Serial No: 00000000
Russ Arun
Microsoft Corporation

Windows

FAT: Long Name On-Media Format Specification

Revision:

0.93

Revision Date:

November 21, 2000

Send comments to:
Microsoft Corporation

Table of Contents

 11.
Overview

2.
Design Goals For the Addition of Long Names to the FAT File System
1
3.
Structure of a Short Directory Entry
2
4.
Identifying a Long Directory Entry
3
5.
Structure of a Long Directory Entry
3
6.
Organization and Association of Short & Long Directory Entries
5
7.
Storage of a Long-Name Within Long Directory Entries
6
8.
Name Limits and Character Sets
6
8.1.
Short Directory Entries
6
8.2.
Long Directory Entries
7
9.
Name Matching In Short & Long Names
7
10.
Naming Conventions and Long Names
7
10.1.
The Basis-Name Generation Algorithm
8
10.2.
The Numeric-Tail Generation Algorithm
9
10.3.
Generating Long Names From 8.3 Names on-Media
9
11.
Effect of Long Directory Entries on Previous Versions of MS-DOS/Windows
9
12.
Validating The Contents of a Directory
11

Overview

Throughout this document a distinction is made between "short" and "long" directory entries. A "short" directory entry is the current 32-byte directory entry recognized by anyone who is familiar with the on-media format of the FAT file system.. A "long" directory entry is a new type of directory entry that is associated with a "short" directory entry. A long directory entry contains additional information associated with the file or directory named by the "short" directory entry. This document describes the on-media format of both short and long directory entries, their organization, their association with one another, and other related information.

The principal reason for defining another type of directory entry is to add support for files and directories with names that exceed today's 8.3 naming restrictions.

Design Goals For the Addition of Long Names to the FAT File System

In adding long directory entries to the FAT file system it was crucial that their addition to the FAT file system's existing design:

Be essentially transparent on earlier versions of MS-DOS. The primary goal being that existing MS-DOS APIs on previous versions of MS-DOS/Windows do not easily "find" long directory entries. The only MS-DOS APIs that can "find" long directory entries are the FCB-based-find APIs when used with a full meta-character matching pattern (i.e. *.*) and full attribute matching bits (i.e. matching attributes are FFh). On post-Windows 95 versions of MS-DOS/Windows, no MS-DOS API can accidentally "find" a single long directory entry.

Be located in close physical proximity, on the media, to the short directory entries they are associated with. As will be evident, long directory entries are immediately contiguous to the short directory entry they are associated with and their existence imposes an unnoticeable performance impact on the file system.

If detected by disk maintenance utilities, they do not jeopardize the integrity of existing file data. Disk maintenance utilities typically do not use MS-DOS APIs to access on-media file-system-specific data structures. Rather they read physical or logical sector information from the disk and judge for themselves what the directory entries contain. Based on the heuristics employed in the utilities, the utility may take various steps to "repair" what it perceives to be "damaged" file-system-specific data structures. Long directory entries were added to the FAT file system in such a way as to not cause the loss of file data if a disk containing long directory entries was "repaired" by a pre-Windows 95-compatible disk utility on a previous version of MS-DOS/Windows.

Structure of a Short Directory Entry

For purposes of differentiating them from "long" directory entries, the familiar conventional MS-DOS directory entry is referred to as a "short" directory entry. The structure of a FAT file system directory entry follows.

[image: image1.wmf]

FstClusHi

Last

Access

Date

Last

Modified

Date

Creation

Date

Modified

Last

Time

File Size

Attr

Name

Creation Time

h/m/s

ms

OS

FstClusLo

Fig. 1

DIR_ENTRY
STRUC

dir_name
db 11 DUP
(?)
; 8.3-style name stored in OEM character set

dir_attr
db
?
; Attributes

dir_OS
db
?
; Reserved for OS specific use

dir_CreateMsec
db
?
; Creation millisec - # of 10 millisec intervals in 2 sec create time

dir_CreateTime
dw
?
; Creation time (DOS time format hrs/min/sec - 2 sec granularity)

dir_CreateDate
dw
?
; Creation date (DOS date format)

dir_LastAccessDate
dw
?
; Last accessed date

dir_FstClusHi
dw
?
; High word of this entry’s first cluster number (always 0 for a FAT12 or FAT16 volume)

dir_ModifyTime
dw
?
; Last modified time

dir_ModifyDate
dw
?
; Last modified date

dir_FstClusLo
dw
?
; Low word of this entry’s first cluster number

dir_size
dd
?
; Size of file in bytes

DIR_ENTRY
ENDS

Note that the addition of a "last access date" and "creation date/time" field is new with Windows 95. The "OS field" is reserved. Currently NT uses a couple of bits in the first directory entry in the root as volume dirty bits. It also uses a couple of other bits for flagging an optimized directory entry. Usage of these bits by an OS should cause no functional difference between OSes.

