This document tries to give the details of how NT5 CSC implementation accomplishes disconnected operation and the reintegration with the server. The discussion below includes folder renames and deletes.

Introduction and Terminology

The CSC database contains the naming and the content information of files/folders (interchangeably referred to as object or items). The database is organized as a tree structure. The root-node of the tree (henceforth referred to as the super-root) contains a list of shares that have been successfully connected in the past. Each entry in this list points to the root directory of that share. A node in the tree is either a directory node or a file node, the latter always being a leaf node.

A 32-bit number called the Inode uniquely identifies each node in the tree. All inodes are part of an inode table, which also does double duty as a priority queue. Moreover, given an Inode it is possible to obtain the fully qualified UNC path, which represents the Inode. As an implementation detail, each inode is nothing but an index in the inode table.

Each node in the database is represented by a file. The files are named by converting their Inode number to an 8 hex-digit ASCII value and are in a wellknown directory. The super root is 00000001 while the Inode table is 00000002. The directory inode files contain the information about the children of that directory. in the form of a sequence of directory entries as described in DE below. The file inode files contain the actual contents of the file.

Inode table entry notation

An inode I is represented as

I (IP, S, IC, FOI, all other attributes) as follows

IP
32 bit parent Inode #
- for the root if a share, this value is 0

IC

Contents associated with the inode. For a file this the entire file data. For a directory this

is the set of directory entries.

Inode Attribute (Enumerated type)

OI

- OI
stands for original Inode flag. Indicates that the contents of this

inode originally came from the net and is in use.

· UOI, stands for Unassociated Original Inode Flag
· LI stands for Local Inode Flag . This has the content created offline.

· NB: There is no such thing as an ULI, i.e.: Unassociated Local Inode.

Other Information

- Sync Status, duplicated for the sake of the agent

- UI information (See the directory entry below)

- forward and backward pointers pointing to other inodes forming a

doubly linked MRU list. These entries are used in deciding which

entries to scavenge if the CSC database grows beyond a prespecified disk quota.

Directory entry notation:

An entry with the name “foo” in a directory represented by inode IP is represented as

<IP, “foo”>(Current Inode, Sync Status, Original Inode, All Other Attributes)

Current Inode

The inode that currently has the contents of this entry

Synchronization Status

Status (bit field)

S - Sparse

This bit is set only for server objects. Files are marked sparse

when the contents

L - Created Offlline

Object which is created while in disconnected state

D – Marked Deleted

An object is marked deleted when it is obtained from the

Server or currently has directory contents from a directory on

the server

R – Marked Reused

An object from the server that is marked deleted and is

recreated

DM - Data modified offline (Cannot coexist with L above)

An object from the server whose data has gone through some

Change while offline

AM – Attributes Modified Offline

This includes, directory attributes and last modified time

Original Inode:

The Inode that represents the contents cached from the server.

For a replica, the Current Inode and the Original Inode are

Identical when the entry has not gone through a namespace operation while

offline

All Other Attributes

Last Modified Time from the server

Used to detect conflicts

UI Information

Whether the entry is pinned for a user

Whether the entry is pinned for system

Pin count when an entry is pinned for neither user nor system

Filesystem Attributes: (referred to as FA, as a group)

Name(s): Both LFN and 8.3 names

Filesystem Attributes:

filesystem attributes

Size

last modified time

Security Attributes

Per user maximal access rights for N user. The current value of N is 4.

Other Notations:

X
don’t care. i.e. the contents of the field are immaterial

NULL
denotes a non-existent Inode

Empty
denotes 0 sized contents of an Inode

0
indicates no flags set

V
indicates a value of any of the above types that needs to be retained while carrying out

a transformation

P (I)
Parent Inode of I

Namespace Operations:

a) The keys to the namespace operation are a) A replica name created in connected mode is never deleted in disconnected mode. b) Directory replica name created in connected mode always keeps track of it’s contents even if these contents get assigned to some other name during disconnected mode operations. The above two mechanisms allow us to obtain the connected mode path and the disconnected mode path for any inode. This is made use of during reintegration.
There are four possible modes of operations of the redir with respect to CSC, depending on the type of the share that is being accessed.

