure 1-2. Bit positions are numbered from right to left.

[image: image1.wmf]
Figure 1-2. Memory Layout Conventions

In some memory layout descriptions, certain fields are marked RESERVED. Software should initialize these fields as binary zeros, but should otherwise treat them as having a future, though unknown effect. Software should avoid any dependence on the values in the reserved fields.

[NB: for this version of the draft, illustrations such as these are not yet present. They will be added in a future draft version.]

1.5.2 Typographic Conventions

 XE "typographic conventions" The following typographic conventions are used in this document to illustrate programming concepts:

Prototype
This typeface is use to indicate prototype code.

Argument
This typeface is used to indicate arguments.
Name

This typeface is used to indicate actual code or a programming construct.

register

This typeface is used to indicate a processor register.

2
Constants

The following is the list of environment variable name constants that are exported by the EFI Library. These are environment variable names used by the EFI sample implementation.

#define VarLanguageCodes L"LangCodes";

#define VarLanguage L"Lang";

#define VarTimeout L"Timeout";

#define VarConsoleInp L"ConIn";

#define VarConsoleOut L"ConOut";

#define VarErrorOut L"ErrOut";

#define VarBootOption L"Boot%04x";

#define VarBootOrder L"BootOrder";

#define VarBootNext L"BootNext";

#define VarBootCurrent L"BootCurrent";

#define VarDriverOption L"Driver%04x";

#define VarDriverOrder L"DriverOrder";

#define VarSerialNumber L"SerialNumber";

#define VarSystemGuid L"SystemGUID";

#define VarConsoleInpDev L"ConInDev";

#define VarConsoleOutDev L"ConOutDev";

#define VarErrorOutDev L"ErrOutDev";

#define LanguageCodeEnglish "eng"

3
Global Variables

There are three global variables exported by the EFI Library that provide access to the EFI System Table (ST), EFI Boot Time Services (BS), and the EFI Run Time Services (RT). The declaration of these global variables is shown below.

extern EFI_SYSTEM_TABLE *ST;

extern EFI_BOOT_SERVICES *BS;

extern EFI_RUNTIME_SERVICES *RT;

A group of EFI_GUID variables are also exported by the EFI Library. These include protocol GUIDs and other miscellaneous GUIDs used by the EFI sample implementation.

extern EFI_GUID DevicePathProtocol;

extern EFI_GUID LoadedImageProtocol;

extern EFI_GUID TextInProtocol;

extern EFI_GUID TextOutProtocol;

extern EFI_GUID BlockIoProtocol;

extern EFI_GUID DiskIoProtocol;

extern EFI_GUID FileSystemProtocol;

extern EFI_GUID LoadFileProtocol;

extern EFI_GUID DeviceIoProtocol;

extern EFI_GUID UnicodeCollationProtocol;

extern EFI_GUID SerialIoProtocol;

extern EFI_GUID VariableStoreProtocol;

extern EFI_GUID LegacyBootProtocol;

extern EFI_GUID VgaClassProtocol;

extern EFI_GUID TextOutSpliterProtocol;

extern EFI_GUID TextInSpliterProtocol;

extern EFI_GUID ErrorOutSpliterProtocol;

extern EFI_GUID SimpleNetworkProtocol;

extern EFI_GUID PxeBaseCodeProtocol;

extern EFI_GUID PxeCallbackProtocol;

extern EFI_GUID NetworkInterfaceIdentifierProtocol;

extern EFI_GUID InternalLoadProtocol;

The following are the group of EFI_GUID variables for the EFI Configuration Table entries.

extern EFI_GUID EfiGlobalVariable;

extern EFI_GUID GenericFileInfo;

extern EFI_GUID FileSystemInfo;

extern EFI_GUID PcAnsiProtocol;

extern EFI_GUID Vt100Protocol;

extern EFI_GUID NullGuid;

extern EFI_GUID UnknownDevice;

The following are the group of EFI_GUID variables for the EFI configuration table entries.

extern EFI_GUID MpsTableGuid;

extern EFI_GUID AcpiTableGuid;

extern EFI_GUID SMBIOSTableGuid;

extern EFI_GUID SalSystemTableGuid;

There are also three Device Path data structures that are exported by the EFI Library. These are used to build complete device paths.

extern EFI_DEVICE_PATH RootDevicePath[];

extern EFI_DEVICE_PATH EndDevicePath[];

extern EFI_DEVICE_PATH EndInstanceDevicePath[];

The following is the global I/O Device I/O Protocol interface used to access the root PCI bus.

extern EFI_DEVICE_IO_INTERFACE *GlobalIoFncs;

The following is the default memory allocation type for the EFI Library memory allocation functions.

extern EFI_MEMORY_TYPE PoolAllocationType;

4
Functions and Macros

The functions and macros exported by the EFI Library are grouped as follows:

· Initialization Functions

· Linked List Support Macros

· String Functions

· Memory Support Functions

· CRC Support Functions

· Text I/O Functions

· Math Functions

· Spin Lock Functions

· Handle and Protocol Functions

· File I/O Support Functions

· Device Path Support Functions

· Miscellaneous Functions

4.1 Initialization Functions

The initialization functions in the EFI Library are used to initialize the execution environment so that other EFI Library function may be used. Table 4-1 lists the initialization support functions that are described in the following sections.

Table 4-1.
Initialization Functions

Name
Description

InitializeLib
Initializes the EFI Library.

InitializeUnicodeSupport
Initializes the use of language dependant EFI Library functions.

InitializeLib Function XE "BLOCK_IO.Reset Function"
The InitializeLib() function initializes the EFI Library.

VOID

InitializeLib (

 IN EFI_HANDLE ImageHandle,

 IN EFI_SYSTEM_TABLE *SystemTable
);

Parameters

ImageHandle
A handle for the image that is initializing the library.

SystemTable
A pointer to the EFI system table.

Description

This function must be called to enable the use of all the EFI Library functions. Additional calls to this function are ignored. This function initializes all the global variables required by the EFI Library functions. In addition, it verifies the CRCs for all the EFI system tables.

InitializeUnicodeSupport Function XE "BLOCK_IO.Reset Function"
The InitializeUnicodeSupport() function initializes the use of the language dependant EFI Library functions.

VOID

InitializeUnicodeSupport (

 IN CHAR8 *LangCode,

);

Parameters

LangCode

The 3 character ISO 639.2 language code.

Description

This function must be called to enable the use of all the language dependent EFI Library functions. By default, the InitializeLib() function calls InitializeUnicodeSupport(). The only reason that this function would be called is to select a language other than the default one.

4.2 Linked List Support Macros

The EFI Library supplies a set of macros that allow doubly linked lists to be created and maintained. The head node of a doubly linked list is a LIST_ENTRY data structure. Each of the nodes in the linked list must also contain a LIST_ENTRY data structure. The LIST_ENTRY data structure simply contains a forward link and a backward link. The following is the definition of the LIST_ENTRY data structure.

typedef struct _LIST_ENTRY {

 struct _LIST_ENTRY *Flink;

 struct _LIST_ENTRY *Blink;

} LIST_ENTRY;

Table 4-2 contains the list of macros that are described in the following sections.

Table 4-2.
Linked List Support Macros

Name
Description

InitializeListHead
Initializes the head node of a doubly linked list.

IsListEmpty
Determines if a doubly linked list is empty.

RemoveEntryList
Removes a node from a doubly linked list.

InsertTailList
Adds a node to the end of a double linked list.

InsertHeadList
Adds a node to the beginning of a doubly linked list.

InitializeListHead Macro

The InitializeListHead() macro initializes the head node of a doubly linked list.

VOID

InitializeListHead(

 LIST_ENTRY *ListHead

);

Parameters

ListHead

A pointer to the head node of a new doubly linked list.

Description

This macro initializes the forward and backward links of a new linked list. After initializing a linked list with this macro, the other linked list macros may be used to add and remove nodes from the linked list. It is up to the caller of this macro to allocate the memory for ListHead.

IsListEmpty Macro

The IsListEmpty() macro checks to see if a doubly linked list is empty or not.

BOOLEAN

IsListEmpty(

 LIST_ENTRY *ListHead

);

Parameters

ListHead

A pointer to the head node of a doubly linked list.

Description

This macro checks to see if the doubly linked list is empty. If the linked list contains zero nodes, this macro returns TRUE. Otherwise, it returns FALSE.

Status Codes Returned

TRUE
The linked list is empty

FALSE
The linked list is not empty

RemoveEntryList Macro

The RemoveEntryList() macro removes a node from a doubly linked list.

VOID

RemoveEntryList(

 LIST_ENTRY *Entry

);

Parameters

Entry

A pointer to a node in a linked list

Description

This macro removes the node Entry from a doubly linked list. It is up to the caller of this macro to release the memory used by this node if that is required.

InsertTailList Macro

The InsertTailList() macro adds a node to the end of a doubly linked list.

VOID

InsertTailList(

 LIST_ENTRY *ListHead,

 LIST_ENTRY *Entry

);

Parameters

ListHead

A pointer to the head node of a doubly linked list.

Entry

A pointer to a node that is to be added at the end of the doubly linked list.

Description

This macro adds the node Entry to the end of the doubly linked list denoted by ListHead.

InsertHeadList Macro

The InsertHeadList() macro adds a node to the beginning of a doubly linked list.

VOID

InsertHeadList(

 LIST_ENTRY *ListHead,

 LIST_ENTRY *Entry

);

Parameters

ListHead

A pointer to the head node of a doubly linked list.

Entry
A pointer to a node that is to be inserted at the beginning of a doubly linked list.

Description

This macro adds the node Entry at the beginning of the doubly linked list denoted by ListHead.

4.3 String Functions

The string functions in the EFI Library perform operations on Unicode and ASCII string. Table 4-3 contains the list of string support functions that are described in the following sections.

Table 4-3.
String Functions

Name
Description

StrCmp
Compares two Unicode strings.

StrnCmp
Compares a portion of two Unicode strings.

StriCmp
Performs a case insensitive comparison of two Unicode strings.

StrCpy
Copies one Unicode string to another Unicode string.

StrCat
Concatenates two Unicode strings.

StrLen
Determines the length of a Unicode string.

StrSize
Determines the size of a Unicode string in bytes.

StrDuplicate
Creates a duplicate of a Unicode string.

StrLwr
Converts characters in a Unicode string to upper case characters.

StrUpr
Converts characters in a Unicode string to lower case characters.

strlena
Determines the length of an ASCII string.

strcmpa
Compares two ASCII strings.

strncmpa
Compares a portion of two ASCII strings.

xtoi
Converts a hexadecimal formatted Unicode string to an integer.

Atoi
Converts a decimal formatted Unicode string to an integer.

MetaMatch
Checks to see if a Unicode string matches a given pattern.

MetaiMatch
Performs a case insensitive comparison of a Unicode pattern string and a Unicode string.

ValueToString
Converts an integer to a decimal formatted Unicode string.

ValueToHex
Converts an integer to a hexadecimal formatted Unicode string.

TimeToString
Converts a data structure containing the time and date into a Unicode string.

GuidToString
Converts a 128 bit GUID into a Unicode string.

StatusToString
Converts an EFI_STATUS value into a Unicode string.

DevicePathToStr
Converts a device path data structure into a Unicode string.

StrCmp Function

The StrCmp() function compares two Unicode strings.

INTN

StrCmp (

 IN CHAR16 *s1,

 IN CHAR16 *s2
);

Parameters

s1

Pointer to a Null-terminated Unicode string.

s2

Pointer to a Null-terminated Unicode string.

Description

This function compares the Unicode string s1 to the Unicode string s2. If s1 is identical to s2, then 0 is returned. Otherwise, the difference between the first mismatched Unicode characters is returned.

Status Codes Returned

0
s1 is identical to s2.

(0
s1 is not identical to s2.

StrnCmp Function

The StrnCmp() function compares a portion of two Unicode strings.

INTN

StrnCmp (

 IN CHAR16 *s1,

 IN CHAR16 *s2,

 IN UINTN
len
);

Parameters

s1

Pointer to a Null-terminated Unicode string.

s2

Pointer to a Null-terminated Unicode string.

Description

This function compares len Unicode characters from s1 to len Unicode characters from s2. If all len characters from s1 and s2 are identical, then 0 is returned. Otherwise, the difference between the first mismatched ASCII characters is returned.

Status Codes Returned

0
s1 is identical to s2.

(0
s1 is not identical to s2.

StriCmp Function

The StriCmp() function performs a case insensitive comparison of two Unicode strings.

INTN

StriCmp (

 IN CHAR16 *s1,

 IN CHAR16 *s2
);

Parameters

s1

Pointer to a Null-terminated Unicode string.

s2

Pointer to a Null-terminated Unicode string.

Description

This function performs a case insensitive comparison between the Unicode string s1 and the Unicode string s2 using the rules for the currently selected language code. If s1 is equivalent to s2, then 0 is returned. If s1 is lexically less than s2, then a negative number will be returned. If s1 is lexically greater than s2, then a positive number will be returned. This function allows Unicode strings to be compared and sorted.