All short directory entries, whether they designate volume labels, directories, or files, have an identical structure. Volume-labels, directories, and files are differentiated from one another by the attribute field within this structure. Bits 4-3 within the attribute field contain bit flags that are used for differentiating directory entries from one another. The following values for bits 4-3 indicate the type of file system object that the directory entry designates.

; Bit 4 Bit 3

A_VOL
EQU
08h

;
0
1

A_DIR
EQU
10h

;
1
0

A_FILE
EQU
00h

;
0
0

Note that a combination resulting in an attribute value of 18h is missing. This combination would specify an entry that was both a volume-label and a directory, which would be contradictory. Suppose one were to set these bits in an existing directory entry "manually" via a disk editor, since there is no way to do this with a MS-DOS API, and subsequently use a MS-DOS disk utility on a disk so modified. What would occur? Depending on the disk utility, file-system-specific information, like a cluster chain, or file data is usually destroyed by the utility. This is because such an object is not "valid" as far as some disk utilities are concerned and they will take steps to "fix" the problem.

The following values for bits 5 and 2-0 indicate miscellaneous attributes that a directory entry may also possess. The MS-DOS APIs: Get/SetAttribute allow any or all of these attributes to be changed.

A_RD_ONLY
EQU
01h

; Read-only file/directory flag.

A_HID
EQU
02h

; Hidden flag

A_SYS
EQU
04h

; System flag

A_ARC
EQU
20h

; Archive flag

There is an exception to this rule: a volume-label cannot have system, hidden, and read-only attributes associated with it. There is no MS-DOS API that allows an application to create or modify the attributes of a volume-label, such that the system, hidden, and read-only attribute bits are set. When searching for a volume label, any short directory entry that has a volume label attribute and appears anywhere other than the root directory, is ignored by MS-DOS. These properties are used in conjunction with long directory entries.

Depending on the file system object, some of the fields in a directory entry are not relevant. For example, a volume-label has neither a "first cluster" nor "file size" (i.e. the dir_first_cluster and dir_file_size fields are set to zero). A directory has no "file size" (i.e. the dir_file_size field is set to zero) but does have a "first cluster".

Identifying a Long Directory Entry

In order to meet the goals of locality-of-access and transparency, the long directory entry is defined as a short directory entry with a special attribute. A long directory entry is a directory entry in which the attribute field has a value of:

A_LONG

EQU
0Fh
; Same as (A_RD_ONLY | A_HID | A_SYS | A_VOL)

A mask for determining whether an entry is a long-name sub-component should also be defined:

A_LONG_MASK
EQU
3Fh
; Same as (A_RD_ONLY | A_HID | A_SYS | A_VOL | A_DIR | A_ARC)

When such a directory entry is encountered it is given special treatment by the file system. It is treated as part of a set of directory entries that are associated with a single short directory entry.

Structure of a Long Directory Entry

A directory entry which has an attribute of A_LONG has a structure which differs substantially from a conventional short directory entry.

The structure of a long directory entry containing components of a long-name follows.

[image: image2.wmf]ord

name1

attr

chk-

sum

name2

name2

first

clust

name3

type

Fig. 2

LONGNAME_ENTRY
STRUC

ldir_ord
db
?
; The order of this entry in the sequence of long dir entries

; associated with the short dir entry at the end of the long dir set.

ldir_name1
db 10 dup
(?)
; Characters 1-5 of the long-name sub-component in this dir entry.

ldir_attr
db
?
; Attributes - must be A_LONG.

ldir_type
db
?
; If zero, indicates a directory entry which is a sub-component of a

; long name. NOTE: Other values reserved for future extensions.

