Useful File System Debugger extensions:

Author: Benjamin Leis [benl]

Date:
11/24/99

In kdext*.dll

· Cxr / Kb – dumps a context record and then produces the stack for it.

· Exqueue – this dumps the executive work queues and gives a little diagnosis on what might be stalled

· Defwrites – dumps the cache manager delayed write queue and also does some diagnosis

· Findata [fileobject] [offset] dumps the cache manager view of the data for a file at the given offset.

· Irpfind [Flags] [RestartAddress] [Field] [Match] Searches pool for irps. The flags are the same as for poolfind. Note: irps only exist in non-paged or special pool. RestartAddress lets you pickup a search from a given point. The field and match parameters let you filter for only the IRPs with a matching event, device, thread, process in its MDL, file object or argument.

· Locks – dumps a resource. Note: ed nt!expresourcetimeoutcount to increase the timeout value.

· Lpc [message] traces from an LPC message to the server thread handling it

· Pcr [processor #] dumps the processor info per processor. This includes the DPC list remaining to be delivered.

· PoolUsed [flags] – dumps pool usage if pool tagging is on. The flags determine sort order flags = 2 is sort by nonpaged pool flags = 4 sort by paged pool. Flags = 1 puts it in verbose mode.

· Poolfind [Tag] [Flag]– searches pool for a given tag the flag determines which type of pool to look in. 0 = NonPagedPool 1= PagedPool 2=SpecialPool

· Thread / Process dump the process or thread !process 8 f will dump the complete system process threads

· Vm – dumps the virtual memory situation. Pay special attention to pool usage counts.

In ntfskd.dll

· Extents [attribute address] – given the address of an attribute dumps the extent pairs.

· Cachedrecords – dumps all the threads with cached mft records.

· Dsc – dump syscache data. This is only useful when building syscache privates and dumps the logging info attached to an SCB in a readable form.

· Filerecord [fcb] given an fcb dumps the on disk record if cached.

· Ntfsdata – dumps the top level ntfsdata including all the VCBs

· Overflow [vcb] dumps the overflow queue for a given VCB

Notes:

Critical Section timeouts

To trace get the stack at the point of fault using !cxr/!kb. Then dump the critical section it’s the 1st parameter to RtlpWaitForCriticalSection. The owner thread id is the 4th DWORD in the critical section. Alternatively the possible timeouts printouts also show the critical section location and owner. This is a good shortcut and if they’re missing just press ‘g’ and let another timeout occur.

RTL: Re-Waiting

RTL: Enter Critical Section Timeout (2 minutes) 0

RTL: Pid.Tid e0.100, owner tid 344 Critical Section 77FC5060 - ContentionCount =

Then do a !process to find the thread with the TID. Do a !thread and then usually the thread is waiting for a mutant or on a LPC message. If its waiting for a mutant the owner thread will be printed out in the header by !thread and if its in an lpc wait use the !lpc extension.

Hung IRPs

Once you’ve found a stack waiting in NtfsWaitSync find the original irp. It’s the 2nd parameter to NtfsNonCachedIo. If the IRP is in storage stack great o.w it’s been subdivided into multiple sub-irps. To find the sub-IRPS you could do a !irpfind but its much quicker to disassemble NtfsNonCachedIo , find the IORUNS parameter passed into NtfsMultipeAsyncIo and dump the IORUNS using !irp on each subirp. At this point, check the other processors to see if someone is blocking DPC delivery. If so you’re done see what the current thread on that processor is doing. If not, put a breakpoint on the ntfs completion routine, press ‘g’ and confirm that we’re not being called. If the irp is still hung you can then forward to ntmsd. Note: if its in scsiport it may be useful to do a !scsikd.scsiext [scsi deviceobject from the IRP]

Pending IRPS

If an IRP has been pending by us, it must then be in one of several queues including: the overflow queue in the vcb (!overflow) the deferred write queue (!defwrites) or the system work queues (!exqueue)

Hung PageIns:

The 5th parameter to MiWaitForInPageComplete is a PMMINPAGE_SUPPORT structure. First check the thread parameter to see which thread is doing the i/o. Also the information field in the iosb should contain the actual read irp.

