[image: image1.wmf]
Product Release Notes

EFI Version 0.99.12.24 Sample Implementation

1.0
Introduction

The EFI Version 0.99.12.24 Sample Implementation contains the source code and documentation required to develop EFI related software. This includes the development of EFI firmware, EFI shells, EFI device drivers, EFI applications, and EFI OS loaders. This release follows the EFI Specification 0.99.
These release notes contain the following information:


System requirements


Package contents


Installation


Makefile compiler dependencies


Building EFI Version 0.99.12.24


Debugging EFI Version 0.99.12.24


EFI Version 0.99.12.24 Directory Structure


Porting to a new Platform


Known limitations for this release


Linking in the EFI Shell


Using the EFI Boot Manager


Support information

2.0 System Requirements

The EFI Version 0.99.12.24 Sample Implementation requires the following software on an IA-32 based system.

Software Requirements:


Microsoft* Windows* NT* 4.0 operating system


Microsoft Visual C++* Version 5.0 or 6.0


Microsoft Macro Assembler* Version 6.11

3.0
Package Contents

EFI Version 0.99.12.24 Sample Implementation contains the following:


EFI Version 0.99.12.24 source code


EFI Library source code


EFI build tools


EFI Release Notes


EFI Developer’s Guide


EFI Library Specification

4.0
Installation

To install EFI Version 0.99.12.24 Sample Implementation, perform the following steps:


Install Microsoft Visual C++* Version 5.0 or 6.0.


Install Microsoft Macro Assembler* Version 6.11

Install EFI Version 0.99.12.24

5.0
Makefile Compiler Dependencies


NMAKE.EXE from Microsoft Visual C++* Version 5.0 or 6.0 is used for the makefiles in the EFI Version 0.99.12.24 build environment.

6.0
Building EFI Version 0.99.12.24

There are four major build points (tips) in the tree:

· build\nt32

- The NT emulator code & Tools

· build\bios32

- IA-32 version with a standard BIOS

· build\ia-32emb
- IA-32 embedded version (No BIOS)

· build\Sal64**

- IA-64 version

In each directory tip there is a build.cmd file. This file has global environment variables that must match you tree and your tools. Run this script and then run nmake. You can run a nmake clean to clean the tree. The resulting output files will get put in the tree called output that is one level below the build tip. Output is a copy of the EFI tree that is automatically generated to place the *.obj and other intermediate data. The resulting linked binary files end up in bin that is also one level below the build tip.

You may need to modify the build.cmd at each tip to match you system. There are a few environment variables that must be set correctly to build EFI. A sample of these are:

EFI_SOURCE=C:\Project\Efi

EFI_MSVCTOOLPATH=c:\Program Files\DevStudio\VC

EFI_MASMPATH=c:\masm611

EFI_DEBUG=YES

EFI_DEBUG_CLEAR_MEMORY=YES

EFI_BOOTSHELL=NO

EFI_SPLIT_CONSOLES=YES

· EFI_SOURCE is the path to the root of the EFI tree.

· EFI_MSVCTOOLPATH is the path to the VC++ tools on your system.

· EFI_MASMPATH is the path to the MASM 6.11 tools on your system.

· EFI_DEBUG is set to YES to enable all debug messages and asserts, and set to NO to disable all debug messages and asserts.

· EFI_DEBUG_CLEAR_MEMORY is set to YES to enable setting buffers to a fixed value on FreePages, AllocatePool, and FreePool. This is intended to be a fine-grained control such that debug messages will be available without the overhead of frequent buffer clears. Set NO to disable the feature.

· EFI_BOOTSHELL is set to YES to build the EFI Shell and all the external EFI Shell commands and debug commands into the firmware. If this environment variable is set to NO, then the firmware will not include the EFI Shell or any external EFI Shell commands or debug commands. In either case, the firmware will boot directly to the Boot Manager. This is the default behavior for production firmware. The difference with the EFI_BOOTSHELL set to YES option is that there will be an option with the Boot Manager to launch the internal shell application.