Status Codes Returned

0
s1 is equivalent to s2.

> 0
s1 is lexically greater than s2

< 0
s1 is lexically less than s2

 StrCpy Function

The StrCpy() function copies one Unicode string to another Unicode string.

VOID

StrCpy (

 IN CHAR16 *Dest,

 IN CHAR16 *Src
);

Parameters

Dest

Pointer to a Null-terminated Unicode string.

Src

Pointer to a Null-terminated Unicode string.

Description

This function copies the contents of the Unicode string Src to the Unicode string Dest.

StrCat Function

The StrCat() function concatenates one Unicode string to another Unicode string.

VOID

StrCat (

 IN CHAR16 *Dest,

 IN CHAR16 *Src
);

Parameters

Dest

Pointer to a Null-terminated Unicode string.

Src

Pointer to a Null-terminated Unicode string.

Description

This function concatenates two Unicode string. The contents of Unicode string Src are concatenated to the end of Unicode string Dest.

StrLen Function

The StrLen() function determines the length of a Unicode string.

UINTN

StrLen (

 IN CHAR16 *s1
);

Parameters

s1

Pointer to a Null-terminated Unicode string.

Description

This function returns the number of Unicode characters in the Unicode string s1.

StrSize Function

The StrSize() function determines the size of a Unicode string in bytes.

UINTN

StrSize (

 IN CHAR16 *s1
);

Parameters

s1

Pointer to a Null-terminated Unicode string.

Description

This function returns the size of the Unicode string s1 in bytes.

StrDuplicate Function

The StrDulicate() function duplicates a Unicode string.

CHAR16 *

StrDuplicate (

 IN CHAR16 *Src
);

Parameters

Src

Pointer to a Null-terminated Unicode string.

Description

This function creates a returns a new copy of the Unicode string Src. The memory for the new string is allocated from pool.

StrLwr Function

The StrLwr() function converts all the characters in a Unicode string to lower case.

VOID

StrLwr (

 IN CHAR16 *Str
);

Parameters

Str

Pointer to a Null-terminated Unicode string.

Description

This function converts all the characters in the Unicode string Str to lower case characters.

StrUpr Function

The StrUpr() function converts all the characters in a Unicode string to upper case.

VOID

StrUpr (

 IN CHAR16 *Str
);

Parameters

Str

Pointer to a Null-terminated Unicode string.

Description

This function converts all the characters in the Unicode string Str to upper case characters.

strlena Function

The strlena() function determines the length of an ASCII string.

UINTN

strlena (

 IN CHAR8 *s1

);

Parameters

s1

Pointer to a Null-terminated ASCII string.

Description

This function returns the length of the ASCII string s1.

strcmpa Function

The strcmpa() function compares two ASCII strings.

UINTN

strcmpa (

 IN CHAR8 *s1,

 IN CHAR8 *s2

);

Parameters

s1

Pointer to a Null-terminated ASCII string.

s2

Pointer to a Null-terminated ASCII string.

Description

This function compares the contents of the ASCII string s1 to the contents of the ASCII string s2. If s1 is identical to s2, then 0 is returned. Otherwise, the difference between the first mismatched ASCII characters is returned.

Status Codes Returned

0
s1 is identical to s2.

(0
s1 is not identical to s2

strncmpa Function

The strncmpa() function compares a portion of two ASCII strings.

UINTN

strncmpa (

 IN CHAR8 *s1,

 IN CHAR8 *s2,

 IN UINTN len

);

Parameters

s1

Pointer to an ASCII string.

s2

Pointer to an ASCII string.

len

Number of ASCII character to compare.

Description

This function compares len ASCII characters from s1 to len ASCII characters from s2. If all len characters from s1 and s2 are identical, then 0 is returned. Otherwise, the difference between the first mismatched ASCII characters is returned.

Status Codes Returned

0
s1 is identical to s2 for the first len characters.

(0
s1 is not identical to s2 for the first len characters.

xtoi Function

The xtoi() function converts a hexadecimal formatted Unicode string to a value.

UINTN

xtoi (

 IN CHAR16 *str

);

Parameters

str

Pointer to a Null-terminated Unicode string.

Description

This function converts the hexadecimal formatted Unicode string str into an integer and returns that integer. Any preceding white space in str is ignored.

Atoi Function

The Atoi() function converts a decimal formatted Unicode string to a value.

UINTN

Atoi (

 IN CHAR16 *str

);

Parameters

str

Pointer to a Null-terminated Unicode string.

Description

This function converts the decimal formatted Unicode string str into an integer and returns that integer. Any preceding white space in str is ignored.

MetaMatch Function

The MetaMatch() function checks to see if a Unicode string matches a given pattern.

BOOLEAN

MetaMatch (

 IN CHAR16 *String,

 IN CHAR16 *Pattern

);

Parameters

String

Pointer to a Null-terminated Unicode string.

Pattern

Pointer to a Null-terminated Unicode string.

Description

This function checks to see if the pattern of characters described by Pattern is found in String. If the pattern match succeeds, then TRUE is returned. Otherwise FALSE is returned. The following syntax can be used to build the string Pattern.

*

Match 0 or more characters.

?

Match any one character.

[<char1><char2>…<charN>]
Match any character in the set.

[<char1>-<char2>]

Match any character between <char1> and <char2>.

<char>

Match the character <char>.

Examples patterns:

*.FW

Match all strings that end in “.FW”.

[a-z]

Match any lower case character.

 [!@#$%^&*()]

Match any one of these symbols.

z

Match the lower case character z.

DATA?.*
Match the string “DATA” followed by any character followed by a “.” followed by any string.

Status Codes Returned

TRUE
Pattern was found in String

FALSE
Pattern was not found in String

4.3.1 MetaiMatch XE "SIMPLE_INPUT_INTERFACE.ReadKeyStroke function"

 XE "function:SIMPLE_INPUT_INTERFACE.ReadKeyStroke" Function

The MetaiMatch() function performs a case insensitive comparison of a Unicode pattern string and a Unicode string.

BOOLEAN

MetaiMatch (

IN CHAR16
*String,

IN CHAR16
*Pattern

);

Parameters
String
A pointer to a Unicode string.

Pattern
A pointer to a Unicode pattern string.

Description

This function checks to see if the pattern of characters described by Pattern are found in String. The pattern check is a case insensitive comparison using the rules for the currently selected language code. If the pattern match succeeds, then TRUE is returned. Otherwise FALSE is returned. The following syntax can be used to build the string Pattern.

*

Match 0 or more characters.

?

Match any one character.

[<char1><char2>…<charN>]
Match any character in the set.

[<char1>-<char2>]
Match any character between <char1> and <char2>.

<char>

Match the character <char>.

Examples patterns (for English):

*.FW
Matches all strings that end in “.FW” or “.fw” or “.Fw” or “.fW”

[a-z]
Match any letter in the alphabet.

 [!@#$%^&*()]
Match any one of these symbols.

z
Match the character ‘z’ or ‘Z’.

D?.*
Match the character ‘D’ or ‘d’ followed by any character followed by a “.” followed by any string.

Status Codes Returned

TRUE
Pattern was found in String

FALSE
Pattern was not found in String

4.3.2 ValueToString Function

The ValueToString() function converts an integer to decimal formatted Unicode string.

VOID

ValueToString (

 IN CHAR16 *Buffer,

 IN BOOLEAN Comma,

 IN INT64 v

);

Parameters

Buffer

Pointer to the Unicode string that will be returned by this function.

Comma

Tells if the converted string should be formatted with commas or not.

v

The integer value that is to be converted into a string.

Description

This function converts the integer v into a decimal formatted Unicode string. If Comma is TRUE, then the string is formatted with commas. Otherwise, it is not formatted with commas. The converted string is returned in Buffer.

ValueToHex Function

The ValueToHex() function converts an integer to hexadecimal formatted Unicode string.

VOID

ValueToHex (

 IN CHAR16 *Buffer,

 IN UINT64 v

);

Parameters

Buffer

Pointer to the Unicode string that will be returned by this function.

v

The integer value that is to be converted into a string.

Description

This function converts the integer v into a hexadecimal formatted Unicode string. The converted string is returned in Buffer.

TimeToString Function

The TimeToString() function converts the time and date stored in a data structure into a Unicode string.

VOID

TimeToString (

 OUT CHAR16 *Buffer,

 IN EFI_TIME *Time

);

Parameters

Buffer

Pointer to the Unicode string that will be returned by this function.

Time

Pointer to a data structure containing the time and date.

Description

This function converts the EFI_TIME data structure Time in the Unicode string Buffer. The format of the Unicode string is:

MM/DD/YY hh:mmA

MM

Month

DD

Day of the month

YY

Year

hh

Hour

mm

Minutes

A

AM/PM field. ‘a’ for AM and ‘p’ for PM.

GuidToString Function

The GuidToString() function converts a GUID data structure into a Unicode string.

VOID

GuidToString (

 OUT CHAR16 *Buffer,

 IN EFI_GUID *Guid

);

Parameters

Buffer

Pointer to the Unicode string that will be returned by this function.

Guid

Pointer to a data structure containing the GUID.

Description

This function converts an EFI_GUID data structure Guid into the Unicode string Buffer. The format of the string is:

LLLLLLLL-MMMM-HHHH-hh-ll-NNNNNNNNNNNN

LLLLLLLL

The time_low field.

MMMM

The time_mid field.

HHHH

The time_hi_and_version field.

hh

The clock_sequence_high_and_reserved field.

ll

The clock_seq_low field.

NNNNNNNNNNNN

The node identifier. This is typically an ethernet hardware ID.

StatusToString Function

The StatusToString() function converts an EFI_STATUS value into a Unicode string.

VOID

StatusToString (

 OUT CHAR16 *Buffer,

 EFI_STATUS Status

);

Parameters

Buffer

Pointer to the Unicode string that will be returned by this function.

Status

EFI_STATUS value.

Description

This function converts the EFI_STATUS value Status into the Unicode string Buffer. Table 4-4 shows how EFI_STATUS values are converted to strings.

Table 4-4.
EFI_STATUS Output Formats

EFI_STATUS
Output Format

EFI_SUCCESS
“Success”

EFI_LOAD_ERROR
“Load Error”

EFI_INVALID_PARAMETER
“Invalid Parameter”

EFI_UNSUPPORTED
“Unsupported”

EFI_BAD_BUFFER_SIZE
“Bad Buffer Size”

EFI_BUFFER_TOO_SMALL
“Buffer Too Small”

EFI_NOT_READY
“Not Ready”

EFI_DEVICE_ERROR
“Device Error”

EFI_WRITE_PROTECTED
“Write Protected”

EFI_OUT_OF_RESOURCES
“Out of Resources”

EFI_VOLUME_CORRUPTED
“Volume Corrupt”

EFI_VOLUME_FULL
“Volume Full”

EFI_NO_MEDIA
“No Media”

EFI_MEDIA_CHANGED
“Media Changed”

EFI_NOT_FOUND
“Not Found”

EFI_ACCESS_DENIED
“Access Denied”

EFI_NO_RESPONSE
“No Response”

EFI_NO_MAPPING
“No mapping”

EFI_TIMEOUT
“Time out”

EFI_NOT_STARTED
“Not started”

EFI_ALREADY_STARTED
“Already started”

EFI_ABORTED
“Aborted”

EFI_ICMP_ERROR
“ICMP Error”

EFI_TFTP_ERROR
“TFTP Error”

EFI_PROTOCOL_ERROR
“Protocol Error”

EFI_WARN_UNKOWN_GLYPH
“Warning Unknown Glyph”

EFI_WARN_DELETE_FAILED
“Warning Delete Failed”

EFI_WARN_WRITE_FAILURE
“Warning Write Failure”

EFI_WARN_BUFFER_TOO_SMALL
“Warning Buffer Too Small”

DevicePathToStr Function

The DevicePathToStr() function converts a device path data structure into a printable Null-terminated Unicode string.

CHAR16 *

DevicePathToStr (

 EFI_DEVICE_PATH *DevPath

);

Parameters

DevPath

A pointer to a device path data structure.

Description

This function converts a device path data structure into a Null-terminated Unicode string. The memory for the Unicode string is allocated from pool, and a pointer to the Unicode string is returned. Tables 4-5, 4-6, 4-7, and 4-8 show the conversions from the different device path types into printable strings. Device path nodes are separated by a ‘\’ and device path instances are separated by a ‘,’.

Table 4-5.
Hardware Device Path Output Formats

Hardware Device Path Type
Output Format

PCI Device Path
“PCI(<Device Number>|<Function Number>)”

PCCARD Device Path
“Pccard(Socket<Socket Number>)”

Memory Device Path
“MemMap(<Memory Type>:<Starting Address>-<Ending Address>)

Controller Device Path
“Ctlr(<Controller>)”

Vendor Device Path
“VenHw(<Vendor GUID>)”

Vendor Device Path(Legacy)
“VenHw(<Vendor GUID>:<Legacy Drive Letter>)”

ACPI Device Path
“Acpi(<ACPI HID>,<ACPI UID>)”

ACPI Device Path(EISA)
“Acpi(PNP<ACPI HID>,<ACPI UID>)”

Unknown
“?”

