NT 5.0 Client Side Caching Specification
 March 20, 1997

1Introduction

Scenarios
2
Requirements
2
Architecture
4
CSC Client Components
4
CSC Client APIs
5
CSCIsCSCEnabled
5
This API allows an application to find out whether CSC is enabled at this time.
5
CSCPinFile
6
CSCUnPinFile
6
CSCFindFirstCachedFile
7
CSCFindNextCachedFile
8
CSCFindClose
8
CSCSetMaximumCacheSize
9
CSCDeleteCachedFile
9
File/Folder Status Bit Definitions:
13
UI Support APIs
14
Change Propagation
14
CSC Server Components
15
CSC Server APIs
15
NetShareSetInfo
15
NetShareGetInfo
16
SHARE_INFO_1007
16
CSC SMB Protocol Modifications
17
Win32 Considerations
17
Link Speed Considerations
17

Introduction
This document describes the salient features of client side caching (CSC) for NT5. This architecture is an evolution from current Windows networking technology; it does not propose a fundamental rethinking or reworking of Windows networking.
Client side caching gives off-line access to files when the network version of the file is otherwise unavailable, or when it is undesirable to load the server with file requests. A client accesses the cached copy of a file using the same filename as when the client is connected to the network.
Scenarios

CSC must address the following usage scenarios:

A user wants to make sure that specific files are available to him when he disconnects his laptop computer from the network. He should not need to learn any new file names or anything, and this action by the user should not cause any surprises to the user when he is connected to his corporate network.

An administrator wants to configure a number of applications to be run from the network. The administrator should be able to support 100’s of clients in this way using a Pentium class server. The application should reasonably continue to function in the face of network problems.
A user has one desktop computer and one portable computer. This user brings the portable computer to work every morning and connects it to the network, but works on the desktop computer during the day. The user expects to undock the portable and resume work on the files at home. The user, through minimal UI, expects the desktop data to be present when the portable computer is taken home and used.
A student in a lab at college roams from machine to machine, expecting his desktop data to be available on the current machine. This desktop data must not be available to the next student that logs onto the machine.

A user of Microsoft Office wants to edit a document that someone else has open. This user wants to get all the normal Office verbiage regarding shared document editing.
Requirements
Following are the requirements for CSC

1. An NT 5 system hosting CSC must be at least as robust as the same system not hosting CSC.
2. In the NT5 time frame, CSC can be tied exclusively to SMB file sharing, and can require 5.0 NTS SMB servers. CSC caches files that are accessed using Win32.
3. CSC should improve the robustness of network access. If network problems break the connection from a client to a server then the local cache should be utilized where appropriate to “cover up” the network problems.
4. CSC must give client side applications the ability to designate certain files that are to be available even if the computer is disconnected from the network (i.e. pinned for off-line access). Applications will refer to these files when off-line with the same Win32 file name as when connected to the network. Preservation of inter-client file sharing semantics is not required during off-line file access and update. Off-line means that the server is unreachable for any reason.
5. CSC must give server administrators the ability to designate whether or not server files are automatically appropriate for off-line CSC access. The granularity of administration is on a share basis.
6.
7. CSC must minimally perturb W32 file I/O performance and semantics. CSC must not introduce undue pauses or latency during any file operation.
8. Network aware applications must be able to enjoy the performance advantages of CSC even if these applications require strict adherence to inter-client file sharing rules when connected to the network and the server is available (i.e. opens flow).

9. The previous requirement notwithstanding, it must be possible to indicate to CSC that inter-client file sharing rules are not required for a given server share even when connected to the network and the server is available (i.e. opens do not flow).
10. CSC need only support whole-file caching. There must be a way to avoid accidentally filling the client side cache when applications such as the Windows Explorer scan all the files in a directory and extract icons.

11. CSC must have a means to propagate a file inward from a server to replace an old version of the file in the client cache:

· Application maintenance requires that such inward propagation is automatic and involves no interaction with the user.
· Other instances of file pinning require explicit user intervention for inward propagation – there must be appropriate UI.
12. CSC must have a means to propagate a file outward from the cache to replace an old version of the file on the server:

·
13. For both the inward and outward propagation cases, complete file replacement is the conflict resolution policy. If further refinement is required, the time stamp of the file is used (latest wins) followed by file size (largest wins), followed by a coin toss.
14.
15. CSC must integrate sensibly with DFS. CSC must be aware of DFS alternates, and rely on the fact that some (completely independent) agent is keeping DFS alternates in sync. CSC can select any of the DFS alternates for file put-back and/or cache filling.
16. Any UI introduced by CSC must be usable by a novice PC user. Specifically, it must be very simple for the end user to designate files that should be available when the user is disconnected from the network, or when the server is unavailable. The result of this designation should be simple, predictable, and intuitive to the end user whether connected or off-line.

