Microsoft Confidential

NT 5.0 SIS Design Details

Bill Bolosky

DRAFT of August 3, 1998

1. Introduction

This document is a companion to the “NT 5.0 Single Instance Store Specification.” Where the specification lays out the requirements, external and inter-component interfaces, this document details the plan of how the various components of the Single Instance Store (SIS) work internally and interact with the various other components of Windows NT.

The basic purpose of SIS is to provide single instancing of file content in NT. That is, it creates logically separate files with separate entries in the file namespace, separate ownership and access control, sharing semantics of separate files, and which can be written with changes visible only to users of the same logical file, but which only have a single copy of the common file data on the disk.

The overall architecture of SIS is that it uses NTFS reparse points as links to a common copy of the shared file contents. A filter driver implements the appropriate copy-on-write semantics for the linked files. SIS links are created in two ways: by a SIS-specific FSCTL that creates a new SIS link as a copy of an existing file (FSCTL_SIS_COPYFILE) and a user level service called the groveler that tracks NTFS’ update log (the USN journal) and finds matching files to link together into SIS links.

2. The SIS Filter Driver

The main component of SIS is the filter driver. The filter driver’s responsibility is to implement the copy on write links, perform the copy on write, and manage the storage of the common file components. The filter itself is an NT filesystem filter driver that loads above NTFS and as such sees all calls that come down into NTFS.

On the disk, SIS links are represented by NTFS reparse points over top of a file of the appropriate size that is set sparse and empty of content. The data in the reparse point identify the location of the file content that backs the SIS link file. When a user attempts to open a SIS link file, the SIS filter will see the reparse point and attach an NT filter context onto the NTFS stream control block for the file. On calls other than open (create), SIS will check for the existence of a SIS filter context, and take appropriate action if one is present.

The filter’s other primary responsibility is maintaining the actual file content that backs the link files. This content is maintained in the “SIS Common Store” directory. SIS needs to create files there when new content is added, and remove the files when all references to a particular piece of content are deleted.

2.1 File Organization

Externally, SIS presents a view of files that looks as if there was no single instance store. For each file and each directory in this external view, there is a corresponding file or directory maintained by SIS (and the underlying filesystem). Directories are maintained exactly as if SIS wasn’t running. Aside from directories, there are three types of files in a SIS system. First there are normal files, which are files that have not been detected as being identical in content to any other file in the filesystem. These files are handled by the underlying filesystem in the same way that they always have been.

The second type of file is a SIS link. SIS links correspond to files that have been detected to have duplicate content (either because they were created as a copy of another file, or because the groveler detected the duplication at some time). They are implemented as a reparse point in NTFS; the reparse point is handled by the SIS filter driver.

The third type of file is a common store file. These are files that are maintained by SIS in a special place in the NTFS filesystem (called the common store, \SIS Common Store). Common store files contain the shared content to which link files refer, a checksum of the file contents, and a list of link files pointing at the common store file (ie., a backpointer list). When a link file goes away (because it was deleted or because the contents was modified and the link broken by SIS) it will be removed from the backpointer list. When the backpointer list for a particular common store file becomes empty, SIS will delete that common store file.

2.1.1 SIS Indices

SIS identifies its links by generating 64 bit unique indices for them. Each link has exactly one index associated with it, and any index is associated with at most one link. Indices are allocated by having a file in the common store directory called MaxIndex which contains an index number guaranteed to be at least as large as the largest index ever allocated. Internally, SIS keeps track of the value written in MaxIndex and will not allocate an index until the file has been updated. Typically, SIS will increment the MaxIndex value by 1000 at a time, so that most index allocations will not require waiting for the disk to update the file. If, for some reason, the MaxIndex file should be lost, SIS will run a volume check and determine the highest link index used in the system, and regenerate the MaxIndex file based on that information.

We expect that the index space is sufficiently large that it will not run out. At a rate of one new index per millisecond, the space will last 584 million years.

Common store files are named by using a universal unique ID (UUID), which is obtained from the system UUID generating function. The file name of the common store file is just the string version of the UUID. We use UUIDs to name common store files rather than link indices so that they may be moved from volume to volume by the backup/restore process. Also, by using a unique ID each time a common store file is generated, we can guarantee that the binding between a particular common store file name and its contents is permanent and universal, which is helpful in the backup/restore process.