Table 4-6.
Messaging Device Path Output Formats

Messaging Device Path Type
Output Format

ATAPI
“ATA(<Primary/Secondary>,<Master/Slave>)”

SCSI
“Scsi(<PUN>,<LUN>)”

FibreChannel
“Fibre(<WWN>)”

1394
“1394(<GUID>)”

USB
“Usb(<Port>)”

I2O
“I2O(<TID>)”

MAC Address
“MAC(<MAC address>)”

IPv4
“IPv4(not-done)”

IPv6
"IP-v6(not-done)"

InfiniBand
“InfiniBand(not-done)”

UART
“Uart(<Baud Rate>,<Parity>,<Data Bits>,<Stop Bits>)”

Vendor
“VenMsg(<Vendor GUID>)”

Vendor(Legacy)
“VenMsg(<Vendor GUID>:<Legacy Drive Letter>)”

Unknown
“?”

Table 4-7.
Media Device Path Output Formats

Media Device Path Type
Output Format

Hard Drive
“HD(Part<Partition Number>,Sig<Signature>)”

CDROM
“CDROM(Entry<Boot Entry>)”

Vendor
“VenMedia(<Vendor GUID>)”

Vendor(Legacy)
“VenMedia(<Vendor GUID>:<Legacy Drive Letter>)”

FilePath
“<File Name>”

Protocol
"<Protocol GUID>"

Unknown
“?”

Table 4-8.
BSS Device Path Output Formats

BSS Device Path Type
Output Format

Floppy
“Floppy”

HardDrive
“Harddrive”

CDROM
“CDROM”

PCMCIA
“PCMCIA”

USB
“USB”

Embedded Network
“Net”

Other
“?”

Unknown
“?”

4.4 Memory Support Functions

The EFI Library provides a set of functions that operating on buffers in memory. Buffers can either be allocated on the stack, as global variables, or from the memory pool. To prevent memory leaks, it is the caller’s responsibility to maintain buffers allocated from pool. This means that the caller must free a buffer when that buffer is no longer needed. Table 4-9 contains the list of memory support functions that are described in the following sections.

Table 4-9.
Memory Support Functions

Name
Description

ZeroMem
Fills a buffer with zeros.

SetMem
Fills a buffer with a value..

CopyMem
Copies the contents of one buffer to another buffer.

CompareMem
Compares the contents of two buffers.

AllocatePool
Allocates a buffer from pool.

AllocateZeroPool
Allocates a buffer from pool and fills it with zeros.

ReallocatePool
Adjusts the size of a previously allocated buffer.

FreePool
Frees a previously allocated buffer.

GrowBuffer
Allocates a new buffer or grows the size of a previously allocated buffer.

LibMemoryMap
Retrieves the system’s current memory map.

ZeroMem Function

The ZeroMem() function fills a buffer with zeros.

VOID

ZeroMem (

 IN VOID *Buffer,

 IN UINTN Size

);

Parameters

Buffer

Pointer to the buffer to zero.

Size

Number of bytes to zero in Buffer.

Description

This functions fills Size bytes of Buffer with zeros.

SetMem Function

The SetMem() function fills a buffer with a value..

VOID

SetMem (

 IN VOID *Buffer,

 IN UINTN Size,

 IN UINT8 Value

);

Parameters

Buffer

Pointer to the buffer to fill.

Size

Number of bytes in Buffer to fill.

Value

Value to fill Buffer with.

Description

This function fills Size bytes of Buffer with Value.

CopyMem Function

The CopyMem() function copies the contents of one buffer to another buffer.

VOID

CopyMem (

 IN VOID *Dest,

 IN VOID *Src,

 IN UINTN len

);

Parameters

Dest

Pointer to the destination buffer of the memory copy.

Src

Pointer to the source buffer of the memory copy.

len

Number of bytes to copy from Src to Dest.

Description

This function copies len bytes from the buffer Src to the buffer Dest.

CompareMem Function

The CompareMem() function compares the contents of two buffers.

INTN

CompareMem (

 IN VOID *Dest,

 IN VOID *Src,

 IN UINTN len

);

Parameters

Dest

Pointer to the Buffer to compare.

Src

Pointer to the Buffer to compare.

len

Number of bytes to compare.

Description

This function compares len bytes of Src to len bytes of Dest. If the two buffers are identical for len bytes, then 0 is returned. Otherwise, the difference between the first two mismatched bytes is returned.

Status Codes Returned

0
Dest is identical to Src for len bytes

(0
Desk is not identical to Src for len bytes

 AllocatePool Function

The AllocatePool() function allocates a buffer from memory with type PoolAllocationType.

VOID *

AllocatePool (

 IN UINTN Size

);

Parameters

Size

The size of the buffer to allocate from pool.

Description

This function attempts to allocate Size bytes from memory with type PoolAllocationType. If the memory allocation fails, NULL is returned. Otherwise a pointer to the allocated buffer is returned.

AllocateZeroPool Function

The AllocatePool() function allocates and zeros buffer from memory.

VOID *

AllocateZeroPool (

 IN UINTN Size

);

Parameters

Size

The size of the buffer to allocate from pool.

Description

This function attempts to allocate Size bytes from memory. If the memory allocation fails, NULL is returned. Otherwise, Size bytes of the allocated buffer are set to zero, and a pointer to the allocated buffer is returned.

ReallocatePool Function

The ReallocatePool() function adjusts the size of a previously allocated buffer.

VOID *

ReallocatePool (

 IN VOID *OldPool,

 IN UINTN OldSize,

 IN UINTN NewSize

);

Parameters

OldPool

A pointer to the buffer whose size is being adjusted.

OldSize

The size of the current buffer.

NewSize

The size of the new buffer.

Description

This function changes the size of a buffer allocated from pool from OldSize to NewSize. The contents of the old buffer are copied to the new buffer. If NewSize is zero, then OldPool is freed, and NULL is returned. If NewSize is not zero, and the new buffer can not be allocated, then NULL is returned. If NewSize is not zero, and the new buffer can be allocated, then the contents of OldPool are copied to the new buffer, OldPool is freed, and a pointer to the new buffer is returned.

FreePool Function

The FreePool() function releases a previously allocated buffer.

VOID

FreePool (

 IN VOID *p

);

Parameters

p

A pointer to the buffer to free.

Description

The free memory is returned to the available pool. The buffer p must have been allocated with AllocatePool().
GrowBuffer Function

The GrowBuffer() function either allocates a new buffer or it increases the size of a previously allocated buffer.

BOOLEAN

GrowBuffer(

 IN OUT EFI_STATUS *Status,

 IN OUT VOID **Buffer,

 IN UINTN BufferSize

);

Parameters

Status

Status from the last EFI API call.

Buffer

A pointer to the buffer to grow.

BufferSize
The new size of the buffer.

Description

If Buffer is NULL on entry, then this function will attempt to allocate a new buffer with size BufferSize. If the buffer is allocated, then Buffer will point to the new buffer, Status will be EFI_SUCCESS, and the function will return TRUE. If the buffer can not be allocated, then Buffer will be set to NULL, Status will be set to EFI_OUT_OF_RESOURCES, and the function will return FALSE.

If Buffer is not NULL and Status is EFI_BUFFER_TOO_SMALL, then this function will free the old buffer, and attempt to reallocate a new buffer with size BufferSize. If that reallocation succeeds, then Buffer will point to the reallocated buffer, Status will be EFI_SUCCESS, and the function will return TRUE. If the buffer can not be reallocated, then Buffer will be set to NULL, Status will be set to EFI_OUT_OF_RESOURCES, and the function will return FALSE.

If Buffer is not NULL, and Status is not EFI_BUFFER_TOO_SMALL, then the buffer will be freed, Buffer will be set to NULL, and the function will return FALSE.

The main purpose of this function is to retry an EFI API call until a buffer of the appropriate size is allocated. The following is an example of how to use the GrowBuffer() function. The first pass through the while loop uses the GrowBuffer() function to allocate a new 100 byte buffer. If the GetVariable() API call needs more than 100 bytes, it will return with status EFI_BUFFER_TOO_SMALL. Also, BufferSize will be set to the number of bytes required for the call to GetVariable() to succeed. So, the next iteration through the while loop will call GrowBuffer() again. This time, the buffer will be reallocated to the size required by GetVariable(). So, the next call to GetVariable() will succeed, and the buffer used to store the variable will be exactly the right size.

EFI_STATUS Status;

VOID *Buffer;

UINTN BufferSize;

Buffer = NULL;

BufferSize = 100;

while (GrowBuffer (&Status, &Buffer, BufferSize)) {

 Status = RT->GetVariable(Name,

 VendorGuid,

 NULL,

 &BufferSize,

 Buffer);

Status Codes Returned

TRUE
The buffer was reallocated.

FALSE
The buffer could not be reallocated.

LibMemoryMap Function

The LibMemoryMap() function retrieves the systems current memory map.

EFI_MEMORY_DESCRIPTOR *

LibMemoryMap (

 OUT UINTN *NoEntries,

 OUT UINTN *MapKey

 OUT UINTN *DescriptorSize

 OUT UINT32 *DescriptorVersion

);

Parameters

NoEntries

A pointer to the number of memory descriptors in the system.

MapKey

A pointer to the current memory map key.

DescriptorSize

A pointer to the size in bytes of a memory descriptor.

DescriptorVersion
A pointer to version of the memory descriptor..

Description

This function retrieves and returns the system’s current memory map. The number of memory map entries is returned in NoEntries, and the size of each entry in bytes is returned in DescriptorSize. Also, the version of the memory descriptor data structure is returned in DescriptorVersion, and the key for the current memory map is returned in MapKey. The storage for the memory map is allocated by this function from pool.

4.5 CRC Support Functions

The EFI Library provides a set of functions that are used to compute and verify CRC32 values. The main purpose of these function is to initialize the CRC field in a table header, or to verify the CRC field in a table header. Table 4-10 contains the list of CRC support functions that are described in the following sections.

Table 4-10.
CRC Support Functions

Name
Description

SetCrc
Computes and updates the CRC32 value for a table header.

SetCrcAltSize
Computes and updates the CRC32 value for a portion of a table header.

CheckCrc
Verifies the CRC32 value for a table header.

CheckCrcAltSize
Verifies the CRC32 value for a portion of a table header.

CalculateCrc
Compute the CRC32 value of a data buffer.

SetCrc Function

The SetCrc() function computes and updates the CRC32 value in a table header.

VOID

SetCrc (

 IN OUT EFI_TABLE_HEADER *Hdr

);

Parameters

Hdr

A pointer to a table header.

Description

This function calculates the 32 bit CRC for a table header, and fills in the CRC32 field of that table header with the computed value.

SetCrcAltSize Function

The SetCrcAltSize() function computes and updates the CRC32 value for a portion of a table header.

VOID

SetCrcAltSize (

 IN UINTN Size,

 IN OUT EFI_TABLE_HEADER *Hdr

);

Parameters

Size

Number of bytes to include in the CRC32 calculation.

Hdr

A pointer to a table header.

Description

This function calculates the 32 bit CRC for the first Size bytes a table header, and fills in the CRC32 field of that table header with the computed value.

CheckCrc Function

The CheckCrc() function verifies the CRC32 value in a table header.

BOOLEAN

CheckCrc (

 IN UINTN MaxSize,

 IN OUT EFI_TABLE_HEADER *Hdr

);

Parameters

MaxSize

The maximum size for which a CRC32 check will be performed.

Hdr

A pointer to a table header.

Description

This function computes the CRC32 value for a table header, and verifies that it matches the CRC32 value currently stored in the table header. If the CRCs match, TRUE is returned. Otherwise, FALSE is returned. If MaxSize is not zero, and the size of the table header is greater than MaxSize, then FALSE is returned.

Status Codes Returned

TRUE
The CRC32 value was verified.

FALSE
The CRC32 value was not verified.

CheckCrcAltSize Function

The CheckCrc() function verifies the CRC32 value in a table header.

BOOLEAN

CheckCrcAltSize (

 IN UINTN MaxSize,

 IN UINTN Size,

 IN OUT EFI_TABLE_HEADER *Hdr

);

Parameters

MaxSize

The maximum size for which a CRC32 check will be performed.

Size

The number of bytes to include in the CRC32 check.

Hdr

A pointer to a table header.

Description

This function computes the CRC32 value for the first Size bytes of a table header, and verifies that it matches the CRC32 value currently stored in the table header. If the CRCs match, TRUE is returned. Otherwise, FALSE is returned. If MaxSize is not zero, and the size of the table header is greater than MaxSize, then FALSE is returned.

Status Codes Returned

TRUE
The CRC32 value was verified.

FALSE
The CRC32 value was not verified.

CalculateCrc Function

The CalculateCrc() computes the CRC32 value.