17. CSC must give the client a means to designate how much local disk space the client side cache can use.
Architecture
CSC Client Components
The CSC implementation has 3 major client components

CSC File System Component: This component is part of the SMB redirector and has the following subparts:
Disconnected File System Driver (DFSD): responsible for mimicking the behavior of remote file systems in the absence of a network connection. The Record Manager (below) is used by the DFSD to mimic remote file systems while in the disconnected state.
Record Manager (RM): A local persistent database of servers, file naming, descriptors and data is maintained in order to serve as a cache for network activity. As an example, to cache \\penmktg\public\foo\bar.doc, the name \\penmktg\public is maintained in a servers database and points to a database entry corresponding to the root of the server. The server database entry contains the information for directory foo and its attributes and has a reference to the database entry for bar.doc. The database entry for bar.doc contains the name, attributes, timestamp, etc. for bar.doc and also contains a reference to the to the entry holding the contents of bar.doc. The record manager also maintains status information such as whether the file is stale, whether the file was created while off-line, whether the file has been modified while off-line, etc. On NT, the RM holds ACL information for the entries, on Win95 the entire cache is per-user.
Persistent Management Database: A priority queue and Record Manager recovery database. All entries in the Record Manager are queued into the priority queue. A combination of the hints on the file and the frequency of usage determine the priority of a file. The priority queue is used as a measure of the importance of the files and hence used for maintaining coherency and managing space. The Record Manager recovery database tracks deleted record manager entries, for later reuse.
CSC Shadow Agent: This user mode component is a daemon process that maintains the Record Manager while in connected state. Any file used by the user is a candidate for inclusion in the Record Manager. The CSC File System Component detects the fact that the file is a candidate for inclusion during the course of a file open call on the file. The CSC File System Component creates an entry in the Record Manager indicating a sparse file, and places it in the priority queue. The CSC Shadow Agent periodically walks the priority queue in the order of priority, looking for sparse files. When a sparse file is found the agent fills the file using small chunks at a time if it has at least a level 2 opportunistic lock
.
CSC Shadow Network Provider (Shadow NP): This aspect has been implemented in netapi32.dll.
CSC Shell Extensions: These extend the shell to provide a seamless shadowing user interface. Implemented through the standard shell extensions, these include
· Adding shadowing-specific items to network file system objects.
· Adding property sheet pages to show the shadowing properties of files and directories. For instance, a user can add a file to the cache via a shell context menu on files viewed in the explorer
· Allowing global views of the shadow cache (i.e. its size and utilization)
CSC Client APIs

The client side cache is of finite size
, and CSC silently evicts files from its cache as required. There are APIs to suppress eviction on a file-by-file basis; such suppression is called pinning a file to the cache. There is a PinCount maintained for each cached file, the default value for PinCount is zero. Only files having a PinCount of zero can be evicted from the cache. Each pin request increments PinCount by one, each unpin request decrements PinCount by one. CSC by itself never pins or unpins files. The data that has not been pinned is added up to check whether the disk reservation for CSC has been exceeded. In other words the disk reservation refers only to the space allocated to the unpinned files; pinned files are treated as if the user copied them manually.

The following APIs are used to manage the CSC cache:

CSCIsCSCEnabled

BOOL

CSCIsCSCEnabled(

VOID

);

This API allows an application to find out whether CSC is enabled at this time.

Return Value:

TRUE means CSC is enabled, FALSE means CSC is disabled. There are no error conditions.
CSCPinFile

BOOL

CSCPinFile (

IN
LPTSTR
Name,

// Name of the item

IN
DWORD
dwHintFlags,

// Flags to be Ored for pinning,
// see FLAG_CSC_PIN_XXX

OUT
LPDOWRD lpdwStatus,

// Status of the item

OUT
LPDWORD
 lpdwResultingPinCount
// Pin count for this file

OUT
LPDWORD lpdwResultingHintFlags
);

This API allows an application to insert a file/directory in the Client-Side-Cache. If this API returns TRUE then the file is resident in the cache. If any of the pin flags are specified, the API takes the appropriate pinning action.
Parameters:

Name: The fully qualified UNC name of the file or directory to be pinned into the client cache
dwHintFlags
These flags are hints to the CSC as to how to treat this entry. These flags are Ored with existing flags on the entry. If the entry is newly created because of this call, then these flags are the only flags on the entry. Examples: Whether, user pinned or system pinned. If folder, whether all descendents should get the pin count. (Unimplemented)

lpdwStatus: The status of the file/folder as defined by the status flags
lpdwResultingPinCount: Each file pinned in the CSC cache has a non-zero PinCount. Each call to CSCPinFile () increments a file’s PinCount by one, each call to CSCUnPinFile () decrements the file’s PinCount. ResultingPinCount returns the file’s PinCount resulting from this call.
lpdwResultingHintFlags: hint flags after this operation is successful
Return Value:

The function returns TRUE if successful; FALSE is returned if the function fails. GetLastError () can be called to get extended information about the error.