1) CSC disabled shares

Under this mode, no caching is done for this share. Offline operations fail with appropriate errors. Explicit pinning is also disabled.

2) Auto_Reintegration Shares

Under this mode, while online, every file that is opened on the share is cached in the CSC database under it’s namespace as found on the share. It is OK to pin files. Any part of the namespace that has been marked as having been modified offline is invisible when offline. This situation can occur when the share went offline and modifications were done wither to file data or the namespace changed through create/delete/rename operations. Then when it went online, either no-reintegration was performed or all the modifications could not be reintegrated.

While online the redir operates as if the CSC database were a write-through cache. This is the “truth is on the server” mode of operations. The remote and the local copes are opened for files in sync, read operations are satisfied locally, while write operations are done on the server and on the local file.

Example of invisible namespace: if a file \\server1\share1\dir1\foo.txt that was cached online and modified offline, did not get reintegrated, then when online this copy is not visible, only the server copy is.

3) Non_Auto_Reintration shares

The principal difference between this and Auto_reintgeration share is that files are not cached when they are opened. All other details remain the same. The fact that these are no_auto_reintegration shares means that UI needs to explicitly ask questions or invoke some other means of bringing the user in the loop while doing reintegration.

4) VDO shares

The files under these shares get cached when opened. For those files that are fully cached in the database, the files opened locally and all operations are satisfied locally. This is the “truth is on the client” mode.

What follows is a description of how CSC performs the namespace operations. The operations are described in the notation defined above. They are split into two types a) Online and b) Offline.

When online, a name that has been created/modified/marked-deleted while offline and not successfully integrated is made invisible during online operations.

The operations below describe the namespace operations. VDO shares operate in offline mode for files fully cached and in online mode for files not fully cached. OriginalInode element of the data structure makes it possible to translate the local name into the remote name and vice-versa.

Lookup:

Given a fully qualified UNC path such as \\server\share\dir1\dir2. \dirn\file1, The path is broken down item by item to find the Inode that represents the item in the hierarchy. This \\server\share are looked up in the super-root, and the root Inode corresponding to \\server\share is found. Henceforth we will refer to the root inode corresponding to any share as I0. Given I0 (say 0x10), find the inode file corresponding to I0 (00000010), run through the list of DEs in this file matching dir1 in the above example and obtain the Inode corresponding to dir1 I1. Traverse I1 to look for the name dir2 and so on till the name file1 is obtained from In.

Create Operations

Online:

Create a replica of remote item “foo” under a directory represented by IP

- Create IORG(IP, Empty, OI, X)

- Create <IP,“foo”>(IORG, 0, IORG, X)

Offline:

a) Create a new item “foo” in offline state under the directory represented by IP

- Create I(IP, Empty, LI, X)

- Create <IP, “foo”>(I, L, I, X)

b) Create a new item which is of the same name, as a server item marked deleted:

- Create I(IP, Empty, LI, X)

<IP, ”foo”>(I’, D, IORG, X) => <IP,”foo”>(I, R, IORG, X)

delete I’

Delete Operation

Online:

Delete a replica of “foo” from directory represented by IP

If the server operation succeeds and the database entry and all it’s ancestors are in sync

with the server then

- delete <IP, “foo”>(IORG,0,IORG, NULL,X)

- delete IORG (IP,0,X,OI,X)

- delete contents of IORG

Offline:

a) Delete a replica of an item “foo” from directory represented by IP

1) <IP, ”foo”>(IORG, 0, IORG, X) => <IP,”foo1”>(NULL, D, IORG, X)

2) IORG (IP, X, OI, X) => IORG (IP, Empty, UOI, X)

Truncate the contents of the inode IORG if foo is a file. If foo is a directory, then we want to keep the contents of IORG, which are the directory entries of foo cached from the server.