2.2 Internal Data Structures

SIS has a number of data structures, some of which closely parallel what NTFS uses, and some of which are unique.

SIS uses the FsRtl filter context support package to attach to file objects. When a user open a SIS link, SIS catches the reparse point create completion, sends the open back down to NTFS with the OPEN_REPARSE_POINT flag set. If NTFS successfully opens the reparse point (performing security and exclusion checks) and the particular link doesn’t already have a filter context attached, SIS will attach a filter context to the NTFS SCB. There is exactly one NTFS SCB per currently open file in the system. That is, if file \users\bolosky\foo is opened twice, there will be one NTFS SCB, with one filter context attached to it. If the file \users\scottc\foo, which is a SIS link backed by the same common store file as \users\bolosky\foo is opened, there will be a second NTFS SCB and a second SIS filter context.

A SIS filter context is associated with a SIS SCB. Because there is exactly one filter context per NTFS SCB (for link files), there is also exactly one SIS SCB per NTFS SCB. The SIS SCB contains a list of the portions of the file that are dirty (meaning that they have been written by through the link), and the highest address that is backed by the common store file for this particular link. These values are used to determine if read requests need to go to the link file or to the common store file. In addition, an SIS SCB contains a reference to a SIS PerLink.

An SIS PerLink object roughly corresponds to an NTFS file control block (FCB). There is one of these objects per opened SIS file, regardless of how many different streams are opened on the file. (Note: currently, SIS only supports single stream files, so there is always exactly one PerLink per SCB, but in the future this doesn’t need to be so). It contains a reference count, the SIS index of the link, information about whether the file is in process of being deleted, and a pointer to the SIS common store file object.

A common store file object corresponds to a file in the SIS common store. It contains a handle and object reference to a NTFS file object for the actual common store file and a handle and file object for the metadata (backpointer) stream. The handles are opened in PsInitialSystemProcess, both so that a user won’t have access to them by guessing the handle value, and so that they will survive the destruction of any particular user process. In normal operation, reads are directed to the common store file by substituting the common store file object for the link file object in the IRP or fastIO call, so there is no performance effect of having the handle be in a separate process context. Common store file objects have their handles/file objects closed when all references to them disappear.

Each file object that refers to a SIS link has associated with it a SIS PerFileObject (perFO) object. These are small objects that basically just have a pointer back to the SIS scb, and some flags bits, the most interesting of which is the “opened delete on close” bit. The perFO for a particular SIS SCB are attached to the scb; when SIS detects that a file object is a SIS file object because it has a filter context attached to it, it will scan the list for the appropriate perFO. Note that it is possible for file objects (so called “stream file objects”) to be created without going through the normal CreateFile path, in which case SIS will only notice these file objects when it sees a call come down on one of them. At that time, it will create a perFO for the file object on the fly. NTFS uses stream file objects to hand to the NT cache manager rather than using the user created file objects, so it is very common to see IO on a stream file object.

2.3 SIS Reparse Points

SIS reparse points contain several pieces of information. These include a format version number, the link index and common store UUID for the file, the NTFS file ID for the common store file, the NTFS file ID for the link file itself, a checksum of the contents of the common store file, and a checksum of the contents of the reparse point’s data.

The format version number is used by SIS to determine the format of the reparse point. Whenever the SIS development team decides to change the contents of the reparse point, we’ll increment this value. The driver may then detect and handle back-level reparse points (or refuse to handle them, as appropriate).

The link index is a 64-bit indices generated by SIS when the link was created. The common store UUID is the ID for the common store file referenced by this link. See 2.1.1 for a description of these indices. The link index is unique for a given SIS link, while the common store UUID is the same for all links to a particular common store file (ie., for all links that represent the same content).

The common store file NTFS file id is used as a hint. NTFS file ids are essentially the index in the MFT (NTFS’ Master File Table) of the file and a revision serial number for that particular MFT entry. When SIS wants to open a common store file, it first opens it by ID (which is much faster than opening it by name) and verifies that it is the correct file by querying the file name. If it is not, then it generates the file name from the common store UUID and opens the file by name.

The NTFS file ID of the link file is used to verify that the reparse point is on the file on which we expect to find it. If it is not, then most likely the reparse point has been created by some entity other than the SIS filter driver (such as a backup/restore); if this is the case, SIS will have to perform some internal consistency checks, which are described later.