CSCUnPinFile

BOOL

CSCUnPinFile (

IN LPTSTR
Name,

// Name of the file or directory

IN DWORD
dwHintlagsMask,
// Bits to be removed from the entry

OUT
LPDOWRD lpdwStatus,

// Status of the item

OUT
LPDWORD
lpdwResultingPinCount
// Pin count for this file

OUT
LPDWORD
lpdwResultingHintFlags
);

This API allows the caller to unpin a file or directory from the client side persistent cache.

Parameters:

Name:
The fully qualified UNC name of the item to be unpinned
dwPinFlagMask: pin flags to remove from the entry. No error is reported if

 if flags to be removed aren’t already there on the entry

 If one of the inherit flags is removed, the effect occurs

 On subsequently created descendents of that folder

 Descendents which got the a user/system pincount due

 to are unaffected.
lpdwStatus: The status of the file as defined by the status flags

lpdwResultingPinCount: Each file pinned in the CSC cache has a non-zero PinCount. Each call to CSCPinFile () increments a file’s PinCount by one, each call to CSCUnPinFile () decrements the file’s PinCount. ResultingPinCount returns the file’s PinCount resulting from this call. A file is no longer pinned to the CSC cache when ResultingPinCount is zero.
lpdwResultinHintFlags: pin flags after this operation is successful
Return Value:

The function returns TRUE if successful. The status bits indicate more information about the item in the cache. FALSE is returned if the function fails. GetLastError() can be called to get extended information about the error.

CSCFindFirstCachedFile
HANDLE
CSCFindFirstCachedFile (

LPCTSTR Name,

OUT LPWIN32_FIND_DATA lpFindFileData,

OUT LPDWORD

lpdwStatus,

OUT LPDWORD

lpdwPinCount,

OUT LPDWORD

lpdwHintFlags,

OUT FILETIME

*lpftOrgTime
);
This API allows the caller to enumerate files in the client side cache.
Parameters:

Name: Points to a null-terminated string that specifies a valid UNC name for a share. The API operates like the win32 FindFirstFile API, except that wild cards are not implemented in the first version.

If a NULL parameter is passed in, the API begins enumeration of all the \\server\share entries in the client-side-cache.
lpFindFileData: Points to the WIN32_FIND_DATA structure that receives information about the found file or directory. The structure can be used in subsequent calls to the CSCFindNextCachedFile or CSCFindClose function to refer to the file or subdirectory. The elements of the WIN32_FIND_DATA structure is filled in just as it would be for a non-cached file.

lpdwStatus: if lpFindFileData is not NULL, this returns the status of the file in terms of the flags defined below.

 If lpFindFileData is NULL,
it returns the status of the share as defined by FLAG_CSC_SHARE_STATUS_XXX.
lpdwPinCount: Pin Count of the file

lpftOrgTime: The timestamp of the original file on the server. This value makes sense only when the file/direcotry is a copy of a file on a server. It does not mean anything if the file/directory was created while offline, in which case the status bit FLAG_CSC_LOCALLY_CREATED is set.
CSCFindNextCachedFile
BOOL

CSCFindNextCachedFile (

HANDLE hCSCFindHandle,

LPWIN32_FIND_DATA lpFindFileData;

OUT LPDWORD

lpdwStatus,

OUT LPDWORD

lpdwPinCount,

OUT LPDOWRD

lpdwHintFlags,

OUT FILETIME

*lpftOrgTime

);
This function continues a cache file search from a previous call to the CSCFindFirstCachedFile function.

Parameters:

HCSCFindHandle identifies a search handle returned by a previous call to the CSCFindFirstCachedFile function.

lpFindFileData points to the WIN32_FIND_DATA structure that receives information about the found file or subdirectory. The structure can be used in subsequent calls to CSCFindNextCachedFile to refer to the found file or directory. The WIN32_FIND_DATA structure receives data as described in CSCFindFirstCachedFile.
lpdwStatus: if the enumeration is for file/folder, this returns the status of the file in terms of the flags defined below.