· EFI_SPLIT_CONSOLES is set to YES to enable multiple active consoles. In this case, all the console input and console output devices will be active according to the setting of the associated global variables. When this environment variable is NO, there will be one standard input device, one standard output device, and one standard error device. For correct behavior of the consoles, as detailed in Chapter 17 of the EFI 0.99 specification, this variable should be set to YES.

This release differs from the former release that kept EFI_FIRMWARE_REVISION as an environment variable that defines the firmware’s revision. Now, the firmware revision is tracked in the files \inc\efi.h and \inc\efiapi.h. The salient fields for tracking the vintage of the code are:

#define EFI_FIRMWARE_MAJOR_REVISION

0

#define EFI_FIRMWARE_MINOR_REVISION

99

#define EFI_SPECIFICATION_MAJOR_REVISION
12

#define EFI_SPECIFICATION_MINOR_REVISION
20

**If the build tip is under the SOFTSDV64\EFI directory, then modify build.cmd to set the _IA64SDK_DIR to proper path as per your install. Follow the steps mentioned above to build EFI applications. If the build tip is under \DEV\EFI then refer to SAL Firmware Writers Guide and Release notes under the \DEV\DOC directory for building with firmware.

You can go to build\nt32 to make the EFI emulator. You can run emulator by running Nt32.exe in the build\nt32\bin directory. A red Standard Error and Blue ConsoleIn and ConsoleOut window should appear. This emulator only runs under NT.

The bios32 and ia-32emb build tips also support the following nmake commands:

nmake createfloppy
- Formats and creates a bootable IA-32 EFI floppy.

nmake floppy

- Compiles and copies EFILDR onto a bootable IA-32 EFI floppy.

nmake floppytools
- Copies the standard EFI tools to a bootable IA-32 EFI floppy.

7.0
Debugging EFI Version 0.99.12.24 with MSVC++ 5.0 or 6.0

Create a project (File New, select project tab) and pick the Win32 Application button.

Point the project to your build\nt32\bin directory and fill in a dummy project name and click O.K.

Next on the Project pull down menu select the settings options.

[Debug Tab]:
Executable for Debug must point to :

build\nt32\bin\Nt32.exe

[Debug Tab]:
Working Directory :

build\nt32\bin

[Browse Info]:
Browse info file name:

build\nt32\bin\Nt32.bsc

Then you can pull down the Build menu and click on start debugging. And you are at source level debug.

If you have trouble breaking on the code you would like to see there is a BREAKPOINT() macro you can insert in the code to make it stop where you would like. The GUI lets you set breakpoints in source code.

You can access the source browser from tools sub menu source browser.

8.0
EFI Version 0.99.12.24 Directory Structure

The EFI Version 0.99.12.24 tree has a basic directory structure. All IA32 or IA64 specific code resides in IA32 or IA64 subdirectories. If IA32 or IA64 specific code is added to a directory it will force the creation of IA32 and IA64 subdirectories. Only directories that have non-portable code have IA32 and IA64 subdirectories.

The main directory level of EFI Version 0.99.12.24 is as follows:

· Build

Build tips as outlined in Building EFI Version 0.99.12.24

· CoreFW
The core EFI firmware. This includes the core EFI code that follows the EFI

specification and the Platform code that must be ported to port to new environments.

· Inc

Common include files for EFI
· Lib

Common library routines that can be used in the firmware, shell, applications,

drivers, or OS loaders.

· Notes

Documentation for EFI Sample Implementation 0.99.12.24 and sample code
listings.
CoreFW

The core firmware tree is broken up into the following major directories:

· FW

The firmware directory contains all the EFI based firmware. It also contains the

Platform code that needs to be ported to each platform. The Inc directory contains included files that are used to bind the core EFI and platform code together.

· Drivers

Contains drivers that are written exclusively to the EFI specification. These
drivers only make calls that are required to exist in the EFI specification. This is why they are not in a platform directory.
Drivers

Core firmware drivers do not touch hardware directly and thus they must only call APIs that are defined in the EFI specification. These drivers can add their own extensions to EFI, but they can only consume standard EFI APIs.