UINT32

CalculateCrc (

 IN UINT8 *pt,

 IN UINTN Size

);

Parameters

pt

Pointer to data buffer upon which the CRC calculation will be computed.

Size

The number of bytes to include in the CRC32 calculation.

Description

This function computes the CRC32 value for the Size bytes of a data buffer referenced by the pointer pt. The result is returned as an UINT32 value. If size of zero is entered, the result will be zero.

4.6 Text I/O Functions

The Text I/O functions in the EFI Library provide a simple means to get input and output from a console device. Many of the output functions use a format string to describe how to format the output of variable arguments. The format string consists of normal text and argument descriptors. There are no restrictions for how the normal text and argument descriptors can be mixed. Each argument descriptor is of the form “%w.lF’, where ‘w’ is an optional integer value that represents the argument width parameter, ‘l’ is an optional integer value that represents the field width parameter, and ‘F’ is a set of optional field modifiers, and the data type of the argument to print. Table 4-11 lists the optional field modifiers and arguments types.

Table 4-11.
Format string attribute and argument specification

Name
Description

0
Pad the field with zeros

-
Left justify the argument in the field.

,
Insert commas in a decimal formatted integer.

*
The field width is provided as an argument.

n
Set the output attribute for this field to normal.

h
Set the output attribute for this field to highlight.

e
Set the output attribute for this field to error.

l
The argument value is 64 bits. The default is a 32 bit argument.

a
The argument is an ASCII string.

s
The argument is a Unicode string.

X
Print the argument as a hexadecimal value padded with zeros. The field width defaults to 8 for 32 bit arguments, and 16 for 64 bit arguments.

x
Print the argument as a hexadecimal value.

D
Print the argument as a decimal value with optional commas.

C
The argument is a Unicode character.

T
The argument is a pointer to an EFI_TIME data structure. Please see the TimeToString() function for the output format of this field.

G
The argument is a pointer to a EFI_GUID data structure. Please see the GuidToString() function for the output format of this field.

R
The argument is an EFI_STATUS value. Please see the StatusToString() function for the output format of this field.

N
Set the output attribute to normal.

H
Set the output attribute to highlight.

E
Set the output attribute to error.

Table 4-12 contains the list of Text I/O functions that are described in the following sections.

Table 4-12.
Text I/O Functions

Name
Description

Input
Input a Unicode string at the current cursor location using the console in and console out device.

Iinput
Input a Unicode string at the current cursor location using the specified input and output devices.

Output
Send a Unicode string to the console out device at the current cursor location.

Print
Sends a formatted Unicode string to the console out device at the current cursor location..

PrintAt
Sends a formatted Unicode string to the specified location on the console out device.

Iprint
Sends a formatted Unicode string to the specified output device.

IprintAt
Sends a formatted Unicode string to the specified location of the specified console device.

Aprint
Sends a formatted Unicode string to the console out device using an ASCII format string.

Sprint
Sends a formatted Unicode string to the specified buffer.

PoolPrint
Sends a formatted Unicode string to a buffer allocated from pool.

CatPrint
Concatenates a formatted Unicode string to a string allocated from pool.

DumpHex
Prints the contents of a buffer in hexadecimal format.

LibIsValidTextGraphics
Decide if Graphic is a supported Unicode Box Drawing character.

IsValidAscii
Decide if character is legal ASCII element.

IsValidEfiCntlChar
Decide if character is an EFI Control character.

Input Function

The Input() function reads a Unicode string form the console in device at the current cursor location.

VOID

Input (

 IN CHAR16 *Prompt OPTIONAL,

 OUT CHAR16 *InStr,

 IN UINTN StrLen

);

Parameters

Prompt

A pointer to a Unicode string.

InStr
A pointer to the Unicode string used to store the string read from the console in device.

StrLen
The maximum length of the Unicode string to read from the console in device.

Description

If Prompt is not NULL, then Prompt is displayed on the console out device. Then, characters are read from the console in device and displayed on the console out device. In addition, these characters are stored in InStr until either a ‘\n” or a ‘\r’ character is received. If the backspace key is pressed, then the last character is InStr is removed, and the display is updated to show that the character has been erased. If more than StrLen characters are received, then the extra characters are ignored.

 IInput Function

The IInput() function reads a Unicode string form the specified device at the current cursor location.

VOID

IInput (

 IN SIMPLE_TEXT_OUTPUT_INTERFACE *ConOut,

 IN SIMPLE_INPUT_INTERFACE *ConIn,

 IN CHAR16 *Prompt OPTIONAL,

 OUT CHAR16 *InStr,

 IN UINTN StrLen

);

Parameters

ConOut

A pointer to the output device’s interface protocol.

ConIn

A pointer to the input device’s interface protocol.

Prompt

A pointer to a Unicode string.

InStr
A pointer to the Unicode string used to store the string read from the input device.

StrLen
The maximum length of the Unicode string to read from the input device.

Description

If Prompt is not NULL, then Prompt is displayed on the ConOut device. Then, characters are read from the ConIn device and displayed on the ConOut device. In addition, these characters are stored in InStr until either a ‘\n’ or a ‘\r’ character is received. If the backspace key is pressed, then the last character is InStr is removed, and the ConOut device is updated to show that the character has been erased. If more than StrLen characters are received from the ConIn device, then the extra characters are ignored.

Output Function

The Output() function sends a Unicode string to the console out device at the current cursor location.

VOID

Output (

 IN CHAR16 *Str

);

Parameters

Str

A pointer to a Unicode string.

Description

This function sends the Unicode string Str to the console out device specified in the system table.

Print Function

The Print() function sends a formatted Unicode string to the console out device at the current cursor location.

UINTN

Print (

 IN CHAR16 *fmt,

 ...

);

Parameters

fmt

A pointer to a Unicode string containing format information.

...

Variable length argument list.

Description

This function uses the format string fmt and the variable argument list to build a formatted Unicode string. This formatted Unicode string is then sent to the console out device. The length of the formatted Unicode string is returned.

PrintAt Function

The PrintAt() function sends a formatted Unicode string to the console out device at the specified cursor location.

UINTN

PrintAt (

 IN UINTN Column,

 IN UINTN Row,

 IN CHAR16 *fmt,

 ...

);

Parameters

Column

The column number on the console out device.

Row

The row number on the console out device.

fmt

A pointer to a Unicode string containing format information.

...

Variable length argument list.

Description

This function uses the format string fmt and the variable argument list to build a formatted Unicode string. This formatted Unicode string is then sent to the console out device at the cursor location specified by Column and Row. The length of the formatted Unicode string is returned.

IPrint Function

The IPrint() function sends a formatted Unicode string to the specified device at the current cursor location.

UINTN

IPrint (

 IN SIMPLE_TEXT_OUTPUT_INTERFACE *Out,

 IN CHAR16 *fmt,

 ...

);

Parameters

Out

A pointer to the output devices interface protocol..

fmt

A pointer to a Unicode string containing format information.

...

Variable length argument list.

Description

This function uses the format string fmt and the variable argument list to build a formatted Unicode string. This formatted Unicode string is then sent to the device specified by Out at the current cursor location. The length of the formatted Unicode string is returned.

IPrintAt Function

The IPrintAt() function sends a formatted Unicode string to the specified device at the specified cursor location.

UINTN

IPrintAt (

 IN SIMPLE_TEXT_OUTPUT_INTERFACE *Out,

 IN UINTN Column,

 IN UINTN Row,

 IN CHAR16 *fmt,

 ...

);

Parameters

Out

A pointer to the output devices interface protocol..

Column

The column number on the console out device.

Row

The row number on the console out device.

fmt

A pointer to a Unicode string containing format information.

...

Variable length argument list.

Description

This function uses the format string fmt and the variable argument list to build a formatted Unicode string. This formatted Unicode string is then sent to the device specified by Out at the cursor location specified by Column and Row. The length of the formatted Unicode string is returned.

APrint Function

The APrint() function sends a formatted Unicode string to the console out device at the current cursor location.

UINTN

APrint (

 IN char *fmt,

 ...

);

Parameters

fmt

A pointer to an ASCII string containing format information.

...

Variable length argument list.

Description

This function uses the format string fmt and the variable argument list to build a formatted Unicode string. This formatted Unicode string is then sent to the console out device. The length of the formatted Unicode string is returned.

SPrint Function

The SPrint() function sends a formatted Unicode string to the specified buffer.

UINTN

SPrint (

 OUT CHAR16 *Str,

 IN UINTN StrSize,

 IN CHAR16 *fmt,

 ...

);

Parameters

Str

A pointer to a Unicode string.

StrSize

The maximum length of the Unicode string Str.

fmt

A pointer to a Unicode string containing format information.

...

Variable length argument list.

Description

This function uses the format string fmt and the variable argument list to build a formatted Unicode string. Up to StrSize characters of this formatted Unicode string is then stored in Str. The length of the formatted Unicode string is returned.

PoolPrint Function

The PoolPrint() function sends a formatted Unicode string to a buffer allocated from pool.

CHAR16 *

PoolPrint (

 IN CHAR16 *fmt,

 ...

);

Parameters

fmt

A pointer to a Unicode string containing format information.

...

Variable length argument list.

Description

This function uses the format string fmt and the variable argument list to build a formatted Unicode string. Storage for the formatted Unicode string is allocated from pool. A pointer to the formatted Unicode string is returned. It is the caller’s responsibility to free the allocated buffer.

CatPrint Function

The CatPrint() function concatenates a formatted Unicode string to a Unicode string allocated from pool.

typedef struct {

 CHAR16 *str;

 UINTN len;

 UINTN maxlen;

} POOL_PRINT;

CHAR16 *

CatPrint (

 IN OUT POOL_PRINT *Str,

 IN CHAR16 *fmt,

 ...

);

Parameters

Str

A pointer to POOL_PRINT data structure containing a Unicode string.

fmt

A pointer to a Unicode string containing format information.

...

Variable length argument list.

Description

This function uses the format string fmt and the variable argument list to build a formatted Unicode string. Str is grown to accommodate the formatted Unicode string, and the formatted Unicode string is appended to the end of Str. A pointer to the concatenated Unicode string is returned.

DumpHex Function

The DumpHex() function prints the contents of a buffer in hexadecimal format.

VOID

DumpHex (

 IN UINTN Indent,

 IN UINTN Offset,

 IN UINTN DataSize,

 IN VOID *UserData

);

Parameters

Indent

Number of spaces to indent text output.

Offset

Byte offset within UserData to start printing.

DataSize

The number of bytes of data to print from UserData.

UserData

A pointer to the buffer of data to print.

Description

This function prints the contents of UserData. The format of each line of output is a 4 byte address printed in hexadecimal followed by 16 bytes of data printed in hexadecimal followed by 16 ASCII characters. If the ASCII characters are not printable, then the are substituted with a period. The entire output is indented by Indent spaces. The output starts Offset bytes into UserData, and a total of DataSize bytes are printed. The following is a sample output with an Indent of 0, Offset of 1, a DataSize of 100, and UserData pointing at the EFI SystemTable.

Sample Output:

00000001: 49 42 49 20 53 59 53 54-00 00 01 00 60 00 00 00 *EFI SYST....`...*

00000011: EC 95 4A D3 00 00 00 00-88 D9 DA 01 64 DB DA 01 *..J.........d...*

00000021: 88 D9 DA 01 28 DB DA 01-08 D6 DA 01 28 D7 DA 01 *....(.......(...*

00000031: 00 D0 41 00 60 7B 41 00-00 00 00 00 00 00 00 00 *..A.`.A.........*

00000041: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*

00000051: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*

00000061: 00 00 00 00 *....*

LibIsValidTextGraphics Function

The LibIsValidTextGraphics() function returns TRUE if Graphic is a supported Unicode Box Drawing character.

BOOLEAN

LibIsValidTextGraphics (

 IN CHAR16 Graphic,

 OUT CHAR8 *PcAnsi, OPTIONAL

 OUT CHAR8 *Ascii OPTIONAL

);

Parameters

Graphic

Unicode character to test.

PcAnsi

Optional pointer to return PCANSI equivalent of Graphic.

Ascii

Optional pointer to return ASCII equivalent of Graphic.

Description

This function returns a TRUE if the character Graphic adheres to the range of legal Unicode box drawing characters. The criteria is that the upper byte contains a 0x25 or 0x21. If the value is TRUE and the character has also a mapping for either the PcAnsi or Ascii character set, these mappings will be returned. Otherwise, the function is not deemed to be a box drawing character and FALSE is returned.

Status Codes Returned

TRUE
The character is a Unicode box drawing character.

FALSE
The character is not a Unicode box drawing character.

IsValidAscii Function

The IsValidAscii() function determines if the argument is a legal ASCII character.

BOOLEAN

IsValidAscii (

 IN CHAR16 Ascii

);

Parameters

Ascii

Number of spaces to indent text output.

Description

This function returns TRUE if Ascii lies within the legal range of ASCII elements, namely 0x20 and 0x7F, respectively. Otherwise, the function returns FALSE.

Status Codes Returned

TRUE
The character is a legal ASCII element.

FALSE
The character is not a legal ASCII element.