 If the enumeration is for \\server\shares\ this returns the status of the share as defined by FLAG_CSC_SHARE_STATUS_XXX.

lpdwPinCount: Pin Count of the file

lpftOrgTime: The timestamp of the original file on the server. This value makes sense only when the file/direcotry is a copy of a file on a server. It does not mean anything if the file/directory was created while offline, in which case the status bit FLAG_CSC_LOCALLY_CREATED is set.

CSCFindClose

BOOL

CSCFindClose (

HANDLE hCSCFindHandle

);
The CSCFindClose function closes the specified cache search handle. The CSCFindFirstCachedFile and CSCFindNextCachedFile functions use the search handle to locate cached files with names that match the given name.

Parameters:

HCSCFindHandle identifies the search handle. This handle must have been previously opened by the CSCFindFirstCachedFile function.

CSCSetMaximumCacheSize

CSCSetMaximumCacheSize (
IN PLONGLONG FileSizeHigh

)

This API constrains the size of the CSC cache for unpinned files. The control panel is the client.
CSCDeleteCachedFile

CSCDeleteCachedFile (

IN LPTSTR
Name

// Name of the cached file

);

This API deletes the file from the client side cache.

Parameters:

Name: The fully qualified UNC name of the file to be deleted

Return Value:

The function returns TRUE if successful; FALSE is returned on error and GetLastError () can be called to get extended information about the error.

Notes:

Example error cases are: a) If a directory is being deleted and it has descendents, then this call will fail b) If a file is in use, this call will fail. C) If the share on which this item exists is being merged, this call will fail.
CSCMergeShare

BOOL

CSCMergeShare(

LPTSTR

lpszShareName,

LPCSCPROC

lpfnMergeProgress

DWORD

dwContext
)

This API allows the caller to initiate a merge of a share that may have been modified offline. The API maps a drive to the share that needs merging and uses that drive to do the merge. The mapped drive is reported in the callback at the beginning of the merge in the cFileName field of the lpFind32 parameter of the callback function. The caller of this API must a) use the drive letter supplied to do any operations on the net b) must do all the operations in the same thread that issues this API call.

Parameters:

lpszShareName

Share to make changes. If this is NULL, all modified
shares are merged

lpfnMergeProgress
Callback function that informs the caller about the

progress of the merge.

dwContext

Context returned during callback

Return:

TRUE if the function is successful, FALSE if some error was encountered, or the operation was aborted. GetLastError() returns the errorcode.
CSCFillSparseFiles

BOOL
CSCFillSparseFiles(

IN
LPTSTR
lpszName,

IN
BOOL

fFullSync,

IN
LPCSCPROC
lpprocFillProgress,

IN
DWORD
dwContext

);

Parameters:

lpszName
Share or file name to sparsefill.
fFullSync
If TRUE, files which are not sparse

are checked for staleness, and a fill attempted

on them
lpprocCheckStatusProgress
Callback function that informs the caller about the progress of the status check

dwContext

Context returned during callback

Return:

TRUE if the function is successful, FALSE if some error was encountered, or the operation was aborted. GetLastError() returns the errorcode.

CSCCopyReplica

BOOL

CSCCopyReplica(

IN
LPTSTR
lpszFullPath,

OUT
LPTSTR
*lplpszLocalName

)

This API allows the caller to copy the data for the replica of a remote item out of the CSC database into a temporary local file.

Parameters:

lpszFullPath

Full path of the file that needs to be moved/copied

lplpszLocalName
pointer to a full qualified path of local file that contains the replica
data. This is LocalAlloced by the API. It is the callers resposibility

to free it.
Return Value:

TRUE if successful, FALSE if failed. If FALSE, GetLastError() returns the exact error code.
CSCGetSpaceUsage

BOOL

CSCGetSpaceUsage(

OUT
LPDWORD
lpnFileSizeHigh,

OUT
LPDWORD
lpnFileSizeLow

)

This API returns the current space consumption by unpinned data in the csc database.

Parameters:

lpnFileSizeHigh

High dword of the total data size

lpfnFileSizeLow

Low dword of the total data size

Return Value:

Returns TRUE if successful. If the return value is FALSE, GetLastError() returns the actual error code.
CSCFreeSpace

BOOL

CSCFreeSpace(

DWORD
nFileSizeHigh,

DWORD
nFileSizeLow

)

This API frees up the space occupied by unpinned files in the CSC database by deleting them. The passed in parameters are used as a guide to how much space needs to be freed. Note that the API can delete local replicas only if they are not in use at the present time.