The following core Drivers are currently supported:

· Console

This component provides two messaging drivers, a VT-100 and PC-ANSI,

that layer on top of SerialIo Devices and produce the SimpleInput and SimpleTextOutput Protocols.

· ConSpliter
This driver layers on top of SimpleInput and SimpleTextOutput Devices and

produces SimpleInput and SimpleTextOutput Protocols. The idea is that a ConSpliter driver multiplexes multiple SimpleInput and SimpleTextOutput devices into a virtual SimpleInput device and a virtual SimpleTextOutput device.

· DskIo

This driver layers on top of BlockIo Devices and produces the DiskIo Protocol

that is consumed by filesystems.

· FAT

This driver implements the FAT32 filesystem. It layers it’s self on top of devices

that support the DskIo protocol.

· PblkIo

This driver consumes the Raw BlockIo of an entire device and generates logical

BlockIo devices based on the format of the raw media. For hard drives this driver parses the MBR and produces a BlockIo driver for every partition on the disk that supports an EFI filesystem. For CD-ROM this driver parses the ISO-9660 filesystem on the CD-ROM and uses the “El Torito” extensions to produce a partition that supports the FAT filesystem.

· PXEBC

This driver implements the PXE Base Code and Load File Protocols for remote

booting support.

· RamDisk
This driver produces a BlockIo Device that produces a RAM Disk. The memory

for the RAM Disk is allocated using EFI memory management calls.

EFI

The corefw\fw\efi contains the EFI code that implements the EFI specification. This code is portable and should never be modified when a port is made to a new platform. This is the key code that is tracking the specification. You should not change this code and any bugs in this code should be fixed by the core EFI team.

The following directories are supported:

· Exec

· Hand

· Inc

· Init

· Loader

· Mem

· Variable

Platform

The code in corefw\fw\platform\ is the only code that needs to be modified to port EFI to new platforms. Currently there are four supported platforms. The entry points to each of these platforms can be found in corefw\fw\platform\BuildTip:

· NT32

This is the platform code for the NT emulator. It requires ntemulc.exe to exist to
function. This is due to the fact that the consoles in the NT emulator are really RPC calls to a pipe. There must be some thing on the other end of the pipe to make the consoles function and this is ntemulc.exe.

· Bios32

This platform is a generic port of EFI to a PC. The IA-32 code must load,
relocate, and then call MainEntry().The ConsoleIn, ConsoleOut, and BlockIo Drivers come from the Drivers\BiosInt directory. These drivers use the legacy BIOS INT calls to build the basic EFI platform drivers.

· IA-32Emb
This platform is a generic port of EFI to a PC. The IA-32 code must load,
relocate, and then call MainEntry().The ConsoleIn, ConsoleOut, and BlockIo Drivers come from the Drivers directory. These are native drivers that do not depend on any BIOS services. In fact, this implementation does not use an BIOS calls at all.

· SAL64

This platform is a generic port of the reference SAL. There is code in the

reference SAL that loads and relocates, then calls MainEntry(). The ConsoleIn, ConsoleOut, and BlockIo Drivers come from the Drivers\BiosInt directory. These drivers use the legacy BIOS INT calls to build the basic EFI platform drivers.

There also exists some common code in the \corefw\fw\platform directory:

· BootMgr
Sample Implementation of an EFI Boot Manager, including Boot Maint. Mgr.

· Drivers

This directory contains device drivers for console and block I/O devices.

· PlDriver
This directory contains all the drivers for system specific devices. These are

typically drivers for motherboard devices.

Drivers

The code in corefw\fw\platform\Drivers contains all the device drivers for physical hardware devices.

· BiosInt

This directory contains drivers that use legacy BIOS INT calls to build EFI

drivers. There is a driver for VGA, PS2 Keyboard, 16-bit UNDI, and Legacy INT 13h (hard drive, floppy, CD-ROM,…).

