NT 5.0 Single Instance Store Specification

Bill Bolosky

Draft of August 3, 1998

This document is very much a work in progress, is subject to change without notice and may be wrong in important details. If you have any comments, please email them to bolosky.

1. Introduction

As part of the Zero Administration Windows (ZAW) effort for NT 5.0, Microsoft plans to store the files from all machines within an institution (corporation, university, governmental agency, etc.) in a single namespace. Because there is great similarity between the files on various machines, there will be considerable duplication of content within these institution-wide namespaces. For instance, there will likely be many copies of the various system binaries, font files, and installed legacy applications.

In order to reduce the storage requirements at the servers, ZAW will include a single instance file store (SIS). A single instance file store is a system for storing files that has the property that if more than one file having the same contents is located in the store, only one copy of the actual file contents will be stored, and all logical instances of the file will refer to this master copy. These links are visible only within the filesystem and to backup applications. A normal (non-backup) user of the filesystem will be unaware that files are linked to common contents. All semantics including security, writing, locking and deleting will be identical to normal, private files.

SIS combined with Client Side Caching (CSC) will result in a system that presents a single institution-wide file namespace while not greatly increasing the load on the network, servers, disks and while only modestly increasing the file storage requirements at the server.

The SIS technology can also be run on workstations. Studies of the contents of filesystems on current machines show several percent replicated content within a single machine. Running SIS on the workstation would recoup this space. Furthermore, since CSC uses the NTFS to store its cached files, and because NTFS + SIS exports nearly identical semantics to NTFS, it should be possible to run SIS underneath CSC on ZAW clients. However, Microsoft does not consider this to be a supported feature in NT 5.

2. Requirements

1. SIS must not noticeably reduce the reliability of the NT 5.0 system on which it is hosted.

2. SIS must be able to detect and merge files with identical contents that are otherwise unrelated.

3. SIS must have only a minor impact on the performance of normal-path file operations that do not result in an SIS action (i.e., forcing a copy-on-write and to a lesser extent revectoring an open).

4. SIS must present to the user the abstraction of totally independent files, regardless of whether they’re linked. This means that writes to a linked file should be visible only through the opened file name (and things hard linked to it), and not through any other file names that formerly had the same contents.

5. SIS must provide a copy-file function that simply creates a link without accessing any file data, provided that the source file is already a SIS link.

6. Backup applications must be able to detect links as links rather than as separate files.

7. SIS must preserve the security semantics of the non-SIS filesystem.

8. SIS must be able to compute signatures for files when needed.

9. SIS must support NTFS as an underlying filesystem; other underlying filesystems are optional.

10. SIS must not place an undue load on the system when it is not otherwise idle for deferrable tasks such as signature computation and file comparison. Conversely, it should be able to take advantage of free time and bandwidth to accomplish these tasks without undue delay.

11. In low free disk situations, SIS should be able to increase its resource consumption in order to more quickly free up space, even if this adversely impacts normally higher priority activities. The extent of allowable adverse impact should increase as available disk space decreases, and as the demand to store new files increases.

12. Quotas will be handled as if SIS did not exist. That is, each user will be charged for the full size of all of the files that the user owns, regardless of whether their contents are shared.

3. Architecture

SIS consists of two major components: a filter driver, and a file groveler which maintains a signature database. The filter runs in the kernel, while the groveler and its database run as a user level service.

The filter driver attaches itself above NTFS, and for the most part simply passes requests through unmodified. It handles opens of files that are SIS links by redirecting reads to unmodified portions of the file to a backing file; processes file copy requests by creating links; detects writes to files that are SIS links; deals with maintaining the reference count on backing files when links to them are created and destroyed; and merges duplicate files into a single backing file when instructed to do so by the groveler.

The groveler is responsible for computing signatures for files for which there are no current signatures in the database, and reporting matching files to the filter driver. It carefully monitors system load, and runs only when it will not interfere with higher priority activities. The groveler’s signature database keeps track of the checksums recorded for the various files.
SIS uses NTFS as the underlying filesystem. This underlying filesystem is divided into two portions: the shared namespace and the common store. The shared namespace is a normal NTFS directory tree that corresponds exactly to the namespace exported by the SIS server. That is, for every file or directory that a user places in the single instance store, there will be exactly one corresponding file or directory in the shared namespace. In addition, files that are not SIS links exist in the shared namespace. When SIS detects that two files in the shared namespace are common, it copies the contents to the common store, and replaces the files in the shared namespace with SIS links.