IsValidEfiCntlChar Function

The IsValidEfiCntlChar() function determines if the character is one of the four EFI control characters.

BOOLEAN

IsValidEfiCntlChar (

 IN CHAR16 c

);

Parameters

C

Character to decide if is also a control character.

Description

This function returns TRUE if the input character c is a legal EFI control character. The control characters included in Table 4-13.

Table 4-13.
EFI Control Characters

Name
Value

CHAR_NULL
0x0000

CHAR_BACKSPACE
0x0008

CHAR_TAB
0x0009

CHAR_LINEFEED
0x000A

CHAR_CARRIAGE_RETURN
0x000D

Otherwise, the value FALSE is returned.

Status Codes Returned

TRUE
The character is an EFI control character.

FALSE
The character is not an EFI control character.

4.7 Math Functions

The EFI Library provides a few math functions to operate on 64 bit operands. These include shift operations, multiplication and division. Table 4-14 lists the set of 64 bit math functions that are described in the following sections.

Table 4-14.
Math Functions

Name
Description

LshiftU64
Shift a 64 bit integer left between 0 and 63 bits.

RshiftU64
Shift a 64 bit integer right between 0 and 63 bits.

MultiU64x32
Multiply a 64 bit unsigned integer by a 32 bit unsigned integer and generate a 64 bit unsigned result.

DivU64x32
Divide a 64 bit unsigned integer by a 32 bit unsigned integer and generate a 64 bit unsigned result with an optional 32 bit unsigned remainder.

LshiftU64 Function

The LshiftU64() function shifts a 64 bit integer left between 0 and 63 bits.

UINT64

LShiftU64 (

 IN UINT64 Operand,

 IN UINTN Count

);

Parameters

Operand

The 64 bit operand to shift left.

Count

The number of bits to shift left.

Description

This function shifts the 64 bit value Operand to the left by Count bits. The shifted value is returned.

RshiftU64 Function

The LshiftU64() function shifts a 64 bit integer right between 0 and 63 bits.

UINT64

RShiftU64 (

 IN UINT64 Operand,

 IN UINTN Count

);

Parameters

Operand

The 64 bit operand to shift right.

Count

The number of bits to shift right.

Description

This function shifts the 64 bit value Operand to the right by Count bits. The shifted value is returned.

MultU64x32 Function

The MultU64x32() function multiples a 64 bit unsigned integer by a 32 bit unsigned integer and generates a 64 bit unsigned result.

UINT64

MultU64x32 (

 IN UINT64 Multiplicand,

 IN UINTN Multiplier

);

Parameters

Multiplicand
A 64 bit unsigned value.

Multiplier
A 32 bit unsigned value.

Description

This function multiples the 64 bit unsigned value Multiplcand by the 32 bit unsigned value Multiplier and generates a 64 bit unsigned result. This 64 bit unsigned result is returned.

DivU64x32 Function

The DivU64x32() function divides a 64 bit unsigned integer by a 32 bit unsigned integer and generates a 64 bit unsigned result and a 32 bit unsigned remainder.

UINT64

DivU64x32 (

 IN UINT64 Dividend,

 IN UINTN Divisor,

 OUT UINTN *Remainder OPTIONAL

);

Parameters

Dividend

A 64 bit unsigned value.

Divisor

A 32 bit unsigned value.

Remainder

A pointer to a 32 bit value.

Description

This function divides the 64 bit unsigned value Dividend by the 32 bit unsigned value Divisor and generates a 32 bit unsigned quotient. If Remainder is not NULL, then the 32 bit unsigned remainder is returned in Remainder. This function returns the 32 bit unsigned quotient.

4.8 Spin Lock Functions

Spin locks are used to protect data structures that may be updated by more than one processor at a time, or a single processor that may update the same data structure while running a several different priority levels. A spin lock is stored in an FLOCK data structure.

typedef struct _FLOCK {

 EFI_TPL Tpl;

 EFI_TPL OwnerTpl;

 UINTN Lock;

} FLOCK;

Table 4-15 lists the support functions for creating and maintaining spin locks. These functions are described in the following sections.

Table 4-15.
Spin Lock Functions

Name
Description

InitializeLock
Initialize a spin lock.

AcquireLock
Acquire a spin lock.

ReleaseLock
Release a spin lock.

InitializeLock Function

The InitializeLock() function initializes a basic mutual exclusion lock.

VOID

InitializeLock (

 IN OUT FLOCK *Lock,

 IN EFI_TPL Priority

);

Parameters

Lock

A pointer to the lock data structure to initialize.

Priority

The task priority level of the lock.

Description

This function initializes a basic mutual exclusion lock. Each lock provides mutual exclusion access at its task priority level. Since there is no preemption or multiprocessor support in EFI, acquiring the lock only consists of raising to the locks TPL.

AcquireLock Function

The AcquireLock() function acquires ownership of a lock

VOID

AcquireLock (

 IN FLOCK *Lock

);

Parameters

Lock

A pointer to the lock to acquire.

Description

This function raises the system’s current task priority level to the task priority level of the mutual exclusion lock. Then, it acquires ownership of the lock.

ReleaseLock Function

The ReleaseLock() function releases ownership of a lock

VOID

ReleaseLock (

 IN FLOCK *Lock

);

Parameters

Lock

A pointer to the lock to release.

Description

This function releases ownership of the mutual exclusion lock, and restores the system’s task priority level to its previous level.

4.9 Handle and Protocol Support Functions

The EFI Library contains a set of functions that help drivers maintain the protocol interfaces in the boot services environment. Table 4-16 lists the set of helper functions that are described in the following sections.

Table 4-16.
Handle and Protocol Support Functions

Name
Description

LibLocateHandle
Finds all device handles that match the specified search criteria.

LibLocateHandleByDiskSignature
Finds all device handles that support the Block I/O protocol and have a disk with a matching disk signature.

LibLocateProtocol
Finds the first protocol instance that matches a given protocol.

LibInstallProtocolInterfaces
Installs one or more protocol interfaces into the boot services environment..

LibUninstallProtocolInterfaces
Removes one or more protocol interfaces from the boot services environment.

LinReinstallProtocolInterfaces
Reinstalls one or more protocol interfaces into the boot services environment.

LibLocateHandle Function

The LibLocateHandle() function returns an array of handles that support the requested protocol in a buffer allocated from pool.

EFI_STATUS

LibLocateHandle (

 IN EFI_LOCATE_SEARCH_TYPE SearchType,

 IN EFI_GUID *Protocol OPTIONAL,

 IN VOID *SearchKey OPTIONAL,

 IN OUT UINTN *NoHandles,

 OUT EFI_HANDLE **Buffer

);

Parameters

SearchType
Specifies which handle(s) are to be returned.

Protocol
Provides the protocol to search by. This parameter is only valid for SearchType ByProtocol.

SearchKey
Supplies the search key depending on the SearchType.

NoHandles
The number of handles returned in Buffer.

Buffer
A pointer to the buffer to return the requested array of handles that support Protocol.

Description

The LibLocateHandle() function returns one or more handles that match the SearchType request. Buffer is allocated from pool, and the number of entries in Buffer is returned in NoHandles. Each SearchType is described below:

AllHandles
Protocol and SearchKey are ignored and the function returns an array of every handle in the system.

ByRegisterNotify
SearchKey supplies the Registration returned by RegisterProtocolNotify(). The function returns the next handle that is new for the Registration. Only one handle is returned at a time, and the caller must loop until no more handles are returned. Protocol is ignored for this search type.

ByProtocol
All handles that support Protocol are returned. SearchKey is ignored for this search type.

Status Codes Returned

EFI_SUCCESS
The result array of handles was returned.

EFI_NOT_FOUND
No handles match the search.

EFI_OUT_OF_RESOURCES
There is not enough pool memory to store the matching results.

LibLocateHandleByDiskSignature Function

The LibLocateHandleByDiskSignature() function returns an array of handles that support the requested protocol in a buffer allocated from pool.

EFI_STATUS

LibLocateHandle (

 IN UINT8

MBRType,

 IN UINT8

SignatureType,

 IN VOID

*Signature,

 IN OUT UINTN

*NoHandles,

 OUT EFI_HANDLE

**Buffer

);

Parameters

MBRType
Specifies the type of MBR to search for. This can either be the PC AT compatible MBR or an EFI Partition Table Header.

SignatureType
Specifies the type of signature to look for in the MBR. This can either be a 32 bit signature, or a GUID signature.

Signature
A pointer to a 32 bit disk signature or a pointer to a GUID disk signature. The type depends on SignatureType.

NoHandles
The number of handles returned in Buffer.

Buffer
A pointer to the buffer to return the requested array of handles that support Protocol.

Description

The LibLocateHandleByDiskSignature() function returns one or more handles to disk devices that match the specified MBRType, SignatureType, and Signature. Buffer is allocated from pool, and the number of entries in Buffer is returned in NoHandles. The following are definitions for the valid values for MBRType and SignatureType.

#define MBR_TYPE_PCAT 0x01

#define MBR_TYPE_EFI_PARTITION_TABLE_HEADER 0x02

#define SIGNATURE_TYPE_MBR 0x01

#define SIGNATURE_TYPE_GUID 0x02

Status Codes Returned

EFI_SUCCESS
The result array of handles was returned.

EFI_NOT_FOUND
No handles match the search.

EFI_OUT_OF_RESOURCES
There is not enough pool memory to store the matching results.

 LibLocateProtocol Function

The LibLocateProtocol() function returns the first protocol instance that matches the given protocol.

EFI_STATUS

LibLocateProtocol (

 IN EFI_GUID *Protocol,

 OUT VOID **Interface

);

Parameters

Protocol
Provides the protocol to search for.

Interface
On return, a pointer to the first interface that matches Protocol.

Description

The LibLocateProtocol() function finds all the device handles that support Protocol, and returns a pointer to the the protocol instance from the first handle in Interface. If no protocol instances are found, then Instance is set to NULL.

Status Codes Returned

EFI_SUCCESS
A protocol instance matching Protocol was found.

EFI_NOT_FOUND
No protocol instances were found that match Protocol.

 LibInstallProtocolInterfaces Function

The LibInstallProtocolInterfaces() function installs one or more protocol interfaces into the boot services environment.

EFI_STATUS

LibInstallProtocolInterfaces (

 IN OUT EFI_HANDLE *Handle,

 ...

);

Parameters

Handle
The handle to install the new protocol interfaces on, or NULL if a new handle is to be allocated.

...
A variable argument list containing pairs of protocol GUIDs and protocol interfaces.

Description

This function installs a set of protocol interfaces into the boot services environment. It removes arguments from the variable argument list in pairs. The first item is always a pointer to the protocol’s GUID, and the second item is always a pointer to the protocol’s interface. These pairs are used to call the boot services routine InstallProtoclInterface() to add one protocol interface to Handle. If Handle is NULL on entry, then a new handle will be allocated. The pairs of arguments are removed from the variable argument list until a NULL protocol GUID value is found. If any errors are generated while the protocol interfaces are being installed, then all the protocols added in this call will be removed.

Status Codes Returned

EFI_SUCCESS
All the protocol interfaces were installed.

EFI_OUT_OF_RESOURCES
There was not enough memory in pool to install all the protocols.

LibUninstallProtocolInterfaces Function

The LibInstallProtocolInterfaces() function removes one or more protocol interfaces into the boot services environment.

VOID

LibUninstallProtocolInterfaces (

 IN EFI_HANDLE Handle,

 ...

);

Parameters

Handle
The handle to remove the protocol interfaces from.

...
A variable argument list containing pairs of protocol GUIDs and protocol interfaces.

Description

This function removes a set of protocol interfaces from the boot services environment. It removes arguments from the variable argument list in pairs. The first item is always a pointer to the protocol’s GUID, and the second item is always a pointer to the protocol’s interface. These pairs are used to call the boot services routine UninstallProtoclInterface() to remove one protocol interface from Handle. The pairs of arguments are removed from the variable argument list until a NULL protocol GUID value is found.

Status Codes Returned

EFI_SUCCESS
All the protocol interfaces were removed.

EFI_NOT_FOUND
One of the protocol interfaces could not be found.

LibReinstallProtocolInterfaces Function

The LibReinstallProtocolInterfaces() function replaces one or more protocol interfaces into the boot services environment.

EFI_STATUS

LibReinstallProtocolInterfaces (

 IN OUT EFI_HANDLE Handle,

 ...

);

Parameters

Handle
The handle to remove the protocol interfaces from.

...
A variable argument list containing triplets of protocol GUIDs, old protocol interfaces, and new protocol interfaces.

Description

This function replaces a set of protocol interfaces in the boot services environment. It removes arguments from the variable argument list in triplets. The first item is always a pointer to the protocol’s GUID, and the second item is always a pointer to the current protocol interface, and the third item is always a pointer to the new protocol interface. These triplets are used to call the boot services routine ReinstallProtoclInterface() to replace one protocol interface in Handle. The triplets of arguments are removed from the variable argument list until a NULL protocol GUID value is found. If there are any errors in this process, then the boot services environment is restored to the state it had just before the call to this function was made.

