SIS/Backup Interface

Bill Bolosky

DRAFT April 2, 1999

1. Introduction

SIS is the “Single Instance Store” feature in the Windows NT operating system, version 5.0. It’s primary purpose is to replace duplicate files with copy on write links to a common backing file, and so reduce disk and cache usage for users of duplicate files. Because SIS replaces the actual file entries with a link, backup applications need to back up the data associated with the files rather than just the link information. However, backing up the files without realizing that they’re links would result in much more space being used on the backup tape than is used on the disk, and could prevent restore from running properly because it would overflow the disk.

SIS provides a dynamically linked library that has an interface to backup and restore applications that allows them to back up SIS links and to get the appropriate data along with the file. This interface is designed in such a way that backup will only put a single copy of any given backing file onto the tape, regardless of how many links to it are backed up. Furthermore, it makes the contents of the SIS reparse points opaque to the backup and restore applications, so that upgrades to the SIS internals will not require a change in the interface or backup/restore applications, but rather just a new version of the dll.

1.1 Terminology

A SIS file is called a SIS link. The link consists of a sparse Windows NT 5.0 file system file, probably with most regions of the file unallocated. It also has a reparse point on it. The contents of the reparse point is opaque to the backup/restore applications, but the SIS driver and dll understand it. The reparse point refers to a “backing” file that contains the data for the link. This backing file is called a common store file. A given common store file may have one or more links to it.

SIS stores all common store files in a special place in the volume called the SIS Common Store or just the common store. The common store is a directory that is protected against normal user access, and the common store files are never intended to be accessed directly by users. The contents of a common store file is never changed once it’s created, and the names of common store files are globally unique (that is, they are unique across all volumes across all systems in the world). Thus, the binding between a common store file and its data is global and forever unchanging.

The SIS filter driver (also called SIS or the filter) is a Windows NT kernel mode filesystem filter that implements the SIS links. It runs all the time on SIS-enabled systems. sisbkup (or the SIS DLL or just the DLL) is the DLL that is the interface between SIS and the backup/restore applications. It is the subject of this document.

In this document I refer to the backup medium as a tape. This term simply refers to whatever place backup stores its data, and may be a set of tapes, a disk file, or any other medium. SIS and the DLL make no assumptions about the backup medium save that the same set of files will be available on restore that were backed up onto the medium.

2. The SIS/Backup-Restore API

In order to back up and restore SIS links, the backup program needs to be able to tell which files are links to which common store files, and store both the link and the common store file on the tape. If there is more than one link to a given common store file backed up onto a single tape, there is no need to put more than one copy of the common store file on the tape.

When restoring a SIS link the restore application needs to determine to which common store file(s) it refers, and if those file(s) don’t exist it needs to restore the file(s) along with the link. If the link refers to common store file(s) that are still on the disk, then only the link needs to be restored. Recall that the data in common store files never changes, so if a given common store file is still on the disk at restore time, it has the same contents as when it was backed up and there is no need to overwrite it.

In order to allow backup and restore to do this, SIS provides a dll (sisbkup.dll) that they can use to manage this information without having to understand the contents of SIS reparse points. This section describes the API to this dll.

The API presented here does not make any assumptions about how the backup program stores the necessary information about SIS links, and how it stores the content of the files backing the links.

Rather, it just assumes that backup will back up exactly that set of common store files that the SIS dll requests, and that these common store files will be available when restore runs.

One of the goals of this API is that the contents of the SIS reparse points is opaque to the backup/restore application. This allows the format of the SIS reparse points to change while changing only the dll and not the backup/restore applications. The reparse points contain a format version identifier, so it will be possible for the dll and driver to handle downlevel reparse points. Naturally, old versions of the driver/dll won’t necessarily be able to handle newer format reparse points, but we expect that new reparse points will only be created with new SIS filter drivers, and that new drivers will come with a new version of sisbkup.dll that understands the new format.

The headers for this API are in public\sdk\inc\sisbkup.h.

All of the SIS backup/restore operations are volume-local. That is, if for some reason backup should need to cross volumes during a backup, it will need to call SisCreateBackupStructure for each different volume being backed up, and will need to provide the appropriate sisBackupStructure corresponding to the volume for the file in question in all subsequent calls. Similar requirements apply to restore.