Comments:

1) Associate a NULL inode with <IP,”foo”>, note the original contents in IORG field and mark the entry D (deleted).

2) Mark the Inode that represents the original contents as Unassociated Origianl Inode.

b) Delete “foo” created in Offline State in directory IP.

· Delete <IP, ”foo”>(I, L, I, 0)

· If I is marked LI, delete I

· Else it must be OI, do I(X, X, OI, X) => I(X, X, UOI, X)

c) Delete “foo” reused in Offline State in directory IP.

<IP, ”foo”>(I, R, IORG, X) => <IP, “foo”>(NULL, D, IORG, X)

· Delete <IP, ”foo”>(I, L, L, 0)

· If I is marked LI, delete I

· Else it must be marked OI, do I(X, X, OI, X) => I(X, X, UOI, X)

Rename

Rename item “foo” in directory IP1 to item “bar” in directory “IP2

Online:

- Save all the attributes of foo

- Delete <IP1, “foo>(I, V, V, V)

- Create <IP2, “bar”>(I, V, V, V)

- I (IP1, V, V, V) => I (IP2, V, V, V)

Offline:

- Save all the attributes of <IP1, “foo”>

· Execute offline delete of foo as done above, except for any Original Inode and it’s content

· Execute offline Create of bar with all the attributes of foo, including it’s inode

Reintegration

The reintegration of a share is a 3-pass operation, the passes being

b) Remove all the files/directories from the server that have been deleted and renamed when offline to a holding directory. This step essentially removes the elements from the server name space that after a successful reintegration should not be there. In this step the connected mode tree is traversed and the fullpath for each item on the server obtained in order to do the rename to the holding directory with the same inode name.

c) Create elements on the server corresponding to the new namespace that is generated while offline. This step traverses the current tree and for every inode that was associated with a replica, the corresponding item in the holding directory is renamed to the new path on the server.

d) Restore the state on the database and the server, based on the conflicts encountered.

Initialization:

Create a temporary directory on the server (say reint). This directory is our holding directory for various files/directories. Create two conflict lists, OriginalConflictList and CurrentConflictList.
Pass 1:

Starting from the root of a share, do a depth first traversal of the original tree. This is done by traversing the IORG inode of a directory. Only the directories that are replicas of a directory on the server will have this entry.

While traversing the original tree in a depth first manner, for all entries which are either marked D (deleted) or R (Reused), i.e. entries of the type <IP1,”foo”>(X, D, IORG, X) or <IP1,”foo>(X, R, IORG, X).

 - Accumulate the original UNC path as obtained from the original tree in the CSC database.

· In depth first order, i.e. leaf first then it’s immediate parent then it’s parent etc.,

· If there is no conflict between the version of the replica and the server copy

· If it is marked D or R (deleted offline, or deleted offline and then later reused)

· If the IORG is marked as Unassociated Original Inode (UOI), then this entry has been deleted and it’s contents have been deleted (may be through a simple delete or one or more renames followed by a delete).

· If Delete of the entity on the server succeeds or this is a directory, in which case the failure to delete is treated as benign conflict.

· Delete the entry from the database

· Delete the IORG inode

· Delete the contents associated with IORG.

· Else this must have been renamed to some other entry

· Do a rename on the server of the file/directory with the accumulated UNC path to the temp directory on the server; the new name being the same as that of the IORG entry. This ensures no name collision in the temp directory, as the inodes are unique. Let us call the name in the temporary directory ASCII (IORG), for the item with IORG as the original Inode, on the server that has been renamed to ASCII equivalent of it's Inode name in the temp directory.

If there is a conflict, i.e. the file/directory on the server is newer than the one in the CSC database, or an operation fails, attach the original UNC name together with it’s current Inode to the head of conflict list we call the OriginalConflictsList. We use this in pass two to find if any newly created entries are conflicting, and in pass 3 to restore the saved entries back into the original namespace.