Status Codes Returned

EFI_SUCCESS
All the protocol interfaces were replaced.

EFI_NOT_FOUND
One of the protocol interfaces could not be found.

4.10 File I/O Support Functions

Table 4-17 lists some helper function related to Files and a set of functions and macros that facilitate the manipulate of Files.

typedef VOID *SIMPLE_READ_FILE;

Table 4-17.
File I/O Support Functions

Name
Description

LibOpenRoot
Opens and returns a file handle to a root directory of a volume.

LibFileInfo
Retrieves the file information on an open file handle.

LibFileSystemInfo
Retrieves the file system information on an open file handle.

LibFileSystemVolumeLabelInfo
Retrieves the file system information on an open file handle.

ValidMBR
Determines if a hard drive’s Master Boot Record is valid.

OpenSimpleReadFile
Opens a file from several possible sources and returns a file handle.

ReadSimpleReadFile
Read from a file opened with OpenSimpleReadFile.

CloseSimpleReadFile
Close a file opened with OpenSimpleReadFile.

LibOpenRoot Function

The LibOpenRoot() function opens and returns a file handle to the root directory of a volume.

EFI_FILE_HANDLE

LibOpenRoot (

 IN EFI_HANDLE DeviceHandle

);

Parameters

DeviceHandle
A handle for a device.

Description

This function looks for a FileSystemProtocol attached to DeviceHandle. If one is found, then an attempt is made to open a volume on that device. If this succeeds, then a valid file handle is returned. Otherwise, NULL is returned.

LibFileInfo Function

The LibFileInfo() function gets the file information from an open file descriptor, and stores it in a buffer allocated from pool.

EFI_FILE_INFO *

LibFileInfo (

 IN EFI_FILE_HANDLE FHand

);

Parameters

FHand

A file handle.

Description

This function retrieves the EFI_FILE_INFO data structure for the file handle Fhand, and stores it in a buffer allocated from pool. A pointer to this buffer is returned. If the file information can not be retrieved, or there is not enough memory in pool to store the data structure, NULL will be returned.

LibFileSystemInfo Function

The LibFileSystemInfo() function gets the file system information from an open file descriptor, and stores it in a buffer allocated from pool.

EFI_FILE_SYSTEM_INFO *

LibFileSystemInfo (

 IN EFI_FILE_HANDLE FHand

);

Parameters

FHand

A file handle.

Description

This function retrieves the EFI_FILE_SYSTEM_INFO data structure for the file handle Fhand, and stores it in a buffer allocated from pool. A pointer to this buffer is returned. If the file information can not be retrieved, or there is not enough memory in pool to store the data structure, NULL will be returned.

LibFileSystemVolumeLabelInfo Function

The LibFileSystemVolumeLabelInfo() function gets the file system information from an open file descriptor, and stores it in a buffer allocated from pool.

EFI_FILE_SYSTEM_VOLUME_LABEL_INFO *

LibFileSystemVolumeLabelInfo (

 IN EFI_FILE_HANDLE FHand

);

Parameters

FHand

A file handle.

Description

This function retrieves the eleven-byte EFI_FILE_SYSTEM_LABEL_INFO data structure for the file handle Fhand, and stores it in a buffer allocated from pool. A pointer to this buffer is returned. If the file information can not be retrieved, or there is not enough memory in pool to store the data structure, NULL will be returned.

4.10.1 ValidMBR Function

The ValidMBR() function determines if a hard drive’s Master Boot Record is valid.

BOOLEAN

ValidMBR(

 IN MASTER_BOOT_RECORD *Mbr,

 IN EFI_BLOCK_IO *BlkIo

);

Parameters

Mbr

A pointer to a hard drive’s Master Boot Record.

BlkIo

A pointer to a BLOCK_IO Protocol handle.

Description

This function verifies that the layout of partitions described in the master boot record are valid. The master boot record is in the buffer pointed to by Mbr. Additional information about the physical disk is contained in BlkIo. The size of the partitions are compared to the size of the physical drive, and checks are also made for overlapping partitions. If the MBR is valid, then TRUE is returned. Otherwise, FALSE is returned.

Status Codes Returned

TRUE
The Master Boot Record is valid.

FALSE
The Master Boot Record is not valid.

OpenSimpleReadFile Function

The OpenSimpleReadFile() function opens a file from several possible sources and returns a file handle.

EFI_STATUS

OpenSimpleReadFile (

 IN BOOLEAN BootPolicy,

 IN VOID *SourceBuffer OPTIONAL,

 IN UINTN SourceSize,

 IN EFI_DEVICE_PATH **FilePath,

 IN EFI_HANDLE *DeviceHandle,

 OUT SIMPLE_READ_FILE *SimpleReadHandle

);

Parameters

BootPolicy
If TRUE, indicates that the request originates from the boot manager, and that the boot manager is attempting to load FilePath as a boot selection.

SourceBuffer

A pointer to a buffer containing the file.

SourceSize

The size of the buffer containing the file to access.

FilePath

Pointer to the device specific path of the file to load.

DeviceHandle

Pointer to the device handle of the device to open.

SimpleReadHandle
A pointer to the file handle to return.

Description

This function opens a file from one of three possible sources and returns a file handle. The first source is a file on a device through the file system interface. The second source is through a file on a device through the load file interface, and the third source is from a buffer in memory. If the optional parameter SourceBuffer is not NULL, then it is assumed that the file is in a buffer in memory and a file handle for this file is returned in SimpleReadHandle. If the root of the device specified by DeviceHandle can be opened, and FilePath is a valid file path on the device, then the file specified by the combination of DeviceHandle and FilePath is opened and a file handle is returned in SimpleReadHandle. If access to the file is not allowed through the file system interface, then an attempt is made to open the file through the load file interface. If this succeeds, then a copy of the file is loaded into memory, and a file handle is returned in SimpleReadHandle.

Status Codes Returned

EFI_SUCCESS
The file was opened and a valid file handle was returned.

EFI_OUT_OF_RESOURCES
The file handle could not be allocated from memory.

EFI_UNSUPPORTED
The LOAD_FILE protocol is not supported form this file.

EFI_BUFFER_TOO_SMALL
A buffer for the file could not be allocated.

EFI_NO_MEDIA
No media was present to load the file.

EFI_DEVICE_ERROR
The file was not loaded due to a device error.

EFI_NO_RESPONSE
The remote system did not respond.

EFI_NOT_FOUND
The file was not found.

ReadSimpleReadFile Function

The ReadSimpleReadFile() reads data from a file opened with OpenSimpleReadFile()
EFI_STATUS

ReadSimpleReadFile (

 IN SIMPLE_READ_FILE SimpleReadHandle,

 IN UINTN Offset,

 IN OUT UINTN *ReadSize,

 OUT VOID *Buffer

);

Parameters

SimpleReadHandle
A file handle.

Offset

Offset in bytes within the file to begin the read operation.

ReadSize

A pointer to the number of bytes to read from the file.

Buffer

A pointer to the buffer to store the read data.

Description

This function reads data from the file specified by the file handle SimpleReadHandle. If the file handle describes a file image in memory, then a memory copy is performed to copy the read data into Buffer. Otherwise, a file system read call is made to read the data from a device into Buffer. If Offset is beyond the end of the file, then ReadSize is set to zero, and an error is returned. Otherwise, ReadSize will be set to the number of bytes actually read from the device.

Status Codes Returned

EFI_SUCCESS
The data was read.

EFI_NO_MEDIA
No media was present to load the file.

EFI_DEVICE_ERROR
The device reported an error.

EFI_VOLUME_CORRUPTED
The file system structures are corrupted.

EFI_BUFFER_TOO_SMALL
The ReadSize is too small to read the current file. ReadSize had been updated with the size needed to complete the request.

CloseSimpleReadFile Function

The CloseSimpleReadFile() closes a file opened with OpenSimpleReadFile().

VOID

CloseSimpleReadFile (

 IN SIMPLE_READ_FILE SimpleReadHandle

);

Parameters

SimpleReadHandle
A file handle.

Description

This function closes the file specified by SimpleReadHandle and frees the memory used by SimpleReadHandle. If any data buffers were allocated when SimpleReadHandle was opened, then those buffers are also freed.

4.11 Device Path Support Functions

Table 4-18 lists the support functions for creating and maintaining device path data structures. These functions are described in the following sections.

Table 4-18.
Device Path Support Functions

Name
Description

DevicePathFromHandle
Retrieves the device path from a specified handle.

DevicePathInstance
Retrieves the next device path instance from a device path.

DevicePathInstanceCount
Returns the number of device path instances in a device path.

AppendDevicePath
Appends a device path to all the instances of another device path.

AppendDevicePathNode
Appends a device path node to all the instances of a device path.

AppendDevicePathInstance
Appends a device path instance to a device path.

FileDevicePath
Appends a file path to a device path.

DevicePathSize
Returns the size of a device path in bytes.

DuplicateDevicePath
Creates a new copy of a device path.

LibDevicePathToInterface
Retrieves a protocol interface for a device.

UnpackDevicePath
Naturally aligns all the nodes in a device path.

LibMatchDevicePaths
Reports membership of a single-instance device path in a possible multi-instance device path.

LibDuplicateDevicePathInstance
Creates a second corresponding instance of a given device path.

DevicePathFromHandle Function

The DevicePathFromHandle() function retrieves the device path for the specified handle.

EFI_DEVICE_PATH *

DevicePathFromHandle (

 IN EFI_HANDLE Handle

);

Parameters

Handle

A handle.

Description

This function retrieves the device path for a handle specified by Handle. If Handle is valid, then a pointer to the device path is returned. If Handle is not valid, then NULL is returned.

DevicePathInstance Function

The DevicePathInstance() function retrieves the next device path instance from a device path data structure.

EFI_DEVICE_PATH *

DevicePathInstance (

 IN OUT EFI_DEVICE_PATH **DevicePath,

 OUT UINTN *Size

);

Parameters

DevicePath
A pointer to a device path data structure.

Size

A pointer to the size of a device path instance in bytes.

Description

This function is used to parse device path instances from the device path DevicePath. This function returns a pointer to the current device path instance. In addition, it returns the size in bytes of the current device path instance in Size, and a pointer to the next device path instance in DevicePath. If there are no more device path instances in DevicePath, then DevicePath will be set to NULL.

DevicePathInstanceCount Function

The DevicePathInstanceCount() function is used to determine the number of device path instances that exist in a device path.

UINTN

DevicePathInstanceCount (

 IN EFI_DEVICE_PATH *DevicePath

);

Parameters

DevicePath
A pointer to a device path data structure.

Description

This function counts and returns the number of device path instances in DevicePath.

AppendDevicePath Function

The AppendDevicePath() function is used to append a device path to all the instances in another device path.

EFI_DEVICE_PATH *

AppendDevicePath (

 IN EFI_DEVICE_PATH *Src1,

 IN EFI_DEVICE_PATH *Src2

);

Parameters

Src1

A pointer to a device path data structure.

Src2

A pointer to a device path data structure.

Description

This function appends the device path Src2 to every device path instance in Src1. A pointer to the new device path is returned. NULL is returned if space for the new device path could not be allocated from pool. It is up to the caller to free the memory used by Src1 and Src2 if they are no longer needed.

AppendDevicePathNode Function

The AppendDevicePathNode() function is used to append a device path node to all the instances in another device path.

EFI_DEVICE_PATH *

AppendDevicePathNode (

 IN EFI_DEVICE_PATH *Src1,

 IN EFI_DEVICE_PATH *Src2

);

Parameters

Src1

A pointer to a device path data structure.

Src2

A pointer to a single device path node.

Description

This function appends the device path node Src2 to every device path instance in Src1. This function returns a pointer to the new device path. If there is not enough temporary pool memory available to complete this function, then NULL is returned. It is up to the caller to free the memory used by Src1 and Src2 if they are no longer needed.

AppendDevicePathInstance Function

The AppendDevicePathInstance() function is used to add a device path instance to a device path.

EFI_DEVICE_PATH *

AppendDevicePathInstance (

 IN EFI_DEVICE_PATH *Src,

 IN EFI_DEVICE_PATH *Instance

);

Parameters

Src

A pointer to a device path data structure.

Instance

A pointer to a device path instance.

Description

This function appends the device path instance Instance to the device path Src. If Src is NULL, then a new device path with one instance is created. This function returns a pointer to the new device path.. If there is not enough temporary pool memory available to complete this function, then NULL is returned. It is up to the caller to free the memory used by Src and Instance if they are no longer needed.

 FileDevicePath Function

The FileDevicePath() allocates a device path for a file and appends it to an existing device path.

EFI_DEVICE_PATH *

FileDevicePath (

 IN EFI_HANDLE Device OPTIONAL,

 IN CHAR16 *FileName

);

Parameters

Device

A pointer to a device handle.

FileName

A pointer to a Null-terminated Unicode string.

