Single Instance Store Specification

David Goebel
Balder Technology Group, Inc.
October 21, 1997: FIRST DRAFT

Background

This specification is an attempt to define the design of the Single Instance Store filter driver intended for use on Windows NT 5.0. My involvement in this project started with Rob Short requesting that I critique a design already in progress by Bill Bolosky in the research group. This first draft of a spec is the result of a meeting on 9/11/97 with Bill Bolosky and one the following day with Brian Andrew in the NTFS group. The resulting design was a vast simplification of the design in progress.
· For the purpose of this first draft, I will skip details of how the reparse point is created and the structure of the data it contains. This is primarily because this aspect is less fragile w.r.t. deadlocks, data corruption etc., and so was not the focus of our discussion.
General/Abstract Concepts

Duplicate File Condensation

· The purpose of this NT component is to eliminate or minimize resource use (memory, disk, cpu, etc.) that is redundant by virtue of files containing, either completely or mostly, the same data. The idea here is that data common among several redundant files is actually stored in a single “common store” file. This common store file is never accessed directly by the user (enforced by ACLs and share access), only by the filter driver. Each file backed by this common store file contains both a reparse points that specifies the common file and the data unique to the file. Each file must also have its own unique ACLs, access times, alternate streams, etc. In addition there are temporal in memory structures (like file locks) that must be maintained on a per file basis. There are two principal mechanisms for condensation of duplicate files: explicit and scavenger.
Explicit

· In this mechanism a newly created empty file is marked as a duplicate of another file. If this file already contains an SIS reparse point (i.e. a pointer to the duplicate file in the common store), its final common store target is used as the backing file. This will probably be implemented as an FSCTL.
Scangenger

· The idea here is that a low priority process rummages through same size files looking for duplicates. This may end up being more of a research project though as in most important cases (i.e. remote boot service), a process will know at file create time if it is a duplicate.
Copy On Write

· The term “copy on write” stems from creating a copy of a duplicate file (or parts of a file) when its data content is modified from the common store version of the file. This design allows this to happen on the granularity of NTFS sparse file segments, currently 64k. The basic concept is that the SIS filter queries from NTFS the sparse extent information of a file (via FSCTL_QUERY_ALLOCATED_RANGES), and using this information, decides whether to service page faults from either the actual file or the common store file. When data is actually written to the file, the range is marked as non-sparse. This is the basic idea, but of course there are a multitude of issues and problems that have to dealt with, and are in the next section.
Reads

As mentioned above, reads are routed to the correct file based on the contents of the allocation extent information returned from NTFS (i.e. the sparseness). Also as above, there are many complicated concerns ranging from deadlocks to cache coherency and they will be dealt with in the next section.
Supercede/Overwrite

· When a file is superceded or completely overwritten, SIS removes the reparse point and decrements a count on the common store, doing garbage collection if necessary.
Design

Goals
· File must behave exactly the same as if they were not backed by a common store.

· Only eliminating redundant disk usage is not useful. Redundant memory usage must also be eliminated.

· SIS should have a negligible performance impact on files not participating in SIS.

· Common store files should be able to be compressed using NTFS compression.

· A file’s PBY_HANDLE_FILE_INFORMATION->FileIndex should not change during the process of duplicate file condensation or copy on write. To do so would break NFS clients.

Problems (real and potential)

Cache Coherency

Since we must present an illusion of completely independent files, while using common pages in the cache, we must intercede before a process writes cached data that would be incorrect to appear in the other files. Memory mapped files further aggravate this problem as there is no way to intercede before a process dirties a file it has mapped. This problem fortunately has a solution.
Deadlocks

Anytime file objects are switched in between a top level request and a recursive request, there is potential to confuse deadlock protection code in the file systems that preemptively acquires resources or changes which resources it acquires based on TopLevelIrp information. Luckily the design of SIS requires only a single “un-natural” act on a file receiving only non-cached reads and thus the deadlock concerns are, hopefully, eliminated.
Interaction With Other Filters