Parameters:

nFileSizeHigh
High DWORD of the amount of space to be freed.

nFileSizeLow
Low DWORD of the amount of space to be freed

Return Value:

Returns TRUE if successful. If the return value is FALSE, GetLastError() returns the actual error code.

CSCEnumForStats

BOOL

CSCMergeShare(

LPTSTR

lpszShareName,

LPCSCPROC

lpfnEnumProgress

DWORD

dwContext

)

This API allows the caller to enumerate a share or the entrie CSC database to obtain salient statistics. It calls the callback function with CSC_REASON_BEGIN before beginning the enumeration, for each item it calls the callback with CSC_REASON_MORE_DATA and at the end of the callback, it calls it with CSC_REASON_END. For details of parameters with which the callback is made, see below.

Parameters:

lpszShareName

Share to make changes. If this is NULL, all

shares are enumerated

lpfnEnumProgress
Callback function that informs the caller about the

progress of the enumeration.

The callback is invoked on every file/directory on the

that is part of the share/database. The only significant

parameters are dwStatus, dwHintFlags, dwPinCount,

dwReason, dwParam1 and dwContext.

If the item is a file, dwParam1 is 1, for directories, it is 0.

dwContext

Context returned during callback

Return:

TRUE if the function is successful, FALSE if some error was encountered, or the operation was aborted. GetLastError() returns the errorcode.

CSCDoLocalRename
BOOL

CSCDoLocalRename(

 IN LPCWSTR lpszSource,

 IN LPCWSTR lpszDestination,

 IN BOOL fReplaceFileIfExists

)

/*++

This API does a rename in the database. The rename operation can be used to move a file or a directory tree from one place in the hierarchy to another. It’s principal use at the present time is for folder redirection of MyDocuments share. If a directory is being moved and such a directory exists at the destination, the API tries to merge the two trees. If a destination file already exists, and fReplaceifExists parameter is TRUE, then an attempt is made to delete the destination file and put the source file in it’s place, else an error is retruned.
Parameters:

 lpszSource Fully qualified source name (must be UNC). This can be a file or any directory other than the root of a share.
 lpszDestination Fully qualified destination name (must be UNC). This can only be a directory.
 fReplaceFileIfExists replace destination file with the source if it exists

Returns:

 TRUE if successfull, FALSE otherwise. If the API fails, GetLastError returns the specific

 errorcode.

CSCDoEnableDisable
BOOL

CSCDoEnableDisable(

 BOOL fEnable
)
Routine Description:

This routine enables/disables CSC. It should be used only by the control panel applet. Enable CSC always succeeds. Disable CSC succeeds if there are no files or directories from the local database are open at the time of issuing this call.
Parameters:

 fEnable enable CSC if TRUE, else disable CSC

Returns:
 TRUE if successfull, FALSE otherwise. If the API fails, GetLastError returns the specific

 errorcode.

CSCCheckShareOnline
BOOL

CSCCheckShareOnline(

 IN LPCWSTR lpszShareName

)

Routine Description:

This routine checks whether a given share is available online.

Parameters:
 lpszShareName

Returns:

 TRUE if successfull, FALSE otherwise. If the API fails, GetLastError returns the specific

 errorcode.

LPCSCPROC
DWORD
(*LPCSCPROC)(
LPTSTR

lpszName,
DWORD

dwStatus,
DWORD

dwHintFlags,
DWORD

dwPinCount,
WIN32_FIND_DATA
*lpFind32,
DWORD

dwReason,
DWORD

dwParam1,

DWORD

dwParam2,
DWORD

dwContext
)
Parameters:

lpszName
fully qualified UNC path

dwStatus
status of the entry (see FLAG_CSC_COPY_STATUS_xxx)

dwHintFlags
hint flags on the entry
(see FLAG_CSC_HINT_xxx)

dwPinCount
pin count of the entry

lpFind32
WIN32_FIND_DATA_STRUCTURE of the local copy in the database.

This may be NULL if the callback is CSC_REASON_BEGIN and CSC_REASON_END for a share.

During merging this parameter will be non-NULL for

CSC_REASON_BEGIN. The cFileName member of this structure will

Contain the mapped drive letter to the share, through which

all net access should be performed.
dwReason
callback reason (see CSCPROC_REASON_xxx)

dwParam1
contents dependent on dwReason above

CSCPROC_REASON_BEGIN:

If merging is in progress a nozero value of this parameter

Indicates that this item conflicts with the remote item.