SIS links are implemented using NTFS reparse points that are handled by the SIS filter driver. A file backed by contents in the common store is represented by a reparse point in the shared namespace. When a user opens such a file, SIS first passes the open request to NTFS. NTFS checks the ACL permission on the link, and if the check succeeds, it hands the open back to SIS with a STATUS_REPARSE. SIS then notes that the reparse point is a valid SIS reparse point, turns on the flag that instructs NTFS to open the reparse point itself and returns the open request to NTFS. NTFS will then open the reparse point, and SIS subsequently attaches a filter context to the file object.

A filter context is a new facility provided by the Microsoft Filesystem Runtime Library that allows filter drivers to associate state with a file object owned by some other filesystem. The filter context facility allows SIS to efficiently determine whether a particular file object has SIS semantics.

The hash function used to compute file signatures, its implementation and the size of the file signature are not part of the SIS specification, and may vary from installation to installation. The SIS team will supply a hash function that is known to work well.

4. Interfaces

4.1 SIS Filter Driver-External Filesystem Users

For the most part, the SIS Filter Driver is transparent to users above it, save that it implements a few new FSControls, and that the available disk space may be larger than would otherwise be expected. As such, the Filter Driver user interface is quite small, and is isolated to those few functions that are unique to SIS. Of course, SIS also can take action on normal filesystem actions such as open file, write file, and delete.

The first call in the interface is the fast copy function. It is implemented as an FSControl. For now, we will pass this call down on an arbitrary handle in the SIS file system. This call will only succeed if there are no open handles to either the source or destination file (because these handles would wind up pointing to reparse points after the call completes; copying from a source that is already a SIS file when the driver can open the file read only/share read will succeed). Empty files may not be copied by using this interface.

FSCTL_COPY_FILE

Parameters:

Handle

- A handle to some arbitrary file on the volume (or

 to the volume itself) where the source file is.

Source File Name

- The NT pathname of the file to copy. The caller must be

 able to open the file for read.

Destination File Name

- The NT pathname of the place to put the new copy.

Replace if Exists

- Boolean

OnlyPermitFastCopy

- If set, fail the copy if it would involve copying the file data

Possible returns:

STATUS_SUCCESS

STATUS_NO_SUCH_FILE
- Source file does not exist

STATUS_ACCESS_DENIED
- Caller cannot read source or write destination

STATUS_INSUFFICIENT_RESOURCES

- Not enough memory to complete request

STATUS_DISK_FULL

- Insufficient disk space

STATUS_SHARING_VIOLATION

· Either the source or destination couldn’t be opened

· Exclusively

STATUS_CANT_WAIT

- OnlyPermitFastCopy is set and this call would force a copy

Quota error (?)

- The user has exceeded the allowed disk quota

etc.

In addition, the user should be prepared for an unknown fsctl error, in case SIS is not running. In this case, the caller should proceed with whatever copy method it otherwise used.

4.2 SIS Filter Driver-SIS Groveler

The interface between the groveler and the filter driver is privileged and not remotable. It consists of one FSControl that implements the three functions in the interface between the groveler and the filter. Which function is being invoked is determined by an operation code (opcode) that’s the first thing in the parameter block. For security purposes, the filter rejects any calls on this interface that aren’t made on a specific file, \SIS Common Store\GrovelerFile. This file is protected in such a way that only administrators can open it, thus guaranteeing that non-privileged users cannot successfully make the call.
The SIS groveler tells the filter driver when it has detected files that match. The groveler is responsible for assuring that the files are in fact identical before it tells the filter driver. In order to avoid locking files during the time that the filter is comparing them, it acquires an exclusive oplock on the files before comparing any of their bits, and holds onto the oplock until the filter is complete or the system sends an oplock break. By using an oplock like this, if any other user attempts to open either of the files, the groveler can stop what it’s doing, close the files and acknowledge the oplock break. Furthermore, it uses an event to tell the filter that an oplock break has occurred and that it should abort the merge.

One complexity in doing the file comparison is file mapping. A process can map a file, then close the handle used to create the mapping. At that point, the groveler could open the file and take an exclusive oplock on the file; it has no way to tell that another process could be doing mapped writes to the file, and so no way to guarantee that the files that it reports to the filter are in fact identical. In order to correct this problem, the filter exports to the groveler an operation that determines if a file has a current user-level mapping in existence. The groveler makes this call before it starts reading a file for comparison or signature computation purposes. The exclusive oplock guarantees that no new mappings will be created.