The checksum of the common store contents is used as a security measure. Any reparse point that does not have the correct checksum will be ignored. As a result, if a user were to create a SIS reparse point without going through the normal SIS mechanisms, without knowing the correct checksum the reparse point (but, say, guessing the cs file UUID) it would not allow access to the contents of the file. If the user knows the value of the checksum, then the user must know the contents of the file or have had read access to some other SIS link to the file, which is equivalent. Therefore, SIS takes knowledge of this checksum as prima facie evidence that the user has access to the file. (Note that we could use an “unguessable” cryptographically secure random number in place of the checksum.)

The second checksum is just a checksum of the contents of the reparse point itself and is used as a consistency check. If this checksum is incorrect, SIS will just remove the reparse point as being invalid.

2.4 Opening Files

When a user opens a SIS file, SIS will pass the CreateFile call down to NTFS, which will reflect it with a STATUS_REPARSE return. When SIS gets such a return code, it will set the FILE_OPEN_REPARSE_POINT flag and send the call back down to NTFS. If the subsequent open completes successfully, if needed SIS will attach a filter context to the newly created NTFS SCB and open the SIS common store file. The user’s handle will refer to the file object created by the user’s create call, which will be an NTFS file object that refers to the link file.

If a user specifies FILE_OPEN_REPARSE_POINT, SIS will catch the create, and if it succeeds will query the reparse information to find out if the file is a SIS file. If so, it will attach to it just as if the user hadn’t specified FILE_OPEN_REPARSE_POINT.

2.5 SIS/NTFS Interactions

SIS forwards most calls that come down on SIS files to NTFS. For the most part, these calls can go to the link file (ie., SIS does nothing and sends the call through untouched). The exception is certain read calls (and a few exotic things like set reparse point). When SIS receives a read request, it looks in its SCB to see if the region being read is clean or has been written. If it’s clean, SIS replaces the file object in the IRP (or fast IO call) with the file object for the common store file. If it’s dirty, SIS lets the call go down on the original file object to the link file. If the read includes both dirty and non-dirty regions, SIS will split the read up into pieces and handle them one at a time.

The interactions between SIS, NTFS, Cc, Mm and the Io system are described in detail in David Goebel’s SIS specification, so I’m not going into more depth here.

2.6 Copy on Write

When a user writes to a SIS file, the writes go to the link file. When all handles to a given link file are closed, SIS will do a “final copy.” Final copy takes all of the sections of the file that haven’t been dirtied and copies them from the common store file into the link file, and then removes the reparse point. This turns a SIS file into a non-SIS file. SIS does the final copy when it’s received cleanups for all of the handles, not when it’s received closes, since the system typically delays closes arbitrarily.

The details of copy on write as well as the more general read/write paths are spelled out in detail in David Goebel’s SIS spec.

2.7 Creating SIS Links

SIS links are created in two ways: a copy file request and a duplicate detection. When a SIS link is created, it may be the first time that that particular content was put into the common store, or it may refer to content that is already in the common store.

If the newly created SIS link will result in content being moved into the common store (ie., this is new file content for SIS), SIS will allocate a UUID for the common store. It will then copy the file into the common store using the filename that corresponds to the UUID. (We need to do a copy and not a rename because rename would take the file ID with it into the common store, and we have to have the copied-from file retain its file ID). After the copy completes, SIS allocates an index for the link, converts the user’s file into a reparse point and writes the appropriate indices into the reparse point. SIS then proceeds with the initial copy as in the case where the original file was a link.

In the case of a copy, SIS will create a new SIS link in the copied-to location referring to the appropriate common store file, and will write the appropriate backpointer into the common store file. A duplicate detection is similar to a copy, except that SIS simply converts the detected file into a SIS link (reparse point), thus preserving the security information.

If the source of a SIS copy is not already a SIS link, SIS must open the file exclusively for the copy to succeed. If the source is already a SIS link, then the filter will open it FILE_SHARE_READ.

2.8 Renaming SIS Links

Rename operations on SIS links that operate within the same volume are simple. SIS simply opens the link file and calls the NTFS rename operation on it. If the rename overwrites an existing SIS link, then SIS needs to handle that as a typical delete of a link. Regardless, there is no need to access the underlying common store file.

Cross volume renames are transparent to the kernel, and look like a read-write-delete combination, which will be handled by the normal read & delete operations in SIS. Hence, they require no special support.