CSCPROC_REASON_MORE_DATA:
contains the low order dword of
The amount of the amount of data transferred

dwParam2
contents dependent on dwReason above

CSCPROC_REASON_MORE_DATA:
contains the high order dword of

The amount of the amount of data transferred
CSCPROC_REASON_END:
contains error codes as defined in winerror.h. If it is ERROR_SUCCESS, then the operation that was

started with the CSCPROC_REASON_BEGIN completed successfully.
dwContext
context passed in by the caller while calling the API
Return Value:

See CSCPROC_RETURN_xxx.
File/Folder Status Bit Definitions:

FLAG_CSC_COPY_STATUS_DATA_LOCALLY_MODIFIED

FLAG_CSC_COPY_STATUS_ATTRIB_LOCALLY_MODIFIED

FLAG_CSC_COPY_STATUS_TIME_LOCALLY_MODIFIED

FLAG_CSC_COPY_STATUS_STALE

FLAG_CSC_COPY_STATUS_LOCALLY_DELETED

FLAG_CSC_COPY_STATUS_SPARSE

FLAG_CSC_COPY_STATUS_ORPHAN

FLAG_CSC_COPY_STATUS_SUSPECT

FLAG_CSC_COPY_STATUS_LOCALLY_CREATED
 FLAG_CSC_USER_ACCESS_MASK

FLAG_CSC_GUEST_ACCESS_MASK

FLAG_CSC_OTHER_ACCESS_MASK

Share Status Bit Definitions:
(Readonly)
FLAG_CSC_SHARE_STATUS_MODIFIED_OFFLINE

FLAG_CSC_SHARE_STATUS_CONNECTED

FLAG_CSC_SHARE_STATUS_FILES_OPEN

FLAG_CSC_SHARE_STATUS_FINDS_IN_PROGRESS

FLAG_CSC_SHARE_STATUS_DISCONNECTED_OP
FLAG_CSC_SHARE_MERGING
Hint flags Definitions:

FLAG_CSC_HINT_PIN_USER

When this bit is set, the item is being pinned for the user

Note that there is only one pincount allotted for user.

FLAG_CSC_HINT_PIN_INHERIT_USER
When this flag is set on a folder, all descendents subsequently

Created in this folder get pinned for the user

FLAG_CSC_HINT_PIN_INHERIT_SYSTEM
When this flag is set on a folder, all descendents
Subsequently created in this folder get pinned for the
system
FLAG_CSC_HINT_CONSERVE_BANDWIDTH
When this flag is set on a folder, for executables and

Other related file, CSC tries to conserver bandwidth

By not flowing opens when these files are fully

Cached.
CSC callback function related definitions:

Defintions for callback reason:

CSCPROC_REASON_BEGIN

CSCPROC_REASON_MORE_DATA

CSCPROC_REASON_END

Definitions for callback return values:

CSCPROC_RETURN_CONTINUE

CSCPROC_RETURN_SKIP

CSCPROC_RETURN_ABORT

CSCPROC_RETURN_FORCE_INWARD

// applies only while merging
CSCPROC_RETURN_FORCE_OUTWARD
// applies only while merging
UI Support APIs

There is a collection of APIs that are used by the currently implemented UI for client side caching. They should be documented here.
Change Propagation

Inward propagation of files already cached, happens in two ways a) through usage and b) through CSC client’s polling activity.
As CSC kernel component sits in the path of all UNC file I/O calls, it knows when a file has gone stale. It does this by comparing the timestamp returned by the server in the first open call, with the one that was stored in the CSC database during an earlier set of opens . If the two timestamps differ CSC considers the file to have gone stale. The CSC background agent eventually discovers this fact lazily refills this file with the latest data. If while the file is open and the buffering state of the file changes, such as when it is opened for writing by some other client, then the file is marked as having gone stale. While the file is in use, no refresh is performed on the file data.
For shares which have been marked as running exes (See remoteboot/appinsall considerations below), this mode of inward propagation doesn’t happen for certain types of files. In order to conserve net bandwidth, when executables and other supporting files are fully cached, opens are not flowed to the share even in connected state. Thus for these types of files, the changes are discovered only when the background agent discovers during lazy polling as described in the paragraph below.
The CSC client periodically polls the server to see if cached files have changed at the server
. A file is considered changed if its timestamp, attributes, or size have been modified. Files changed on the server need to replace files cached on the client; this is called inward propagation. If the file that has changed on the server is currently open at the client, it is only marked stale otherwise fresh data is obtained from the server.

CSC does not cache directories, but it does create a cached directory entry for files that are locally cached. For instance, if a server directory contains files ‘A’ and ‘B’, but only ‘A’ is locally cached on the client, then the disconnected client will see only ‘A’ in an enumeration of the directory.