This is a nightmare. In theory a correctly designed filter should inter-operate with other correctly designed filters above the file system and the layering order should be irrelevant, even with all filters operating. In practice I would bet money that something is going to break, even with just Microsoft’s internal filters. I shutter to thing how it will interact with Symantec’s virus filter. I’m going to ignore this problem because it ranges from very hard for Microsoft’s filters to intractable for third party filters. All that can be done is make the SIS filter as correct as possible.
Duplicate File Condensation & Supercede/Overwrite

I’m skipping these for the moment as it wasn’t why I was originally brought in and doesn’t present any of the above problems. Both operations can happen in a well-controlled steady state. However, the list of operations that must still be maintained on a per file basis (file offset, ACLs, file locks, etc.) should be investigated and documented here. Since the calls on this “list” will basically just be passed through unchanged to NTFS, there is very little risk of problems.
Reads & Copy On Writes

Nomenclature

I often refer to “private” when talking about the files that have reparse points for the duplicate data and non-sparse ranges for their “private” data. These reparse points refer to a single file in the common store containing the shared data.
FO: FileObject
FCB: FileControlBlock
SOP: SectionObjectPointer
DS: DataSection
SCM: SharedCacheMap
IS: ImageSection
FCFH: FsRtlCommonFcbHeader
FSC1: FsContext1
FO-cs: Common Store File Object
FO-1: FO To Private File
FO-2: FO To Another Private File
FO-n: Nth Private File
And so on…..
Assumptions

For this discussion, we assume that we are opening a file that is already backed by a common store. The processing of getting to this state, while not absolutely trivial, is not plagued by the complex situations arising from copy on write, and will be covered in the previous section (Duplicate File Condensation & Supercede/Overwrite) when it is complete.
We assume we are layered on top of all NTFS volumes that want SIS service. We also use FCFH-> FilterContexts to maintain per file context as the action often happens with file objects others than the ones that opened the file.
SIS has a FileObject open for each common store file that has at least one open client file.
The fist time SCS opens a file it get a copy of the Allocation Information (i.e. sparseness). From then on it keeps it updated in memory. This is somewhat redundant with NTFS, however in the common case (exact duplicates), it will be empty. As data is written out non-cached to the private file, the in-memory version of the sparseness information is updated. The beauty of this approach that if the system crashes, NTFS has done all the work in terms of recovery, i.e. if the clusters are present in the file, the user data was written out.
The Basic Ideas

· All (except one) redirections happen at the top level when the file system has not yet been entered and it is safe to switch file objects on a request.

· Sparse ranges in the private file correspond to duplicate data located in the common store file.

· All writes are sent to the private file (i.e. they are left unchanged), creating a SCM-n or writing to disk, or both.

· Only cached writes and user mapping files result in a non-NULL DS-n.

· Only non-cached writes (either user or paging) result in ranges being marked non-sparse.

· We redirect top-level cached read requests to the common store when there is no data section present on the private file and the range being read is part of the sparse range of the private file (note that a complete duplicate is completely sparse and consumes no disk space).

· We redirect top-level (i.e. user) non-cached reads to the appropriate file depending on the coincidence of the read range and the sparse range. If there is a DataSection we must first do a coherency flush (guarded by the appropriate Acquire/ReleaseForCcFlush callbacks).

· We also redirect paging reads to the appropriate file depending on the coincidence of the read range and the sparse range. This is the single “unnatural act” in SIS as we will be switching the file object between recursive NTFS calls. However, this is analogous to what happens as a result of the Win32 API CopyFile() and I have great confidence that we will have no problems.

· MDL read and write requests should “just work” with the above (might have to link together MDL chains and perform multiple completes if spanning sparse regions).

· When a read or write request overlaps sparse and non-sparse ranges, several requests may have to be performed to satisfy the original request.

· Non-cached writes not sparseness clustering aligned that would create a new non-sparse region must be expanded to a sparseness clustering. Otherwise the gaps would show up as zeros instead of the actual file data.

· For Synchronous top-level read/writes that get sent to FO-cs, update FileObject->FileOffset in the completion routine if the request is successful.