2.9 Deleting and Reference Counting

Each SIS common store file contains an “backpointer” index in its metadata stream. This index is a list of pairs of <linkIndex,NtfsLinkFileId>. Whenever a new SIS link is created by SIS, it makes a new entry in the backpointer list of the corresponding common store file. Because link indices are always allocated sequentially and entries in the list are always made for newly allocated link indices, the list will always be sorted and will remain sorted when new entries are appended. By using binary search, lookups in the list are O(log n) and insertions are O(1). Deletions are processed by marking an entry as unused by setting the NtfsLinkFileId to an invalid value, and then truncating the list if possible, and thus take O(log n) time.

If a new reparse point is created outside of SIS (by, say, disabling the driver and then running a restore) when the SIS driver is re-enabled and the user tries to open the link file, SIS will first verify that the CS file checksum contained in the link file is correct. If it is, then SIS will notice that there is no backpointer entry for the file (or that the backpointer entry has the wrong file id). SIS will allocate a new link index, rewrite the reparse point and insert the new entry in the backpointer list. It will then initiate a volume check to detect other inconsistencies.

When a file is deleted, SIS will remove the backpointer entry. When all backpointer entries for a given file go away, SIS will delete the common store file as being unused.

If SIS believes that for some reason its backpointer database has become corrupt (probably because of a restore without the SIS filter driver running) it will initiate a full volume check. When it does this, it will scan the entire set of reparse points on the volume, and will build appropriate backpointer indices for them. During the check, SIS will use the old set of backpointer indices, but will never delete a common store file whose reference count went to zero, because it cannot be sure that there are no references to it. Once the new set of indices is completely built, SIS will switch over from the old to the new backpointer sets, and delete any common store files without any references. Note that we expect that volume checks will be rare, because the index set should only get out of whack if SIS reparse points are updated without the knowledge of the SIS filter. Even when applications directly write SIS reparse points SIS will track them and update the indices correctly, so volume checks should only occur if reparse points are created without the driver running, if the common store backpointers are overwritten, or if the disk itself is corrupted.

2.10 Security

Because SIS links look like real, independent files to their users, ownership and security needs to be associated with the link rather than the common store file. The user will set up ownership and ACLs on the link files just as they would with any other files. When the SIS driver attempts to open the link file as part of the normal file create process, Ntfs will do the standard permission checks at that time.

SIS prevents users from creating bogus SIS links by verifying the checksum in the link against the common store file to which the link refers before allowing an open to complete; any reparse points with bogus checksums will be deleted. Thus, in order to construct a valid reparse point, the user must first know the contents of the file, or at least have read another reparse point and copied out the checksum. Since having access to a SIS link only gives the user access to read the data, but not to change anyone else’s copy, allowing a user who can demonstrate knowledge of the file content to access that file content is no loss of security.

Common store files (and in fact the entire \SIS Common Store directory) are set to be accessible only to administrators. As a result, users can’t circumvent SIS and read the common store files directly (unless they have full access to the local filesystem, in which case they could read the raw disk or override security on the user’s links anyway).

2.11 General Restrictions

In the first version, SIS will not handle multi-stream Ntfs files. SIS will not permit them to be the target of a copyfile command. [Note: we are considering limited support for multi-stream files, wherein the single instance behavior will only occur on the primary stream.]

SIS will not permit files with extended attributes to become links. SIS will not handle sparse or encrypted files. SIS will not run on the boot volume, so that files that might need to be loaded by the bootloader won’t be turned into SIS links.

SIS will not allow encryped files to be SIS links, and if an encryption is attempted on a SIS link, SIS will copy the file out before allowing EFS to work on the file.

SIS will not work on files that already have reparse points on them, such as NSS or HSM files.

3. The Groveller

Runs as an NT service with admin privs. Communicates with SIS through an FSCTL interface. Is cleverly designed to take best advantage of the tradeoff in time spent computing checksums and comparing files, realizing that a pretty crappy but extremely cheap checksum function (that, say, ignores entirely much of the contents of a file) may wind up causing few enough false matches to be cheaper than a higher quality checksum. Has an interface with the filter driver that says “I guarantee that these files are identical, you can smash them.” Obtains a list of recently written/created files from the NTFS USN journal as possible candidates for smashing. Uses a JET database to maintain the sets of files with equal size/hash key.

Microsoft Confidential

Page 6 of 1