CSC Server Components
The NT5 SMB server allows the server admistrator to
mark a share with CSC flags to control client caching behavior. The CSC client, with open behavior and propagation governed by the share settings, can cache files for off-line access in shares so marked, however these files are not automatically pinned into the client side cache. Thus CSC share marking is only a “hint” to clients connecting to the share.
The default setting for a share is not cacheable.
CSC Server APIs
The following APIs are available to manage the CSC settings for an NT5 SMB share:
NetShareSetInfo

This API is used to set the CSC attributes of a server share.
NET_API_STATUS

NetShareSetInfo (

LPTSTR servername,

LPTSTR sharename,

DWORD level

LPBYTE buf

LPDWORD parm_err

);
Parameters:
Servername: Pointer to a Unicode string containing the name of the remote server on which the function is to execute. A NULL pointer or string specifies the local computer.

ShareName: Pointer to a Unicode string containing the network name of the share to set information on.

Level: Has value 1007, indicating that the buf parameter points to a SHARE_INFO_1007 structure (below)
NetShareGetInfo

This API is used to get the CSC attributes of a server share.
NET_API_STATUS

NetShareGetInfo (

LPTSTR servername,

LPTSTR sharename,

DWORD level,

LPBYTE *bufptr,

);

Parameters:

Servername: Pointer to a Unicode string containing the name of the remote server on which the function is to execute. A NULL pointer or string specifies the local computer.

Sharename: Pointer to a Unicode string containing the network name of the share to get information on.
Level: Has value 1007, indicating that level 1007 information should be returned, and bufptr should be set to point to resulting SHARE_INFO_1007 structure. Bufptr should be freed with NetApiBufferFree() when no longer needed.
SHARE_INFO_1007
Typedef struct _SHARE_INFO_1007 {

 DWORD shi1007_flags;

 LPTSTR shi1007_AlternateDirectoryName;

} SHARE_INFO_1007, *PSHARE_INFO_1007, *LPSHARE_INFO_1007;
Shi1007_flags:

CSC_CACHEABLE indicates that the client can safely cache files on this directory for off-line access
CSC_NOFLOWOPS indicates that the client need not send opens or other operations to the server when accessing its locally cached copies of files in this share
CSC_AUTO_INWARD indicates that files changed on the server should automatically replace cached copies on the client
CSC_AUTO_OUTWARD indicates that files cached on the client should automatically replace copies on the server

AlternateDirectoryName

If set, this is the name of the alternate directory where COW files should be written. See the (to be written) COW specification for details.
CSC SMB Protocol Modifications
The SMB protocol is enhanced to allow the server to communicate the CSC share settings to the client.
When a client connects to a server resource, an SMB_COM_TREE_CONNECT_ANDX (TC&X) message is sent to the server. The request and response formats are unchanged for CSC, however if the negotiated dialect is DOS LANMAN2.1 or later, the OptionalSupport field of the response has four new bit definitions as below:
TC&X Server Response
Description

UCHAR WordCount;
Count of parameter words = 3

UCHAR AndXCommand;
Secondary (X) command; 0xFF = none

UCHAR AndXReserved;
Reserved (must be 0)

USHORT AndXOffset;
Offset to next command WordCount

USHORT OptionalSupport;
Optional support bits

USHORT ByteCount;
Count of data bytes; min. = 3

UCHAR Service[];
Service type connected to. Always ANSII

STRING NativeFileSystem[];
Native file system for this tree

OptionalSupport bits has the encoding:

Name
Encoding
Description

SMB_SUPPORT_SEARCH_BITS
0x0001

SMB_SHARE_IS_IN_DFS
0x0002
This share is part of a distributed file system

NEW!
SMB_CSC_CACHE_MANUAL_REINT
0x0000
Files in this share can be cached for off-line use. They are cached only when pinned by the pin API stated above

NEW!
SMB_CSC_CACHE_AUTO_REINT
0x0004
All files which are opened are cached.