; Non-zero implies other dirent types.

ldir_chksum
db
?
; Checksum of name in the short dir entry at the end of the long dir set.

ldir_name2
db 12 dup
(?)
; Characters 6-11 of the long-name sub-component in this dir entry.

ldir_first_clust
dw
?
; Must be ZERO. This is an artifact of the FAT "first cluster" and must be

; zero for compatibility with existing disk utilities. It's meaningless in the

; context of a long dir entry.

ldir_name3
db 4 dup (?)
; Characters 12-13 of the long-name sub-component in this dir entry.

LONGNAME_ENTRY
ENDS

Flags used in the ldir_ord field:

LAST_LONG_ENTRY
equ 01000000b
; Indicates the last long dir entry in a set of long dir entries. Used to

; determine if a set of long dir entries has been truncated by a disk utility.

Organization and Association of Short & Long Directory Entries

A set of long entries is always associated with a short entry which they always immediately precede. Long entries are paired with short entries for one reason: only short directory entries are visible to previous versions of MS-DOS/Windows. Without a short entry to accompany it, a long directory entry would be completely invisible on previous versions of MS-DOS/Windows. A long entry never legally exists all by itself. If long entries are found without being paired with a valid short entry, they are termed orphans. Figure 4 depicts a set of n long directory entries associated with it's single short entry.

Long entries always immediately precede and are physically contiguous with, the short entry they are associated with. The file system makes a few other checks to ensure that a set of long entries are actually associated with a short entry.

[image: image3.wmf]nth Long Entry

1st Long Entry

Short Entry Associated With Preceding Long Entries

... Additional Long Entries

Fig. 4

First, every member of a set of long entries is uniquely numbered and the last member of the set is or'd with a flag indicating that it is, in fact, the last member of the set. The ldir_ord field is used to make this determination. The first member of a set has an ldir_ord value of one. The nth long member of the set has a value of (n OR LAST_LONG_ENTRY). Note that the ldir_ord field cannot have values of 0xE5 or 0x00. These values have always been used by the file system to indicate a "free" directory entry, or the "last" directory entry in a cluster. Values for ldir_ord do not take on these two values over their range. Values for ldir_ord must run from 1 to (n OR LAST_LONG_ENTRY). If they do not, the long entries are assumed to be "damaged" and are treated as orphans by the file system.

Second, an 8-bit checksum is computed on the name contained in the short directory entry at the time the short and long directory entries are created. All 11 characters of the name in the short entry are used in the checksum calculation. The check sum is placed in every long entry. If any of the check sums in the set of long entries do not agree with the computed checksum of the name contained in the short entry, then the long entries are treated as orphans. This can occur if a disk containing long and short entries is taken to a previous version of MS-DOS/Windows and only the short name of a file or directory with a long entries is renamed.

The algorithm, implemented in C, for computing the checksum is:

//---

//
ChkSum()

//

Returns an unsigned byte checksum computed on an unsigned byte

//

array. The array must be 11 bytes long and is assumed to contain

//

a name stored in the format of a MS-DOS directory entry.

//
Passed:
pFcbName
Pointer to an unsigned byte array assumed to be 11 bytes long.

//
Returns:
Sum

An 8-bit unsigned checksum of the array pointed to by pFcbName.

//---

unsigned char ChkSum (unsigned char *pFcbName)

{

short FcbNameLen;

unsigned char Sum;

Sum = 0;

for (FcbNameLen=11; FcbNameLen!=0; FcbNameLen--) {

// NOTE: The _rotr should be an unsigned char rotate right

Sum = _rotr(Sum, 1) + *pFcbName++;

}

return (Sum);

}

As a consequence of this pairing, the short directory entry serves as the structure which contains fields like: last access date, creation time, creation date, first cluster, and size. It also holds a name which is visible on previous versions of MS-DOS/Windows. The long directory entries are free to contain new information and need not replicate information already available in the short entry. Principally, the long entries contain the long name of a file. The name contained in a short entry which is associated with a set of long entries is termed the alias name, or simply alias, of the file.

Storage of a Long-Name Within Long Directory Entries

A long-name can consist of more characters than can fit in a single long directory entry. When this occurs the name is stored in more than one long entry. In any event, the name fields themselves within the long entries are disjoint. The following example is provided to illustrate how a long-name is stored across several long directory entries. Names are also NUL terminated and padded with 0xFFFF characters in order to detect corruption of long name fields by errant disk utilities. A name that fits exactly in a n long directory entries (i.e. is an integer multiple of 13) is not NUL terminated and not padded with 0xFFFFs.