This ensures that, all the files and directories which are supposed to either have been deleted from the server, or are renamed to some other file/directory while offline, are removed from the server namespace. We have the copies of those files/directories, which got renamed, into the temp directory and will use these when we get to pass 2.

Example:

If for the UNC path \\server1\share1\dir1\dir2\foo.txt as obtained by traversing the original tree of the CSC database,

<IP1, “foo.txt”>(X, X, IORG1, X)

IORG1 (X, X, UOI, X)

and <IP2, “dir1”>(I”, R, IORG2, X)

 IORG2 (X, X, OI, X)

Then delete foo.txt on the server then rename dir1 to ASCII (IORG2)

Pass 2:

Starting from the root, traverse the current tree in the CSC database, thus for a directory <IP1, “dir1”>(I, X, X, X), traverse I, while accumulating the UNC path up to I

For every entry that is marked L, R, M, IE. it is either

a) created offline due to create/rename or

b) is a replica that has gone through a delete/create or rename/create cycle while offline or

c) is a replica whose contents have been modified offline in some way. So if it is a file, it’s data /attributes/timestamps have been modified while offline, or if it is a directory, some entries have been added/deleted or attributes/timestamps of the directory have been modified while offline)

If

The entry is marked L or R and the Inode is marked OI,

IE

<IP, “foo”>(I, {L | R}, X, X)

I (X, X, OI, X)

Then this is a new entry created offline from the contents of an Original Inode (through one or more renames). Check in the Original Conflicts list whether there is an entry corresponding to I.

If there is no conflict,

Then there must be an item ASCII (I) on the server, rename that entry to the accumulated UNC name. If the rename operation fails, then attach the entry to the list we call CurrentConflictList. Note that this is a second conflict list which is different from the OriginalConflictList. The CurrentConflictList has UNC names that correspond to the current namespace if all reintegration had succeeded.

If the rename operation succeeds then

Convert the new entry to a replica using the following transformation

<IP1, “foo”>(I, L, NULL, X) => <IP1, “foo”>(I, 0, I, X)

stamp it with the timestamp from the entry from the server.

Else

It exists in the conflict list, we cannot reintegrate this entry, ignore it and all it’s descendents.

Else if it is marked L or R and the Inode is marked LI

IE it is represented as

<IP, “foo”>(I, {L | R}, X, X)

I (X, X, LI, X)

Then this represents a new name and new content.

Create it.

If create succeeds

<IP, “foo”>(I, {L | R}, X, X) => <IP, “foo”>(I, 0, I, X)

I (X, X, LI, X) => I (X, X, OI, X)

Else

Ignore all it’s descendents

Else if it is marked as D

Ignore it, it must be in the conflicts list or else it would have been taken

care of in pass 1

Else if it is marked M

IE the contents of a remote entry have been modified offline; it is represented by

<IP, “foo”>(I, M, I, X)

I (IP, X, OI, X)

Modify it on the server

If modification succeeds

Remove the marking M from the entry

IE <IP, “foo”>(I, M, I, X) => <IP, “foo”>(I, 0, I, X)

Else

Ignore all it’s descendents

Note: The problem of cross-linked remote entries is side stepped because of the way renaming is accomplished during reintegration.

Pass 3:

This is a cleanup pass. The key cleanup we do here is to remove those entries that have been renamed to some other entries. In pass 2, the renamed entries have already been associated to the appropriate contents.

Traverse the original tree (we could also traverse the current tree, as it is a superset of the original tree)

For every entry that is marked as D or R and the IORG is marked as OI,

If IORG is not in the ConflictList then it has been assigned to some other name

Delete the directory entry while keeping the inode.

Traverse the OriginalConflictList from its head to tail and rename back all the entries from the temporary directory to their original UNC names as maintained in the OriginalConflictsList.

Delete the temp directory itself.