NEW!
SMB_CSC_CACHE_VDO
0x0008
All files which are opened are cached. Server bandwidth conserved for executables

NEW!
SMB_CSC_NO_CACHING
0x000C
Persistent caching is not allowed

Win32 Considerations

Aside from the APIs described above, CSC introduces no new Win32 APIs
1.
2.
3.
Link Speed Considerations

CSC must take appropriate measures to conserve the network bandwidth, in cases where the network connection is over a slow link. Inward/outward propagation will happen much more lazily than is the case with LAN. Most of the slow link heuristic
is included in the CSC sync handler which is part of the cscui.dll.
Server Side Settings

a)
b)

Four different types of settings are recognized by NT5 clients as per the SMB protocol modifications noted above. These are 1) Share enabled for manual caching 2) Share enabled fro autocaching for documents 3) Share enabled for autocaching for programs 4) Share has persistent caching disabled

- Share marked for Manually Caching
When no explicit setting is made on a share, it is enabled for manual caching. This means that files from this share are cached when they are explicitly pinned by calling the CSC pinning API. It should be noted that this is the only option for NT4/NT35x and win9x shares.
- Share marked for auto-caching documents

When this state is set on an NT5 share, all document opened from that share are cached. All the intervening directories are also cached. Thus if a share \\foo_share\bar_auto is marked for auto-caching and a file \\foo_share\bar_doc\dir1\dir2\xxx.txt is opened, then all the namespace components up to xxx.txt namely \\foo_share\bar_auto, dir1, dir2 and xxx.txt are cached. Moreover, the contents of xxx.txt are brought down lazily in the background.

- Share marked for auto-caching programs
This state is set on an NT5 share from which remote apps are run. For such shares, CSC will try to conserve the net bandwidth to the maximum possible extent. This is done by not flowing opens to the server for files which are opened for execution. If the file is not sparse and is not locally modified, then in connected mode, the redir will issue a Get File Attribute call to the server, check if the file has changed, it will flow the open if it has and truncate the local copy. If the file has not changed, then the redir will use the local copy. All name space modification operations such as create, rename and delete will flow to the server. This ensures that when connected, the local namespace is in sync with the remote namespace. Thus FindFirst/FindNext show up the correct items when connected.

This allows applications to be deployed from a share, and if the clients as NT5 workstations, then the load on the server hosting these applications is substantially reduced because there are no outstanding file-opens at the server.

- Share disabled for persistent caching

When an NT5 share sets this state, the clients using this share, disallow persistent caching from this share. This setting is meant for shares which are used for database type applications.

DFS integration

CSC ensures that the namespace that it caches is the namespace as seen by the applications. This is an issue only in cases where a directory on a share is a DFS junction point and has multiple alternates. Thus if \\foo_share\bar_dfs has a directory dir_junc, which is a DFS junction point for alternate shares \\foo_alt1\bar……, then the namespace cached on the client is still \\foo_share\bar_dfs\dir_junc. This ensures that the disconnected mode operation works on the name that the user sees in connected mode.

Security Considerations
There is a single CSC database per client machine. On the client database, CSC maintains information on every file and a every share for multiple using them, in order to implement per-user semantics. When a file is cached during connected mode, the maximal rights for the user opening the file are also cached with that file. Moreover, the maximal rights for a guest user are also cached. This allows CSC to emulate access rights in disconnected mode. For files that are created in disconnected mode, CSC stamps the access rights as stored on the share in the CSC database on to the newly created file.

Encrypted files are excluded from auto caching.

When the CSC database is hosted on NTFS, all the database files are stamped with administrative ACLS in order to protect access to the database and locally cached files.
Offline Operation
The SMB redirector emulates a server in offline when the following conditions are true
:

a) CSC is enabled on the client machine

b) There is at least one share for that server for which files/directories have been cached
c) While attempting perform operations on the server, an error was returned which unambiguously indicates that the server is not available, either because it is down, or some intervening router is down, or the client machine has no net access.
When the above conditions are met, the entire server operates as if it is disconnected mode.
It is important to note that online/offline property is on a per-server basis as against a per-share basis. Thus if the redirector received an error while accessing a share \\foo_server\bar_share, then if the conditions a) and b) above are met, the server \\foo_server is transitioned to offline state. This affects offline operations in various ways, one example being that even if only one share is inaccessible, the entire server is put into offline state. Moreover when running off a DFS share, all accesses to the alternates are also automatically transitioned to offline.

a)
b)
c)

� If the cached file is from a share marked CSC_FLAGS_CACHEABLE and not CSC_FLOWOPS, then the client should not require a level 2 oplock.

� This is a registry setting, expressed as percent of disk space.

� The period applies to all server and share combinations, and can be set in the client’s registry to multiples of 30 minute intervals.

� The period applies to all server and share combinations, and can be set in the client’s registry to multiples of 30 minute intervals.

� This is intentionally vague to ensure that nobody explicitly builds code that depends on any particular propagation behavior. A file is not updated by inward propagation if it is currently open on the client. We will probably need to supply hooks to allow test software to drive the process, but these hooks can not be made public.

� This is a registry setting, expressed as percent of disk space.

Page 23 of 10