Suppose a file is created with the name: "The quick brown.fox". The following example illustrates how the name is packed into long and short directory entries. Most fields in the directory entries are also filled in as well.

[image: image4.wmf]Short entry

1st long entry

2nd long entry

(and last)

chk-

sum

chk-

sum

T

h

e

q

u

i

c

k

b

r

o

w

n

f

o

x

.

T

Q

H

E

U

I

F

X

~

1

O

42h

01h

00h

00h

0000h

0000h

0000h

0000h

FFFFh

FFFFh

FFFFh

FFFFh

FFFFh

FFFFh

0Fh

0Fh

20h

Rsvd

Last

Access

Date

Last

Time

First

Cluster

File Size

NT

Date

Modified

Date

Time

Modified

Last

Created

Created

The heuristics used to "auto-generate" a short name from a long name are explained in a later section.

Name Limits and Character Sets

Short Directory Entries

Short names are limited to 8 characters followed by an optional period (.) and extension of up to 3 characters. The total path length of a short name cannot exceed 80 characters (64 char path + 3 drive letter + 12 for 8.3 name + NUL) including the trailing NUL. The characters may be any combination of letters, digits, or characters with code point values greater than 127. The following special characters are also allowed:

$ % ' - _ @ ~ ` ! () { } ^ # &

Names are stored in a short directory entry in the OEM code page that the system is configured for at the time the directory entry is created. Short directory entries remain in OEM for compatibility with previous versions of MS-DOS/Windows. OEM characters are single 8-bit characters or can be DBCS character pairs for certain code pages.

Short names passed to the file system are always converted to upper case and their original case value is lost. One problem that is generally true of most OEM code pages is that they map lower to upper case extended characters in a non-unique fashion. That is, they map multiple extended characters to a single upper case character. This creates problems because it does not preserve the information that the extended character provides. This mapping also prevents the creation of some file names that would normally differ, but because of the mapping to upper case they become the same file name.

Long Directory Entries

Long names are limited to 255 characters, not including the trailing NUL. The total path length of a long name cannot exceed 260 characters, including the trailing NUL. The characters may be any combination of those defined for short names with the addition of the period (.) character used multiple times within the long name. A space is also a valid character in a long name as it always has been for a short name. However, in short names it typically is not used. The following six special characters are now allowed in a long name. They are not legal in a short name.

+ , ; = []

Embedded spaces within a long name are allowed. Leading and trailing spaces in a long name are ignored.

Leading and embedded periods are allowed in a name and are stored in the long name. Trailing periods are ignored.

Long names are stored in long directory entries in UNICODE. UNICODE characters are 16-bit characters. It is not be possible to store UNICODE in short directory entries since the names stored there are 8-bit characters or DBCS characters.

Long names passed to the file system are not converted to upper case and their original case value is preserved. UNICODE solves the case mapping problem prevalent in some OEM code pages by always providing a translation for lower case characters to a single, unique upper case character.

Name Matching In Short & Long Names

The names contained in the set of all short directory entries is termed the "short name space". The names contained in the set of all long directory entries is termed the "long name space". Together, they form a single unified name space in which no duplicate names can exist. That is: any name within a specific directory, whether it is a short name or a long name, can occur only once in the name space. Furthermore, although the case of a name is preserved in a long name, no two names can have the same name although the names on the media actually differ by case. That is names like "foobar" cannot be created if there is already a short entry with a name of "FOOBAR" or a long name with a name of "FooBar". Again, this behavior follows the Win32 specification.

All types of search operations within the file system (i.e. find, open, create, delete, rename) are case-insensitive. An open of "FOOBAR" will open either "FooBar" or "foobar" if one or the other exists. A find using "FOOBAR" as a pattern will find the same files mentioned. The same rules are also true for extended characters which are accented. Internally, the file system converts all names passed to it into UNICODE, converts names on media to UNICODE, and compares the names in UNICODE during search operations. Again, all comparisons performed during any file system search operation are case-insensitive.

A short name search operation checks only the names of the short directory entries for a match. A long name search operation checks both the long and short directory entries. As the file system traverses a directory, it caches the long-name sub-components contained in long directory entries. As soon as a short directory entry is encountered that is associated with the cached long name, the long name search operation will check the cached long name first and then the short name for a match.