The other two opcodes in the interface specify that a file is identical with another file, and should be merged with it. The first call says that two normal user files are identical, while the second call says that a user file is identical with a file already in the SIS common store.

FSCTL_SIS_FILES__MATCH

Parameters:

Opcode

- CheckMapping, MergeFiles or MergeWithCS

For CheckMapping:

FileHandle

- Handle to the file to check for a mapping

For MergeFiles:

FileHandle1

FileHandle2

- Handles to the files to merge

AbortEvent

- An event set to request that the filter stop the merge operation

For MergeWithCS:

For MergeWithCS:

FileHandle

- Handle to the normal file to merge
CSFileId

- Identifier for the common store file with which to merge

AbortEvent

- An event set to request that the filter stop the merge operation
Possible Returns:

STATUS_SUCCESS

STATUS_SHARING_VIOLATION – for CheckMapping indicates that the file is mapped

STATUS_DISK_FULL

Oplock broken

Various generic failures

4.3 Groveler-External World

The groveler is a system service, and responds to the normal set of service requests. These are requests such as start, stop, pause, restart, etc. In addition, it has one service specific control request that tells it to ignore its normal non-aggressive system use policy, and instead to complete all work currently on its queue without delay.
5. Implementation Details

SIS links refer to common store files. The common store files also contain a pointer back to each link that refers to the file. These back pointers are not used to verify that the link is valid, but rather are used to decide when all of the links to a particular common store file are gone, and to delete the common store file when it has no more references. A simple reference count would suffice for this function, but it is difficult to keep such a reference count in sync with the set of links pointing to the common store file when a system crash occurs during the creation or removal of a link.

Users may set SIS reparse points on files directly, rather than using the normal methods of calling FSCTL_SIS_COPYFILE or having the groveler merge identical files. The intent of this is primarily to allow backup and restore operations to save and recreate links, but in principle any user can create a SIS link in this way. There is a security concern here: if a user can set a SIS reparse point that refers to a particular common store file, the user can then read through the newly created link to the common store file, and see its contents. The SIS architecture solves this problem by including in the SIS reparse point data a signature of the contents of the common store file. In order to determine what this signature is, the user needs to know the contents of the common store file, or to have had access to another link to the file in order to read the signature directly. In either case, this proves that the user could have read the contents of the common store file, and so allowing the user to do so through the new link does not present any new information, and so is innocuous.
The groveler needs to know when files on a volume have changed or just been created in order to check to see if there are any newly created matches. NTFS 5.0 provides a feature called the USN journal that tracks just this kind of information. The groveler uses this journal to determine which files to check. If the journal wraps (ie., the groveler misses some journal entries for whatever reason), the groveler will re-scan the entire volume and recreate the signature database.
The filter driver will set the size of link files (underneath the reparse point) to be equal to the size of the file in the common store, and set the files to be sparse. Thus, link files will charge the appropriate amount of quota and look like normal files when their directory entries are considered, but will not occupy disk space for the file data. When a user writes to a SIS link, the filter will forward the write directly to the link file.
Other implementation details are covered in the companion document “NT 5.0 SIS Design Details.”

6. Finding Matching Files

The groveler’s main duty is to find files with identical content, and to report them to the filter for merging. The simplest way to implement this function would be to compare every file in the system to every other file, but that would be prohibitively expensive. Instead, it computes a signature for every file. If it finds two files that have matching signatures, it compares them to one another byte-for-byte, and reports them to the filter if they match. Because two files that have identical contents necessarily have identical signatures, if the signatures of two files do not match, then they must necessarily be different, and there is no need to compare them. By computing such signatures on files and using them to filter the set of whole file comparisons that need to be done, the groveler is able to greatly reduce the overall amount of work that would otherwise be needed to find matching files.

The question then becomes what signature computation to use. We would like to have a signature that is both inexpensive to compute, and that is unlikely to yield false positives (ie,. to produce matching signatures for differing files). To some extent, these goals conflict with one another. We have chosen a strategy that applies a high quality, fairly high cost hash function to a fixed-size portion of a file in order to compute that file’s signature. That is, we do a good job of generating a signature that only describes a possibly small fraction of the file. Thus, our signature computation does not depend on the size of the file for which the signature is being computed.