Description

If Device is a valid device handle, then a device path for the file specified by FileName is allocated and appended to the device path associated with the handle Device. If Device is not a valid device handle, then a device path for the file specified by FileName is allocated and returned.

DevicePathSize Function

The DevicePathSize() function returns the size of a device path in bytes.

UINTN

DevicePathSize (

 IN EFI_DEVICE_PATH *DevPath

);

Parameters

DevPath

A pointer to a device path data structure.

Description

This function determines the size of a data path data structure in bytes. This size is returned.

DuplicateDevicePath Function

The DuplicateDevicePath() function creates a duplicate copy of an existing device path.

EFI_DEVICE_PATH *

DuplicateDevicePath (

 IN EFI_DEVICE_PATH *DevPath

);

Parameters

DevPath

A pointer to a device path data structure.

Description

This function allocates space for a new copy of the device path DevPath. If the memory is successfully allocated, then the contents of DevPath are copied to the newly allocated buffer, and a pointer to that buffer is returned. Otherwise, NULL is returned.

LibDevicePathToInterface Function

The LibDevicePathToInterface() function retrieves a protocol interface for a device.

EFI_STATUS

LibDevicePathToInterface (

 IN EFI_GUID *Protocol,

 IN EFI_DEVICE_PATH *FilePath,

 OUT VOID **Interface

);

Parameters

Protocol

The published unique identifier of the protocol.

FilePath

A pointer to a device path data structure.

Interface
Supplies and address where a pointer to the requested Protocol interface is returned.

Description

This function finds all the devices that support the interface protocol specified by Protocol. It then searches that list of devices for the one that best matches the device path specified by FilePath. If a match is found, then the protocol interface of that device is returned in Interface. Otherwise, Interface is set to NULL.

Status Codes Returned

EFI_SUCCESS
A matching protocol interface was found.

EFI_NOT_FOUND
A matching protocol interface was not found.

EFI_UNSUPPORTED
The device does not support the requested protocol.

EFI_INVALID_PARAMETER
FilePath contains more than one device path instance.

UnpackDevicePath Function

The UnpackDevicePath() function unpacks a device path data structure so that all the nodes of a device path are naturally aligned.

EFI_DEVICE_PATH *

UnpackDevicePath (

 IN EFI_DEVICE_PATH *DevPath

);

Parameters

DevPath

A pointer to a device path data structure.

Description

This function allocates space for a new copy of the device path DevPath. The new copy of DevPath is modified so that every node of the device path is naturally aligned. If the memory for the device path is successfully allocated, then a pointer to the new device path is returned. Otherwise, NULL is returned.

LibMatchDevicePaths Function

The LibMatchDevicePaths() function compares a device path data structure to that of all the nodes of a second device path instance.

BOOLEAN

LibMatchDevicePaths (

 IN EFI_DEVICE_PATH *Multi,

 IN EFI_DEVICE_PATH *Single

);

Parameters

Multi

A pointer to a multi-instance device path data structure.

Single

A pointer to a single-instance device path data structure.

Description

This function compares the Single instance device path against the various device path instances in Multi. The function returns TRUE if the Single is contained within Multi. Otherwise, FALSE is returned.

Status Codes Returned

TRUE
Single was found in Multi

FALSE
Single was not found in Multi

LibDuplicateDevicePathInstance Function

The LibDuplicateDevicePathInstance() function creates a device path data structure that identically matches the device path passed in.

EFI_DEVICE_PATH *

LibDuplicateDevicePathInstance (

 IN EFI_DEVICE_PATH *DevPath

);

Parameters

DevPath

A pointer to a device path data structure.

Description

This function allocates space for a new copy of the device path DevPath. The new copy of DevPath is created to identically match the input. Otherwise, NULL is returned.

4.12 PCI Functions and Macros

Table 4-19 lists some helper function related to PCI devices and a set of functions and macros that are used to access PCI I/O and PCI Configuration Space.

Table 4-19.
PCI Functions and Macros

Name
Description

PCIFindDeviceClass
Finds a PCI device that matches the PCI BaseClass and SubClass.

PCIFindDevice
Finds a PCI device that matches the PCI Device ID and Vendor ID.

InitializeGlobalIoDevice
Retrieves the DEVICE_IO protocol instance for a given device.

ReadPort
Reads an I/O port.

WritePort
Writes to an I/O port.

ReadPciConfig
Reads an I/O port.

WritePciConfig
Writes to an I/O port.

Inp
Read an 8 bit value from an I/O port.

Outp
Write an 8 bit value to an I/O port.

Inpw
Read a 16 bit value from an I/O port.

Outpw
Write a 16 bit value to an I/O port.

Inpd
Read a 32 bit value from an I/O port.

Outpd
Write a 32 bit value to an I/O port.

Readpci8
Read an 8 bit value from PCI Configuration Space.

Writepci8
Write an 8 bit value to PCI Configuration Space.

readpci16
Read a 16 bit value from PCI Configuration Space.

writepci16
Write a 16 bit value to PCI Configuration Space.

readpci32
Read a 32 bit value from PCI Configuration Space.

writepci32
Write a 32 bit value to PCI Configuration Space.

PciFindDeviceClass Function

The PciFindDeviceClass() function finds the first PCI device with the specified class.

typedef struct {

 UINT8 Register;

 UINT8 Function;

 UINT8 Device;

 UINT8 Bus;

 UINT32 Reserved;

} EFI_ADDRESS;

typedef union {

 UINT64 Address;

 EFI_ADDRESS EfiAddress;

} EFI_PCI_ADDRESS_UNION;

EFI_STATUS

PciFindDeviceClass (

 IN OUT EFI_PCI_ADDRESS_UNION *Address,

 IN UINT8 BaseClass,

 IN UINT8 SubClass

);

Parameters

Address
A pointer to the data structure containing the Bus, Device, and Function of the PCI device that matches the specified class.

BaseClass

The PCI base class of the device to search for.

SubClass

The PCI sub class of the device to search for.

Description

This function search all the PCI busses for a device with a matching BaseClass and SubClass in the device’s standard PCI header. If a matching device is found, the device’s PCI bus number, PCI device number, and PCI function number are returned in Address.

EFI_SUCCESS
A corresponding PCI device was found.

EFI_NOT_FOUND
A corresponding PCI device was not found.

PciFindDevice Function

The PicFindDevice() function finds the first PCI device with the specified Device ID and Vendor ID.

typedef struct {

 UINT16 VendorId;

 UINT16 DeviceId;

 UINT16 Command;

 UINT16 Status;

 UINT8 RevisionID;

 UINT8 ClassCode[3];

 UINT8 CacheLineSize;

 UINT8 LaytencyTimer;

 UINT8 HeaderType;

 UINT8 BIST;

} PCI_DEVICE_INDEPENDENT_REGION;

typedef struct {

 UINT32 Bar[6];

 UINT32 CISPtr;

 UINT16 SubsystemVendorID;

 UINT16 SubsystemID;

 UINT32 ExpansionRomBar;

 UINT32 Reserved[2];

 UINT8 InterruptLine;

 UINT8 InterruptPin;

 UINT8 MinGnt;

 UINT8 MaxLat;

} PCI_DEVICE_HEADER_TYPE_REGION;

typedef struct {

 PCI_DEVICE_INDEPENDENT_REGION Hdr;

 PCI_DEVICE_HEADER_TYPE_REGION Device;

} PCI_TYPE00;

EFI_STATUS

PciFindDevice (

 IN OUT EFI_PCI_ADDRESS_UNION *DeviceAddress,

 IN UINT16 VendorId,

 IN UINT16 DeviceId,

 IN OUT PCI_TYPE00 *Pci

)

Parameters

DeviceAddress
A pointer to the data structure containing the Bus, Device, and Function of the PCI device that matches the specified class.

VendorId

The PCI base class of the device to search for.

DeviceId

The PCI sub class of the device to search for.

Pci

A pointer to the configuration space header of the device.

Description

This function search all the PCI busses for a device with a matching VendorId and DeviceId in the device’s standard PCI header. If a matching device is found, the device’s PCI bus number, PCI device number, and PCI function number are returned in Address, as is the Type 0 configuration space returned in Pci. If the device cannot be discovered, EFI_NOT_FOUND is returned.

EFI_SUCCESS
A corresponding PCI device was found.

EFI_NOT_FOUND
A corresponding PCI device was not found.

InitializeGlobalIoDevice Function

The InitializeGlobalIoDevice() function returns a DEVICE_IO protocol instance that is supported by the given device.

EFI_STATUS

InitializeGlobalIoDevice (

 IN EFI_DEVICE_PATH *DevicePath,

 IN EFI_GUID *Protocol,

 IN UINT8 *ErrorStr,

 OUT EFI_DEVICE_IO_INTERFACE **GlobalIoFncs

);

Parameters

DevicePath

A pointer to a device path.

Protocol

The protocol that a device driver is attempting to register for this device.

ErrorStr
Error message to display if the device specified by DevicePath already supports Protocol.

GlobalIoFuncs
A pointer to the DEVICE_IO protocol instance that is supported by the device specified by DevicePath.

Description

This function check to see if device specified by DevicePath already supports Protocol. If it does, then an error message is displayed using ErrorStr. If the device specified by DevicePath does not support Protocol, then a check is made to see if the device specified by DevicePath supports the DEVICE_IO protocol. If it does, then the DEVICE_IO protocol instance is returned in GlobalIoFncs.

Status Codes Returned

EFI_SUCCESS
A DEVICE_IO protocol instance was returned..

EFI_LOAD_ERROR
The device already supports Protocol.

EFI_NOT_FOUND
A DEVICE_IO protocol instance was not found.

ReadPort Function

The ReadPort() function reads an I/O port using a DEVICE_IO protocol instance.

UINT32

ReadPort (

 IN EFI_DEVICE_IO_INTERFACE *GlobalIoFncs,

 IN EFI_IO_WIDTH Width,

 IN UINTN Port

);

Parameters

GlobalIoFncs
The DEVICE_IO protocol instance to use to perform the I/O read.

Width

The width of the I/O read operation.

Port
The address of the I/O read operation.

Description

This function reads the I/O port specified by Port and Width using the protocol interface functions in GlobalIoFncs. The data returned by the I/O read operation is returned.

WritePort Function

The WritePort() function writes to an I/O port using a DEVICE_IO protocol instance.

UINT32

WritePort (

 IN EFI_DEVICE_IO_INTERFACE *GlobalIoFncs,

 IN EFI_IO_WIDTH Width,

 IN UINTN Port,

 IN UINTN Data

);

Parameters

GlobalIoFncs
The DEVICE_IO protocol instance to use to perform the I/O write.

Width

The width of the I/O write operation.

Port
The address of the I/O write operation.

Data
The data to use for the I/O write operation.

Description

This function writes Data to the I/O port specified by Port and Width using the protocol interface functions in GlobalIoFncs. Data is returned.

ReadPciConfig Function

The ReadPciConfig() function reads from PCI Configuration Space using a DEVICE_IO protocol instance.

UINT32

ReadPciConfig (

 IN EFI_DEVICE_IO_INTERFACE *GlobalIoFncs,

 IN EFI_IO_WIDTH Width,

 IN UINTN Port

);

Parameters

GlobalIoFncs
The DEVICE_IO protocol instance to use to perform the PCI Configuration read.

Width

The width of the PCI Configuration read operation.

Port
The address of the PCI Configuration read operation.

Description

This function reads from PCI Configuration Space at the address specified by Port and Width using the protocol interface functions in GlobalIoFncs. The data returned by the PCI Configuration read operation is returned.

WritePciConfig Function

The WritePciConfig() function writes to PCI Configuration Space using a DEVICE_IO protocol instance.

UINT32

WritePciConfig (

 IN EFI_DEVICE_IO_INTERFACE *GlobalIoFncs,

 IN EFI_IO_WIDTH Width,

 IN UINTN Port,

 IN UINTN Data

);

Parameters

GlobalIoFncs
The DEVICE_IO protocol instance to use to perform the I/O write.

Width

The width of the PCI Configuration write operation.

Port
The address of the PCI Configuration write operation.

Data
The data to use for the PCI Configuration write operation.

Description

This function writes Data to PCI Configuration Space at the address specified by Port and Width using the protocol interface functions in GlobalIoFncs. Data is returned.

inp Macro

The inp() macro reads an 8 bit value from an I/O port using the DEVICE_IO protocol instance GlobalIoFcns.

UINT8

inp (

 IN UINTN Port

);

Parameters

Port
The address of the I/O read operation.

Description

This function reads an 8 bit value from the I/O port specified by Port.

outp Macro

The outp() macro writes an 8 bit value to an I/O port using the DEVICE_IO protocol instance GlobalIoFcns.

VOID

outp (

 IN UINTN Port,

 IN UINT8 Data

);

Parameters

Port
The address of the I/O write operation.

Data
The 8 bit value to write.

Description

This function writes the 8 bit value Data to the I/O port specified by Port.

inpw Macro

The inpw() macro reads a 16 bit value from an I/O port using the DEVICE_IO protocol instance GlobalIoFcns.

