This draft omits the rules dealing with international character sets, and only discusses the Windows 2000 algorithm in detail. The Windows 95/98/Millenium algorithm is substantially similar but differs when it comes to names which only violate 8.3 rules due to case.
A short name is broken into three elements: the basis, uniquifier, and extension, all characters of which are uppercase The basis is determined by scanning the original, long (non 8.3) name for the rightmost period; however, if the first character of the name is a period, it is excluded from the search and a subsequent period, if present, will be the first period considered in this scan. From the start of the name up to this period, characters form the starting basis for the short name. There are three cases:


seven or more characters: the leftmost (first) six characters are used (example: thisisalongname.extension -> basis THISIS)


three to six characters: as many characters as are available are used (example: this.extension -> basis THIS)


two or fewer characters: the available characters are used, then a 16bit (two byte) checksum function on the long name is performed, and the four character hexadecimal representation of the checksum is appended to them (example: t.extension -> basis T9D60) (note 1)

The extension is formed from the characters to the right of the rightmost period already determined. There are three cases:


three or more characters: the leftmost three characters are used (example: thisisalongname.extension -> extension EXT)


one or two characters: all characters are used (example: thisisalongname.ex -> extension EX)


zero characters: no extension is used (example: thisisalongname -> no extension)

In forming these two elements, the following characters, if encountered, are translated to underscores (‘_’):

: + , ; = []

Example: if we had a long name of THIS[IS]ALONGNAME.[EXT] the basis would be THIS_I and the extension would be _EX.

Generating the name is by trial and error. The uniquifier is formed from a separator, tilde (“~”), and an integer counter which starts at one. Each trial increments the counter, and the uniquifier is formed by concatenating the separator and the decimal representation of the counter. Each generated name is formed by appending the basis, uniquifier, and, if an extension exists, a period and the extension. Example: the first generated name for thisisalongname.extension would be THISIS~1.EXT. If the first generated name is already the name of a file in the directory, short or long, we continue to ~2, ~3, ~4, and so forth. Example: if both thisisthefirst.extension and thisisthesecond.extension exist in the same directory, one will have a short name of THISIS~1.EXT and one will use THISIS~2.EXT, depending on the order in which they were created.

At a counter value of 5, if the basis in use was not generated by appending the four character hexadecimal representation of the long name’s checksum (see note 1) or by application of the following logic, that operation is performed now on the basis. The basis is truncated to two characters and the four character hexadecimal representation of the checksum is appended. Example: thisis6longname.extension, with an original basis of THISIS now has a basis of THFC50. This is done to reduce collisions and the number of times the algorithm must execute the trial and error loop. With a new basis is generated, the counter is reset to one and the generation of short names continues with the counter incrementing as before. Since this logic has now been executed once, if the counter hits 5 we will not execute this logic again.

If the counter reaches a value which, when incremented by one, will require an additional character in its decimal representation (example: 9 to 10, 999 to 1000), the basis is truncated by one character. Example: at a counter value of 9, a basis of THFC50 would be changed, for the next attempt at a counter value of 10 (if required), to THFC5. Note that as a practical matter the basis will always be six characters at the 9 to 10 transition since we will have used the logic in the previous paragraph at some point to add the checksum to the basis; therefore, simply shortening the basis is correct.

The algorithm terminates when a unique short name is generated for the long name. This name is unique in the directory between both long/primary names of files and short/secondary names of files.

Windows 2000 FAT has an optimization if the primary name of a file is 8.3 except for the character case, and the case of the name and extension are monocased: either all uppercase or all lowercase characters. If both are uppercase, the name is simply 8.3; however, if one or both are lowercase, Windows 2000 FAT simply notes if they are lowercase in the directory entry in two bits at byte offset 12 (decimal) of the primary directory entry, and no physically recorded short name need be generated since Windows 2000 FAT can reconstruct it from this information
The checksum algorithm referenced above is as follows in C code, using UNICODE (16bit) characters:
typedef unsigned short WCHAR;

typedef unsigned short USHORT;

typedef unsigned long ULONG;

typedef struct _UNICODE_STRING {

 USHORT Length;

 USHORT MaximumLength;

 PWCHAR Buffer;

} UNICODE_STRING, *PUNICODE_STRING;

USHORT

RtlComputeLfnChecksum (

 PUNICODE_STRING Name

)

{

 ULONG i;

 USHORT Checksum;

 if (Name->Length == sizeof(WCHAR)) {

 return Name->Buffer[0];

 }

 Checksum = ((Name->Buffer[0] << 8) + Name->Buffer[1]) & 0xffff;

 for (i=2; i < Name->Length / sizeof(WCHAR); i+=2) {

 Checksum = (Checksum & 1 ? 0x8000 : 0) +

 (Checksum >> 1) +

 (Name->Buffer[i] << 8);

 if (i+1 < Name->Length / sizeof(WCHAR)) {

 Checksum += Name->Buffer[i+1] & 0xffff;

 }

 }

 return Checksum;

}