If the long name search operation is the long name find API, it will return both the long and short name in the WIN32 find buffer. The long and short names will be returned in ANSI by default for a WIN32 app unless it specified OEM. The long and short names will be returned in OEM for WIN16 and MS-DOS apps. When a character on the media, whether it is stored in the OEM character set or in UNICODE, cannot be translated into the appropriate character in the OEM or ANSI code page, it is always "translated" to the "_" (underscore) character. This character is the same in all OEM code pages and ANSI. This is also the same "translation" behavior that Windows NT exhibits.

Naming Conventions and Long Names

The long name APIs allow the caller to specify the long name to be assigned to a file or directory. They do not allow the caller to independently specify the short name. The reason for this prohibition is that the short and long names are considered to be a single unified name space. As should be obvious the file system's name space does not support duplicate names. In other words, a long name for a file may not contain the same name, ignoring case, as the short name in a different file. This restriction is intended to prevent confusion among users, and applications, regarding the proper name of a file or directory. To make this restriction transparent, whenever a long name is created and the no matching long name exists, the short name is automatically generated from the long name in such a way that it does not collide with an existing short name.

The technique chosen to auto-generate short names from long names is modeled after Windows NT. Auto-generated short names are composed of the basis-name and an optional numeric-tail.

The Basis-Name Generation Algorithm

The basis-name generation algorithm is outlined below. This is not the actual algorithm but merely serves to illustrate how short names are auto-generated from long names.

1.
The UNICODE name passed to the file system is converted to upper case.

2.
The upper cased UNICODE name is converted to OEM.
if

(the uppercased UNICODE glyph does not exist as an OEM glyph in the OEM code page)

or
(the OEM glyph is invalid in an 8.3 name)
{

Replace the glyph to an OEM '_' (underscore) character.

Set a "lossy conversion" flag.
}

3.
Strip all leading and embedded spaces from the long name.

4.
Strip all leading periods from the long name.

5.
While

(not at end of the long name)

and
(char is not a period)

and
(total chars copied < 8)
{

Copy characters into primary portion of the basis name
}

6.
Insert a dot at the end of the primary components of the basis-name iff the basis name has an extension after the last period in the name.

7.
Scan for the last embedded period in the long name.
If
(the last embedded period was found)
{

While

(not at end of the long name)

and
(total chars copied < 3)

{

Copy characters into extension portion of the basis name

}
}

Proceed to numeric-tail generation.

The Numeric-Tail Generation Algorithm

If

(a "lossy conversion" was not flagged)

and
(the long name fits within the 8.3 naming conventions)

and
(the basis-name does not collide with any existing short name)
{

The short name is only the basis-name without the numeric tail.
}
else
{

Insert a numeric-tail "~n" to the end of the primary name such that the value of the "~n" is chosen so that the

name thus formed does not collide with any existing short name and that the primary name does not exceed eight
characters in length.
}

The "~n" string can range from "~1" to "~9999999". The number "n" is chosen so that it is the next number in a sequence of files with similar basis-names. For example, assume the following short names existed: LETTER~1.DOC and LETTER~2.DOC. As expected the next auto-generated name of name of this type would be LETTER~3.DOC. Assume the following short names existed: LETTER~1.DOC, LETTER~3.DOC. Again, the next auto-generated name of name of this type would be LETTER~2.DOC. However, one absolutely cannot count on this behavior. In a directory with a very large mix of names of this type, the selection algorithm is optimized for speed and may select another "n" based on the characteristics of short names that end in "~n" and have similar leading name patterns.

Generating Long Names From 8.3 Names on-Media

When an 8.3 name API creates a file the long name is, by definition, the same as the 8.3 name even though there are actually no long name directory entries associated with the short name. When the long-name find API is called and a short directory entry is found that has no associated long directory entries, the find buffer has a primary name that contains the short name from the short directory entry and an alternate name that is NULL.

When the long-name find API is called and a short directory entry is found has associated long directory entries, the find buffer has a primary name that contains the long name from the long directory entries and an alternate name that contains the short name from the short directory entry.

In either case, any long-name API can use the primary name to access the file or directory thus found. An application can use this property of the long-name find API to determine whether or not a file or directory has a long name.