2.1 SisCreateBackupStructure

On backup:

BOOL SisCreateBackupStructure(

IN PWCHAR
volumeRoot,

OUT PVOID
*sisBackupStructure,

OUT PWCHAR
*commonStoreRootPathname,

OUT PULONG
countOfCommonStoreFilesToBackUp,

OUT PWCHAR
**commonStoreFilesToBackUp);

This call creates an a SIS backup structure, which is used by the SIS dll to keep track of which files are links to which other files on this volume. This function should be called exactly once for each SIS enabled volume being backed up. volumeRoot is the Win32 file name of the volume root (without the trailing backslash, ie,. use “c:” not “c:\”) for the volume being backed up. commonStoreRootPathname returns the fully qualified pathname of the common store for this volume (ie., “c:\SIS Common Store”). Any files anywhere under this directory should be treated as common store files for this volume, and only backed up if SIS indicates that they should.

The countOfCommonStoreFilesToBackUp and commonStoreFilesToBackUp parameters together return a list of files that need backing up regardless of which links are backed up. commonStoreFilesToBackUp is a pointer to an array of filenames. These files should be backed up at the same time and in the same manner as any common store files requested by SisCSFilesToBackUpForLink. If countOfCommonStoreFilesToBackUp is 0, then commonStoreFilesToBackUp may be a NULL pointer and should be ignored.

The return value is TRUE if the call worked, FALSE otherwise. Call GetLastError to find out why the call failed.

After backup is done with the commonStoreFilesToBackUp array, it needs to free the array and the strings to which it points by calling SisFreeFileNames, which is described in section 2.8.

2.2 SisCSFilesToBackUpForLink

BOOL SisCSFilesToBackUpForLink(

IN PVOID
sisBackupStructure,

IN PVOID
reparseData,

IN ULONG
reparseDataSize,

IN PVOID
thisFileContext

OPTIONAL,

OUT PVOID
*matchingFileContext
OPTIONAL,

OUT PULONG
countOfCommonStoreFilesToBackUp,

OUT PWCHAR
**commonStoreFilesToBackUp);

Backup can identify a SIS reparse point by its tag, which will be IO_REPARSE_TAG_SIS, and is defined in sdk\inc\ntioapi.h. Backup should call SisCSFilesToBackUpForLink exactly once for each SIS link backed up.

This function takes as input a pointer to the contents of the SIS reparse point for a link file that backup is planning to put on the tape. It also takes the length of the reparse data as a parameter as well as a context pointer that is provided by the backup application and uninterpreted by the SIS dll. If the call succeeds, it will return STATUS_SUCCESS. If this reparse point represents the first instance of the particular file being backed up, SIS will return NULL as the matching file context and fill in the countOfCommonStoreFilesToBackUp and commonStoreFilesToBackUp with a array of strings with the names of the common store file(s) to include on the backup tape. The current version of SIS will always return at most one common store file, but it is possible that in future versions a single link may be backed by an entire set of common store files (say, one for each stream in the file), so backup should support getting multiple files here. Regardless, each common store file will be returned at most once per backup pass.

When backup is done with the array of filenames and the filenames themselves, it needs to return them to SIS to be freed by calling SisFreeFileNames (see section 2.8).

If this is not the first instance of the given common store file being backed up, SIS will fill in matchingFileContext with the thisFileContext that was passed in for the first instance of the file and will set countOfCommonStoreFilesToBackUp to 0. If there are multiple common store matches for this link, the thisFileContext will correspond to the earliest match with the first common store file returned in the array (that is, commonStoreFilesToBackUp[0]). The thisFileContext and matchingFileContext parameters are optional, and if they are supplied as NULL the DLL will just ignore them.

When SisCSFilesToBackUpForLink says there are common store file(s) to back up for the link, backup should write out the common store file(s) indicated by the returned filename(s). Regardless of whether there are common store file(s), backup should back up the file as it actually appears on the disk (ie., as a reparse point and a sparse file, most likely with no regions filled in). Backup may write out the common store file(s) immediately, postpone backing them up, or mix them together, as is most convenient.

The return value is TRUE if the call worked, FALSE otherwise. Call GetLastError to find out why the call failed.

2.3 SisFreeBackupStructure

BOOL SisFreeBackupStructure(

IN PVOID
sisBackupStructure);

This call deallocates a SIS volume structure and should be called after backup is done with a particular volume. Note that it is not safe to assume that this just deallocates memory (ie., the DLL may take some other actions when this is called), so it must be called even if backup is just going to exit immediately afterward.

The return value is TRUE if the call worked, FALSE otherwise. Call GetLastError to find out why the call failed.

2.4 SisCreateRestoreStructure

As a restore proceeds, when it wishes to restore a SIS link (which may be identified by the reparse tag IO_REPARSE_TAG_SIS, found in sdk\inc\ntioapi.h), restore should restore the link from the tape just as it was backed up (ie., as a sparse possibly empty file with a SIS reparse point on it), and then call into the dll to see if it needs to also restore common store files as a result of restoring the link.