· Floppy
Native floppy driver for 1.44 MB floppy devices.
· IDE

Native IDE driver for ATA and ATAPI devices.
· Keyboard
Native 8042 device driver for PS/2 keyboards.

· Serial

Native 16500 device driver for serial ports COM1-COM4

· UNDI32
UNDI32 driver for Simple Network Protocol.

· VgaClass
Generic VGA Class driver for VGA compatible video adapters.

· VgaMini
Generic VGA miniport drivers for standard VGA adapters.

9.0
Porting to a new Platform

Each platform will need it’s own copy of init.c. This file will contain MainEntry(). This is the code that the platform will call to pass control to EFI. The platform is responsible for loading and relocating the EFI code and calling its entry point.

Code in the Platform tree should never call EFI code directly. All core EFI code must be called via the FW (pointer to EFI_FIRMWARE_TABLE). The exception to this rule is that the platform code may call EFI library functions. EFI Library functions can only be called after the platforms memory map has been initialized and a call to InitializeLib() has been made.

The main flow of the EFI code is controlled from the Platform code and the calls back into the core firmware must be made in sequence. The following is time line of initializing EFI:

· Platform Specific Code Loads and Relocates EFI code

· Platform Specific Code calls MainEntry() [This source tree starts running]

· Platform Specific Code Initializes Tables
1. Get Initial EFI System Table

2. Fill in ACPI, SMBIOS, SAL System Table, …

3. Patch in any Run Time or Boot Services functions not supported by the EFI core

· Call PlInstallMemoryMap() to setup the EFI memory map

1. First call back to FW to add a memory Descriptor must pass in Conventional Memory

2. Conventional memory is then used to build the EFI memory map.

· The FW is called with an initialized memory map
· Initialize The EFI Lib – Lib calls can now be made
· Install Base Devices
1. Call FW to install base IO devices

2. Initialize internal NVRAM

· The FW is called to install the NVRAM store. this is after the System Volumes on BIOS32 systems where variables are stored in a file on a fixed disk
· Install Console
1. Add BIOS Keyboard Driver

2. Add Bios VGA Driver

· The FW is called with a working console
· Install System Volumes
1. Add system Block IO Drivers – BIOS Block IO Drivers

· Install the serial console drivers (VT-100, PC-ANSI), serial port driver

· Install the console spliter to multiplex all available consoles

· The FW is called with System Volumes Installed
· Install Other Devices
1. What ever extra you need

2. NT emulator adds a emulated or raw floppy device

3. NT emulator adds bogus NT file system access at this point

· Call FW Boot Manager

· Call Platform Boot Manager

10.0
Known Limitations In This Release

· A few EFI Services are not fully implemented yet. These include:

1) GetWakeupTime() – This service programs the RTC, but is mechanism to wake up a system when the alarm fires has not been implemented. This function is not implemented in the NT emulation environment.

2) SetWakeupTime() – This service programs the RTC, but the mechanism to wake up a system when the alarm files has not been implemented. This function is not implemented in the NT emulation environment.

3) SetWatchdogTimer() – Not implemented. This requires platform specific functionality.

· The NT emulation environment does not support all the EFI Shell Commands and all the FILE_SYSTEM_PROTOCOL interfaces.

1) The EFI Shell command 'cd' is not functional.

2) The EFI Shell command 'rmdir' is not functional.

3) The EFI Shell command 'mkdir' is not functional.

4) The file information returned by 'ls' is not complete.

5) The EFI Shell command 'err' is not functional.

Workaround : Set the debug mask in \efi\inc\efidebug.h and recompile.

6) The File System Protocol services GetInfo() and SetInfo() are not fully implemented.

7) Timers events of type EVT_NOTIFY_SIGNAL are not implemented in the NT emulation environment.

11.0 Linking in the EFI Shell

The EFI Shell provides a command line environment to develop and debug EFI applications. The EFI Shell is supplied in the EFI ToolKit. If you wish to use the EFI Shell, you will need to copy the executable images for the EFI Shell from the EFI ToolKit into the target environment.