Effect of Long Directory Entries on Previous Versions of MS-DOS/Windows

The support of long names is most important on the hard disk, however it will be supported on removable media as well. The implementation provides support for long names without breaking compatibility with the existing FAT format. A disk can be read by a down level system without any compatibility problems. An existing disk does not go through a conversion process before it can start using long names. All of the current files remain unmodified. The long name directory entries are added when a long name is created. The addition of a long name to an existing file may require the 8.3 directory entry to be moved if the required adjacent directory entries are not available.

The long name entries are as hidden as hidden or system files are on a down level system. This is enough to keep the casual user from causing problems. The user can copy the files off using the 8.3 name, and put new files on without any side effects.

The interesting part of this is what happens when the disk is taken to a down level MS-DOS system and the directory is changed. This can affect the long name entries since the down level system ignores these long names and will not ensure they are properly associated with the 8.3 name.

A down level system will only see the long name entries when searching for a label. On a down level system, the volume label will be incorrectly reported if the true volume label does not come before all of the long name entries in the root directory. This is because the long name entries also have the volume label bit set. This is unfortunate, but is not a critical problem.

If an attempt is made to remove the volume label, one of the long name directory entries may be deleted. This would be a rare occurrence. It is easily detected on a Windows 95 system. The long name entry will no longer be a valid file entry, since one or more of the long entries is marked as deleted. If the deleted entry is reused, then the attribute byte will not have the proper value for a long name entry.

If a file is renamed on a down level system, then only the short name will be renamed. The long name will not be effected. Since the long and short names must be kept consistent across the name space, it is desirable to have the long name become invalid as a result of this rename. The checksum of the 8.3 name that is kept in the long name directory provides the ability to detect this type of change. This checksum will be checked to validate the long name before it is used. Rename will cause problems only if the renamed 8.3 file name happens to have the same checksum. The checksum algorithm chosen has a relatively flat distribution across the short name space.

This rename of the 8.3 name must also not conflict with any of the long names. Otherwise a down level system could create a short name in one file that matches a long name, when case is ignored, in a different file. To prevent this, the automatic creation of an 8.3 name from a long name, that has an 8.3 format, will directly map the long name to the 8.3 name by converting the characters to upper case.

If the file is deleted, then the long name is simply orphaned. If a new file is created, the long name may be incorrectly associated with the new file name. As in the case of a rename the checksum of the 8.3 name will help prevent this incorrect association.

Validating The Contents of a Directory

These guidelines are provided so that disk maintenance utilities can verify individual directory entries for 'correctness' while maintaining compatibility with future enhancements to the directory structure.

1.
DO NOT look at the content of directory entry fields marked 'reserved' and assume that, if they are any value other than zero, that they are 'bad'.

2.
DO NOT reset the content of directory entry fields marked reserved to zero when they contain non-zero values (under the assumption that they are "bad"). Directory entry fields are designated reserved, rather than must-be-zero. They should be ignored by your application.. These fields are intended for future extensions of the file system. By ignoring them an utility can continue to run on future versions of the operating system.

3.
DO use the A_LONG attribute first when determining whether a directory entry is a long directory entry or a short directory entry. The following algorithm is the correct algorithm for making this determinaton:

if (((ldir_attr & A_LONG_MASK) == A_LONG) && (ldir_ord != 0xE5))
{

/* Found an active long name sub-component. */
}

4.
DO use bits 4 and 3 of a short entry together when determining what type of short directory entry is being inspected. The following algorithm is the correct algorithm for making this determinaton:

if (((ldir_attr & A_LONG_MASK) != A_LONG) && (ldir_ord != 0xE5))
{

if ((dir_attr & (A_DIR | A_VOL)) == 0x00)

/* Found a file. */

else if ((dir_attr & (A_DIR | A_VOL)) == A_DIR)

/* Found a directory. */

else if ((dir_attr & (A_DIR | A_VOL)) == A_VOL)

/* Found a volume label. */

else

/* Found an invalid directory entry. */
}

5.
DO NOT assume that a non-zero value in the "type" field indicates a bad directory entry. Do not force the "type" field to zero.

6.
Use the "checksum" field as a value to validate the directory entry. The "first cluster" field is currently being set to zero, though this might change in future.

03/01/94
Microsoft Corporation Company Confidential - DO NOT COPY
Page 11

_1036319471.doc

FstClusHi

Last

Access

Date

Last

Modified

Date

Creation

Date

Modified

Last

Time

FstClusLo

File Size

Attr

Name

Creation Time

h/m/s

ms

OS