Code Fragments

For the purpose of these rules, I will assume the requests fall either wholly within or outside sparse regions. The more general case is not really more dangerous, it just has to be done in pieces (an MDL and its COMPLETE call must be to the same file so that the correct resource is released).

READ:
IRP_MJ_READ,
FAST_IO_READ,
FAST_IO_MDL_READ,
FAST_IO_MDL_READ_COMPLETE,
FAST_IO_READ_COMPRESSED,
FAST_IO_MDL_READ_COMPLETE_COMPRESSED:

if (Cached) {
 // send to cs only if duplicate and no DS: common case
 if ((DS-N == NULL) && (Range is Sparse)) {
 FO = FO-cs;
 } else {
 FO unchanged;
 }
} else {
 // we need to flush first for accurate sparseness data
 if (!PagingIo && (DS-N != NULL)) {
 Preacquire; Flush FO; Release
 }

 // now just case on where the data is
 if (Range is Sparse) {
 FO = FO-cs;
 } else {
 FO unchanged;
 }
}

WRITE:
IRP_MJ_WRITE,
FAST_IO_WRITE,
FAST_IO_PREPARE_MDL_WRITE,
FAST_IO_MDL_WRITE_COMPLETE,
FAST_IO_WRITE_COMPRESSED,
FAST_IO_MDL_WRITE_COMPLETE_COMPRESSED

// All writes go through the private FO
FO unchanged;

// On success update sparseness
if (!Cached) {
 Set Range Non-Sparse On Success
}

Specific Situations
User File Mapping
When a user maps a file, DS-n becomes non-NULL. This means all cached reads go to the FO-n. Coherency is guaranteed between cached readers and mappers as they are looking at the same physical pages. From this point any faults fill private physical pages but are satisfied from the appropriate file based on the sparseness information. Coherency between cached and non-cached is also guaranteed by the coherency flush before inspecting the sparse information.

MDL Reads and Writes
These are exclusively cached operations and will simply follow the outline above. One caveat here is that when performing muliple operations to span combinations of sparse and non-sparse regions, you must return a single linked MDL to the caller. When called for Complete, you must split apart the MDL again and call either FO depending on what you did initially, not based on the current state of sparseness nor DS-n. This is only an issue with read operations as write operations will always go to FO-n.

Compressed Files
This should “just work” according to Brian. NTFS compression weirdness is not my forte, so I’ll take his word for it and figure it out if it doesn’t work. One thing we did note was that the common store must be compressed if you want compression over the wire (highly desirable for remote boot).

Truncating Files
When either file size or allocation size is changed NTFS initializes a SCM to avoid other problems (FAT does as well). This will force all requests to the FCB-n, but not indefinitely. Extra checks can be done on the read side (zero user’s buffer past ValidDataLength), or truncating could force the file to return to a completely private state. One of the two must be done.

Resource Issues
Everything appears OK here. All cases of writing will go to FCB-n, so the correct resource should be pre-acquired by the lazy writer and modified page writer. Read ahead should also pre-acquire the correct resource.

Benefits Of The Sparseness Approach
Natural Writing
In the absence of the above approach, a file would have to be forced completely private on the first write. For a large file this could take a long time: altering file semantics and presenting difficult synchronization problems.

Efficient Use Of Resources
Only those physical pages that are actually different use memory resources. Mapped files do throw a wrench into this as any pages that are faulted in (either by cached operations or via memory mapped files) can be modified without warning by a mapper, and thus must have separate physical pages.

Implementation Issues

No intractable issues are seen at this time. There is a potential problem with FilterContexts that may need to get fixed. It stems from the new IoCreateStreamFileObjectLite() not causing a cleanup call to happen, and thus a filter has no way of knowing the number of outstanding closes before an FCB will go away or at least become dormant. This is important because NTFS bug checks if filters have not all removed their contexts by the time the FCB is deleted.

Handling MDL reads that span sparse and non-sparse regions could get a little hairy and this code path must be explicitly provoked during testing. It’s not that hard; it just has to be done right.