Our current highest quality hash function is derived from a reference in Handbook of Algorithms and Data Structures In Pascal and C by Gonnet and Baeza-Yates. It keeps a running 64 bit total that at the end of the hash process will be the hash value, and which is initialized to 0. For each 32 bits of the file, the running total is multiplied by 131 and the 32 bits of the file are added into the running total. 131 is used because it has the longest cycle mod 264 (meaning that for all integers i, the smallest integer p that has the property that ip mod 264 = i, is less than or equal to the corresponding p for i = 131). We call this function the 131-hash function. Over a set of about 280,000 files, we found no pair of files with a matching size and matching 131-hash value that were not identical in content.
To compute the
signature for a file, we apply the 131-hash to a part of the file (typically, the 64 kilobyte chunks that are 1/3 and 2/3 of the way through the file for files that are larger than 128 kilobytes, and the entire file for smaller files). We append the resulting 64 bit value to the 64 bit length of the file, and so produce a 128 bit key. While it is entirely possible to have files that have matching signatures and differing contents (particularly if they differ in the parts of the file that are not hashed), we have found in practice that the work involved in the extra whole-file comparison generated by such false matches is smaller than the amount of work saved by doing the cheaper signature computation.

7. Changes to Other System Components

RDR and SRV need to recognize the file names in FSCTL_COPY_FILE and handle them appropriately [done]. We may want to produce versions of the copy programs that use the FSCTL, and may even want to change the Win32 CopyFile function to do it as well.

Backup and restore require special infrastructure to properly deal with SIS links. This is described in detail in the companion document “SIS/Backup API.”
Remote boot install will have to create the appropriate directories (ie., “\SIS Common Store” and stuff under it), and install the filter driver and groveler service[done].

8. Scenarios

This section describes various envisioned usage scenarios. Currently there’s only one, but I’m sure we’ll add more..

8.1 Serving Files for Remote Boot

One of the major components of ZAW is remote booting. Using remote booting, a machine boots using files that are stored on the server (and possibly locally cached using CSC) rather than simply reading files from the local filesystem. Using a SIS server for the files to be used for remote boot allows a much more natural structure than with other proposed techniques. In particular, the SIS server would include a directory tree that corresponds exactly to what was stored on the machine’s C drive in the old arrangement. So, for example, C: on the machine bolosky might correspond to the directory \\server\commonshare\machines\msr\os\bolosky\c on the SIS server. The files in this tree are exactly the files that are logically contained in bolosky’s C: drive. There will be no separate area for “read only” files, nor will there be any special copy-on-write semantics visible to the users of C: on bolosky.

Because SIS manages this store, the contents of files in the msr\os\bolosky\c area that are common with other files on the server (say in msr\os\bolosky2\c) will be SIS links and will not consume additional disk space beyond what’s needed for the link itself. As noted in the previous paragraph, there will be no user-visible copy-on-write semantics for these files. This is because they have the semantics of non-linked, totally private files. SIS will perform copy-on-write on any files that are eventually written, but this operation will be invisible to the user.

If the machine bolosky has a local disk it will run CSC, and so once the files in the msr\os\bolosky\c share are referenced they will be faulted onto the local drive and afterward reading them will place no load on the server or network. If bolosky is diskless, then only its in-memory cache will serve to deflect reads from going to the server. The impact on the network and server for this situation need to be determined.

9. Issues

We may find that the cost of keeping even a directory structure containing all shared files is too large, in which case we might want to support SIS for directories, possibly by keeping directory entries and then a difference list between the “template” directory and the one in the shared namespace, or possibly only supporting wholly identical trees.

Office ’97 (and possibly other applications) has the behavior that it slightly modifies the binaries of its executable files at setup time (writing in the name of the person installing the app). As a result, office installations have a large number of bytes that cannot be saved by using SIS as described. There are a number of possible approaches to solving this problem. One is to be able to find sub-file sized matches. Another possibility is to detect when files are different by only a few bytes, and record the affected bytes in the SIS link file. Still a third possibility is to adopt an ad hoc solution for Office ’97, and not cover any other cases. The Office team is removing this “feature,” so maybe we can just ignore it; currently there are no plans to try any of these possible solutions.

Checksum

Database

SIS

Groveler

User Mode

Kernel Mode

Local

Access

SMB

Server

Single Instance Store

Filter Driver

NTFS and

Underlying Layers

Microsoft Confidential
Page 7 of 1
Draft of 08/03/98