If you wish to integrate the EFI Shell into the EFI firmware, you will have to copy the EFI Shell source files from the EFI Toolkit directory into the EFI Reference Implementation directory. There is a batch file to help you do this. It is called \efi\GetShell.cmd. It takes a single parameter that is the root directory of the EFI ToolKit. For example, if the EFI Reference Implementation is in c:\project\efi, and the EFI ToolKit is in c:\project\toolkit, you could use the following command to copy the EFI Shell files.

c:\project\efi> GetShell c:\project\toolkit

Once the source files to the EFI Shell have been copied, you will need to set EFI_BOOTSHELL=YES to build the EFI Shell into the EFI firmware. It is always a good ideal to do a clean build after the EFI Shell sources have been copied.

12.0 Using the EFI Boot Manager

The EFI Boot Maintenance Manager allows the user to add boot options, delete boot options, launch an EFI application, and set the auto boot time out value. If there are no boot options in the system (and no integrated shell), the Boot Maintenance Menu is presented. If boot options are available, then the set of available boot options is displayed, and the user can select one or choose to go to the Boot Maintenance Menu. If the time out period is not zero, then the system will auto boot the first boot selection after the time out has expired. If the time out period is zero, then the EFI Boot Manager will wait for the user to select an option.

Boot Maintenance Menu:

1) Boot from a file

This option searches all the EFI System Partitions in the system. For each partition it looks for an EFI directory. If the EFI directory is found, then it looks in each of the subdirectories below EFI. In each of those subdirectories, it looks for the first file that is an executable EFI Application. Each of the EFI Applications that meet this criteria are automatically added as a boot option. In addition, legacy boot options for A: and C: are also added if those devices are present.

This option allows the user to launch an application without adding it as a boot option. The EFI Boot Manager will search the root directories and the \EFI\TOOLS directories of all of the EFI System Partitions present in the system for the specified EFI Application.

2) Add a boot option

This option allows the user to specify the name of the EFI Application to add as a boot option. The EFI Boot Manager searches the same partitions and directories as described in 1), until is finds an EFI Application with the same name that the user specified.

This menu also allows the user to provide either ASCII or UNICODE arguments to the option that will be launched.

3) Delete boot options

This option provides the opportunity to delete any single boot options or all boot options.

4) Change boot order

This option gives the user control of the relative order that the boot manager will attempt to boot options. There is a help menu to describe the control key sequences to employ.

5) Manage BootNext Setting

This option gives the user the ability to prescribe the first boot option to be tried on a subsequent boot.

6) Set auto boot time out

This option allows the user to set the auto boot time out value in seconds. If it is set to zero, then the auto boot feature is disabled

7) Select Active Console Output Devices

This option displays the list of available console output devices, as contained in the ConOutDev list volatile variable. The console output devices that have been selected to be active consoles are annotated as such. The user can select or deselect additional output consoles from this menu. The boot maintenance manager will perform logic checking to ensure that a legal ensemble of devices is chosen (i.e., you cannot choose two different messaging devices, such as both PC-ANSI and VT-100, to be active consoles on a given UART). The system should choose a set of defaults in an implementation-specific fashion if the console out variable is empty; this could be expected for the first boot of a given system.

8) Select Active Console Input Devices

This option is the same as option 6 above, but it treats the ConInDev list of devices and the subset detailed in ConIn variable.

9) Select Active Error Devices

This option is the same as number 6, but it treats the ErrOutDev list of devices and the subset detailed in ErrOut variable. The Active Error Devices are essentially a type of console output devices whose only traffic includes error messaging.

10) Cold Reset

This option will perform a platform-specific COLD reset of the system. This has traditionally meant a full platform reset.

11) Exit

Return to the Boot Manager main menu. This will display the active boot devices, including a possible integrated shell (if the implementation is so constructed).

Copyright 2000, Intel Corporation, All Rights Reserved.

*Other brands and names are the property of their respective owners.