Note that the DLL will not necessarily report common store file(s) for a set of links on the backup tape if the common store file(s) to which the particular links refer still exists on the disk. The contents of the data stream(s) of common store files never change once they’re created, so if the file already exists on the disk there is no need to restore it. Common store file names are globally unique, so even if a restore is run on a different SIS-enabled volume from the backup, everything should work properly.

BOOL SisCreateRestoreStructure(

IN PWCHAR
volumeRoot,

OUT PVOID
*sisRestoreStructure,

OUT PWCHAR
*commonStoreRootPathname,

OUT PULONG
 countOfCommonStoreFilesToRestore,

OUT PWCHAR
**commonStoreFilesToRestore);

This is analogous to SisCreateBackupStructure. See its description for the meaning of the parameters. The caller is responsible for freeing the returned file names by calling SisFreeFileNames.

2.5 SisRestoredLink

BOOL SisRestoredLink(

IN PVOID
sisRestoreStructure,

IN PWCHAR
*restoredFileName,

IN PVOID
reparseData,

IN ULONG
reparseDataSize,

OUT PULONG
countOfCommonStoreFilesToRestore,

OUT PWCHAR
**commonStoreFilesToRestore);

Restore should call this function for each SIS link that it’s restored, passing in the fully qualified filename, reparse buffer and length (of the reparse data) that was stored for the SIS reparse point on the backup tape. countOfCommonStoreFilesToRestore and commonStoreFilesToRestore will report common store file name(s) returned. If countOfCommonStoreFilesToRestore is non-zero, commonStoreFilesToRestore will represent those common store files that need to be restored as a result of restoring the link. If it is 0, then either the needed common store files have already been returned once, or are already present on the volume. This function will return each common store file at most once per restore; subsequent links that refer to the same common store file will not return that file name. It will never return a common store file that wasn’t also returned in a SisCSFilesToBackUpForLink call during backup (presuming that the reparse data hasn’t been corrupted on the tape, of course).

The return value is TRUE if the call worked, FALSE otherwise. Call GetLastError to find out why the call failed.

When restore restores a link file, it should just create the appropriate sparse file, write in any allocated regions (if there are any) and then set the reparse data on the file just as it was read during backup. It is crucial that restore create sparse files with unallocated regions rather than sparse files (or non-sparse files) filled in with zeroes.

2.6 SisRestoredCommonStoreFile

After restore has restored a common store file, it should call the following function:

BOOL SisRestoredCommonStoreFile(

IN PVOID
sisRestoreStructure,

IN PWCHAR
commonStoreFileName);

This tells SIS that a new common store file has been written, and allows it to take any action needed to initialize its internal data structures, fix up the links to the file, etc. Restore should only restore common store files that were returned as a result of calling SisRestoredLink, even if there are more common store files on the backup tape.

Restore is free to restore the link and common store files in any order it wants, but it must call SisRestoredLink after it restores any link, and must call SisRestoredCommonStoreFile after it restores any common store file. Restore should never overwrite any common store files that are not returned from SisRestoredLink. Naturally, since restore does not know the common store files to restore until they are reported to it as a result of restoring a link, restore will always restore a common store file after at least one link referring to it is restored. However, it is then free to restore more links that happen to point at the same common store file.

The return value is TRUE if the call worked, FALSE otherwise. Call GetLastError to find out why the call failed.

2.7 SisFreeRestoreStructure

BOOL SisFreeRestoreStructure(

IN PVOID
sisRestoreStructure);

Deletes a sisRestoreStructure and does work to cause the SIS filter to properly set up the links created during the restore. Accessing the links before this call completes can result in a volume check and/or reading partial contents of the link. This call may do more than just tear down the SIS DLL’s data structures, and the restore should not be considered complete until it is finished.

The return value is TRUE if the call worked, FALSE otherwise. Call GetLastError to find out why the call failed.

2.8 SisFreeAllocatedMemory

VOID SisFreeAllocatedMemory(

IN PVOID

allocatedSpace)

This function frees space allocated by the DLL. It takes as input a pointer to some memory allocated by the DLL, and frees that memory. After the call completes, the caller may no longer access the freed memory.

This call should be used for the commonStoreRootPathname strings returned from SisCreateBackupStructure and SisCreateRestoreStructure. It should also be used on all of the strings in the arrays of common store files returned from SisCreateBackupStructure, SisCSFilesToBackupForLink, SisCreateRestoreStructure, and SisRestoredLink. For these functions, the array itself also needs to be freed by calling SisFreeAllocatedMemory.