UINT16

inpw (

 IN UINTN Port

);

Parameters

Port
The address of the I/O read operation.

Description

This function reads a 16 bit value from the I/O port specified by Port.

outpw Macro

The outpw() macro writes a 16 bit value to an I/O port using the DEVICE_IO protocol instance GlobalIoFcns.

VOID

outpw (

 IN UINTN Port,

 IN UINT16 Data

);

Parameters

Port
The address of the I/O write operation.

Data
The 16 bit value to write.

Description

This function writes the 16 bit value Data to the I/O port specified by Port.

inpd Macro

The inpd() macro reads a 32 bit value from an I/O port using the DEVICE_IO protocol instance GlobalIoFcns.

UINT32

inpd (

 IN UINTN Port

);

Parameters

Port
The address of the I/O read operation.

Description

This function reads a 32 bit value from the I/O port specified by Port.

outpd Macro

The outpd() macro writes a 32 bit value to an I/O port using the DEVICE_IO protocol instance GlobalIoFcns.

VOID

outpd (

 IN UINTN Port,

 IN UINT32 Data

);

Parameters

Port
The address of the I/O write operation.

Data
The 32 bit value to write.

Description

This function writes 32 bit value Data to the I/O port specified by Port.

readpci8 Macro

The readpci8() macro reads an 8 bit value from PCI Configuration Space using the DEVICE_IO protocol instance GlobalIoFcns.

UINT8

readpci8 (

 IN UINTN Port

);

Parameters

Port
The address of the PCI Configuration read operation.

Description

This function reads an 8 bit value from PCI Configuration Space at the address specified by Port.

writepci8 Macro

The writepci8() macro writes an 8 bit value to PCI Configuration Space using the DEVICE_IO protocol instance GlobalIoFcns.

VOID

writepci8 (

 IN UINTN Port,

 IN UINT8 Data

);

Parameters

Port
The address of the PCI Configuration write operation.

Data
The 8 bit value to write.

Description

This function writes the 8 bit value Data to PCI Configuration Space at the address specified by Port.

readpci16 Macro

The readpci16() macro reads a 16 bit value from PCI Configuration Space using the DEVICE_IO protocol instance GlobalIoFcns.

UINT8

readpci16 (

 IN UINTN Port

);

Parameters

Port
The address of the PCI Configuration read operation.

Description

This function reads a 16 bit value from PCI Configuration Space at the address specified by Port.

writepci16 Macro

The writepci16() macro writes a 16 bit value to PCI Configuration Space using the DEVICE_IO protocol instance GlobalIoFcns.

VOID

writepci16 (

 IN UINTN Port,

 IN UINT8 Data

);

Parameters

Port
The address of the PCI Configuration write operation.

Data
The 16 bit value to write.

Description

This function writes the 16 bit value Data to PCI Configuration Space at the address specified by Port.

readpci32 Macro

The readpci32() macro reads a 32 bit value from PCI Configuration Space using the DEVICE_IO protocol instance GlobalIoFcns.

UINT8

readpci32 (

 IN UINTN Port

);

Parameters

Port
The address of the PCI Configuration read operation.

Description

This function reads a 32 bit value from PCI Configuration Space at the address specified by Port.

writepci32 Macro

The writepci32() macro writes a 32 bit value to PCI Configuration Space using the DEVICE_IO protocol instance GlobalIoFcns.

VOID

writepci32 (

 IN UINTN Port,

 IN UINT8 Data

);

Parameters

Port
The address of the PCI Configuration write operation.

Data
The 32 bit value to write.

Description

This function writes the 32 bit value Data to PCI Configuration Space at the address specified by Port.

4.13 Miscellaneous Functions and Macros

Table 4-20 lists some miscellaneous helper functions that are described in the following sections.

Table 4-20.
Miscellaneous Functions and Macros

Name
Description

LibGetVariable
Retrieves and environment variable's value.

LibGetVariableAndSIze
Retrieves and environment variable's value and its size in bytes.

CompareGuid
Compares two 128 bit GUIDs.

CR
Returns a pointer to a element's containing record.

DecimaltoBCD
Converts a decimal value to a BCD value.

BCDtoDecimal
Converts a BCD value to a decimal value.

LibCreateProtocolNotifyEvent
Creates a notification event that fires every time a protocol instance is created.

WaitForSingleEvent
Waits for an event to fire or a timeout to expire.

WaitForEventWithTimeout
Waits for either a SIMPLE_INPUT event or a timeout to occur.

RtLibEnableVirtualMappings
Converts internal library pointers to virtual runtime pointers.

RtConvertList
Converts pointers in a linked list to virtual runtime pointers.

LibGetSystemConfigurationTable
Retrieves a system configuration table from the EFI System Table.

LibGetVariable Function

The LibGetVariable() function returns the value of the specified variable.

VOID *

LibGetVariable (

 IN CHAR16 *Name,

 IN EFI_GUID *VendorGuid

);

Parameters

Name
A Null-terminated Unicode string that is the name of the vendor’s variable.

VendorGuid
A unique identifier for the vendor.

Description

This function retrieves the value of the variable specified by Name and VendorGuid. If the variable exists, space for storing the variable’s value is allocated from pool, and a pointer to the variable’s value is returned. Otherwise, NULL is returned.

LibGetVariableAndSize Function

The LibGetVariableAndSize() function returns the value of the specified variable and its size in bytes.

VOID *

LibGetVariableAndSize (

 IN CHAR16 *Name,

 IN EFI_GUID *VendorGuid,

 OUT UINTN *VarSize

);

Parameters

Name
A Null-terminated Unicode string that is the name of the vendor’s variable.

VendorGuid
A unique identifier for the vendor.

VarSize

The size of the returned environment variable in bytes.

Description

This function retrieves the value of the variable specified by Name and VendorGuid. If the variable exists, space for storing the variable’s value is allocated from pool, and a pointer to the variable’s value is returned. Otherwise, NULL is returned. The size of the variable’s value is returned in VarSize.

CompareGuid Function

The CompareGuid() function compares two GUIDs.

INTN

CompareGuid(

 IN EFI_GUID *Guid1,

 IN EFI_GUID *Guid2

);

Parameters

Guid1

A pointer to a 128 bit GUID.

Guid2

A pointer to a 128 bit GUID.

Description

This function compares two128 bit GUIDs. If the GUIDs are identical then 0 is returned. If there are any bit differences in the two GUIDs, a non zero value is returned.

Status Codes Returned

0
The two GUIDs are identical.

(0
The two GUIDs are not identical

CR Macro

The CR() macro returns a pointer to an elements containing record .

TYPE *

CR(

 VOID *Record,

 TYPE,

 Field,

 UINTN Signature

);

Parameters

Record

A pointer to a field within the containing record.

TYPE

The name of the containing record’s data structure type. record.

Field
The name of the field from the containing record to which Record points.

Signature

The signature for the containing record’s data structure.

Description

This macro returns a pointer to a data structure from one of the data structure’s elements.

DecimaltoBCD Function

The DecimaltoBcd() function converts a decimal value to a BCD value..

UINT8

DecimaltoBCD(

 IN UINT8 DecValue

);

Parameters

DecValue

An 8 bit decimal value.

Description

This function converts an 8 bit decimal value to an 8 bit BCD value and returns the BCD value.

BCDtoDecimal Function

The BCDtoDecimal() function converts a BCD value to a decimal value.

UINT8

BCDtoDecimal(

 IN UINT8 BcdValue

);

Parameters

BcdValue

An 8 bit BCD value.

Description

This function converts an 8 bit BCD value to an 8 bit decimal value and returns the decimal value.

LibCreateProtocolNotifyEvent Function

The LibCreateProtocolNotifyEvent() function creates a notification event and registers that event with all the protocol instances specified by ProtocolGuid.

EFI_EVENT

LibCreateProtocolNotifyEvent(

 IN EFI_GUID *ProtocolGuid,

 IN EFI_TPL NotifyTpl,

 IN EFI_EVENT_NOTIFY NotifyFunction,

 IN VOID *NotifyContext,

 OUT VOID *Registration

);

Parameters

ProtocolGuid
Supplies GUID of the protocol upon whose installation the event is fired.

NotifyTpl

Supplies the task priority level of the event notifications.

NotifyFunction
Supplies the function to notify when the event is signaled.

NotifyContext
The context parameter to pass to NotifyFunction.

Registration
A pointer to a memory location to receive the registration value. This value is passed to LocateHandle() to obtain new handles that have been added that support the ProtocolGuid-specified protocol.

Description

This function causes the notification function to be executed for every protocol of type ProtocolGuid instance that exists in the system when this function is invoked. In addition, every time a protocol of type ProtocolGuid instance is added, the notification function is also executed. This function returns the notification event that was created.

WaitForSingleEvent Function

The WaitForSingleEvent() function waits for a given event to fire, or for an optional timeout to expire.

EFI_STATUS

WaitForSingleEvent(

 IN EFI_EVENT Event,

 IN UINT64 Timeout OPTIONAL

);

Parameters

Event

The event to wait for.

Timeout

An optional timeout value in 100 ns units.

Description

This function waits for Event to fire. If Event does fire, then EFI_SUCCESS is returned. If Timeout is zero, then this function will wait indefinitely for Event to fire. If Timeout is not zero, then this function will wait for both Event and the Timeout period. If the Timeout expires, then EFI_TIME_OUT will be returned.

Status Codes Returned

EFI_SUCCESS
Event fired before Timeout expired.

EFI_TIME_OUT
Timout expired before Event fired..

WaitForEventWithTimeout Function

The WaitForEventWithTimeout() function prints a string for the given number of seconds until either the timeout expires, or the user presses a key.

VOID

WaitForEventWithTimeout (

 IN EFI_EVENT Event,

 IN UINTN Timeout,

 IN UINTN Row,

 IN UINTN Column,

 IN CHAR16 *String,

 IN EFI_INPUT_KEY TimeoutKey,

 OUT EFI_INPUT_KEY *Key

)

Parameters

Event

The SIMPLE_TEXT_INPUT event to wait for.

Timeout

Timeout value in 1 second units

Row

The row to print String.

Column

The column to print String.

String

The string to display on the standard output device.

TimeoutKey

The key to return in Key if a timeout occurs.

Key
Either the key the user pressed or TimeoutKey if the Timeout expired.

Description

This function waits for Event to fire or Timeout to expire. If Event does fire, then a keystroke is read from the standard input device a returned in Key. If the Timeout in seconds does expire, then TimeoutKey is returned in Key. For each second the passes while this function is waiting, String is displayed on the standard output device at (Row, Column).

 RtLibEnableVirtualMappings Function

The RtLibEnableVirtualMappings() function converts runtime pointers internal to the EFI Library to a new virtual base address.

VOID

RtLibEnableVirtualMappings (

 VOID

);

Parameters

Description

This function converts any runtime pointers that are internal to the EFI Library to a new virtual address base. This function should only be called once as an OS transitions the EFI firmware from a flat physical memory model to a virtual runtime memory model.

RtConvertList Function

The RtConvertList() function converts all the pointers in a doubly linked list to a new virtual base address.

#define EFI_OPTIONAL_PTR 0x00000001

#define EFI_INTERNAL_FNC 0x00000002

#define EFI_INTERNAL_PTR 0x00000004

VOID

RtConvertList (

 IN UINTN DebugDisposition,

 IN OUT LIST_ENTRY *ListHead

);

Parameters

DebugDisposition

A bitmask that describes the pointer types in the linked list.

ListHead

A pointer to a doubly linked list.

Description

This function converts all the Flink and Blink fields of the doubly linked list ListHead to a new virtual base address.

LibGetSystemConfigurationTable Function

The LibGetSystemConfigurationTable() function returns a system configuration table that is stored in the EFI System Table based on the provided GUID.

EFI_STATUS

LibGetSystemConfigurationTable (

 IN EFI_GUID *TableGuid,

 IN OUT VOID **Table

);

Parameters

TableGuid

A pointer to the table's GUID type.

Table

On exit, a pointer to a system configuration table.

Description

This function searches the list of configuration tables stored in the EFI System Table for a table with a GUID that matches TableGuid. If one is found, then a pointer to the configuration table is returned in Table., and EFI_SUCCESS is returned. If a matching GUID can not be found, then EFI_NOT_FOUND is returned.

Status Codes Returned

EFI_SUCCESS
A configuration table matching TableGuid was found.

EFI_NOT_FOUND
A configuration table matching TableGuid could not be found.

Version 0.99
04/24/00

ii

07/14/99
Version 0.2

iii

[image: image2.png][image: image3.png][image: image4.png]

[image: image5.png]

[image: image6.png]

[image: image7.png]

[image: image8.png]

[image: image9.png]

[image: image10.png]

[image: image11.png]

[image: image12.png]

[image: image13.png]

[image: image14.png]

[image: image15.png]

[image: image16.png]

[image: image17.png]

[image: image18.png]

[image: image19.png]

[image: image20.png]

[image: image21.png]

[image: image22.png]

[image: image23.png]

[image: image24.png]

[image: image25.png]

