Hal Profiling Functions
(Amd64 and X86)
Version: 1.00
Date: July 1, 2002

1. Introduction
1.1 What Is Performance Monitoring
Performance monitoring is a feature introduced in the Pentium processor. This feature allows counting of performance events through a set of model specific registers (MSRs). The information obtained can be used to optimize the performance of applications, system software and compilers. The event types that can be measured and the ways to measure them are processor dependent.

Microsoft Windows Hardware Abstraction Layers (HALs) support the Performance Monitoring for the Intel and Amd processors. This document only covers the HAL implementation on x86 and Amd64 platforms.

1.2. Overview of Performance Monitoring Implementations
The performance monitoring mechanism is processor dependent and is not architectural. Listed below are the types of hardware implementations seen so far.

Pentium Processors
Pentium processor provides one control and event select MSR (CESR) and two 40-bit performance counter MSRs (CTR0 and CTR1). There are 59 supported performance events. Two events can be monitored simultaneously.
P6 Family Processors
P6 family processors include Pentium Pro, Pentium II and III. The P6 family processors provide two 40-bit performance counters (PerfCtr0 and PerfCtr1) and two performance event select registers (PerfEvtSel0 and PerfEvtSel0). Compared with Pentium Processors, P6’s performance monitoring mechanism was enhanced to support a wider selection of events and with more flexible controls. Two events can be monitored simultaneously.

Pentium 4 and Xeon

Pentium 4 and Xeon processors provide 45 event selection control registers (ESCR) MSRs, 18 performance counter MSRs, 18 counter configuration control (CCCR) MSRs, one IA32_MISC_ENABLE MSR and one IA32_DS_AREA MSR. In addition to a new set of performance events and a better control over the way of monitoring, Pentium 4 and Xeon processors support advanced features like Precise Event-Based Sampling (PEBS) which provides finer granularity in event counting of at-retirement events.
Amd x86-64
The performance monitoring mechanism of x86-64 is similar to that of P6 family processors. The differences are:

· The number of performance counters and event select registers is extended to 4.
· The resolution of performance counter register is extended to 48-bit

· x86-64 supports its own set of performance events.
2. HAL Profiling Functions
A set of HAL functions is provided to facilitate drivers or system software to count the performance events.
· HalStartProfileInterrupt

· HalStopProfileInterrupt

· HalSetProfileInterval

· HalSetSystemInformation
· HalQuerySystemInformation

HalStartProfileInterrupt
VOID

HalStartProfileInterrupt (
IN KPROFILE_SOURCE ProfileSource
)

This function enables the monitoring of the hardware event specified by ProfileSource and setup registers to generate performance monitor interrupt (PMI) when the counter overflows.

This routine must be called at PROFILE_LEVEL and is called on every processor.

Parameters

ProfileSource

Indicates the source of the profiling.
Return Value

None
HalStopProfileInterrupt
VOID

HalStopProfileInterrupt (
IN KPROFILE_SOURCE ProfileSource
)

This function disables the monitoring of the event associated with ProfileSource on current processor.

This routine must be called at PROFILE_LEVEL and is called on every processor.

Parameters

ProfileSource

Indicates the source of the profiling.
Return Value

None
HalSetProfileInterval
ULONG_PTR

HalStopProfileInterrupt (
IN ULONG_PTR Interval
)

This function sets the interrupt interval for ProfileTime.

Parameters

Interval

Supplies the desired profile interval in 100ns units.

Return Value

The actual profile interval.
HalSetSystemInformation

NTSTATUS

HalSetSystemInformation (
IN HAL_SET_INFORMATION_CLASS InformationClass,

IN ULONG BufferSize,

IN PVOID Buffer)

This function sets HAL or OEM specific system information. The type of information that is returned depends upon the InformationClass argument.

Parameters

InformationClass

Constant that describes the information pointed to by Buffer.

BufferSize

Size of the information pointed to by Buffer.

Buffer

HAL or OEM specific information described by InformationClass.

Return Value

STATUS_SUCCESS if the HAL successfully utilizes the information in Buffer.

Comment

We only cover the information related to performance monitoring here.

When InformationClass is HalProfileSourceInterval, this function sets the interval for the specified profile source. The structure pointed by Buffer is defined as
typedef struct _HAL_PROFILE_SOURCE_INTERVAL {

 KPROFILE_SOURCE ProfileSource;

 ULONG_PTR Interval;

} HAL_PROFILE_SOURCE_INTERVAL, *PHAL_PROFILE_SOURCE_INTERVAL;

When InformationClass is HalProfileSourceInterruptHandler, this function registers an interrupt handler, which is at the location pointed by buffer, for the performance-monitoring counter overflows.
HalQuerySystemInformation

NTSTATUS

HalQuerySystemInformation (
IN HAL_SET_INFORMATION_CLASS InformationClass,

IN ULONG BufferSize,

IN OUT PVOID Buffer,

OUT PULONG ReturnedLength
)

This function returns HAL or OEM specific information to the caller. The type of information that is returned depends upon the InformationClass argument.
Parameters

InformationClass

Constant that describes the information pointed to by Buffer.

BufferSize

Size of the information pointed to by Buffer.

Buffer

HAL or OEM specific information described by InformationClass.

ReturnSize

Number of bytes of the information returned at Buffer.

Return Value

STATUS_SUCCESS if the HAL successfully returned in requested information in Buffer.

Comment

We only cover the information related to performance monitoring here.

When InformationClass is set to HalProfileSourceInformation, the requested data is returned at location pointed by Buffer in the format of HAL_PROFILE_SOURCE_INFORMATION.
typedef struct _HAL_PROFILE_SOURCE_INFORMATION {

 IN OUT KPROFILE_SOURCE ProfileSource;

 OUT BOOLEAN Supported;

 OUT ULONG Interval;

} HAL_PROFILE_SOURCE_INFORMATION, *PHAL_PROFILE_SOURCE_INFORMATION;

3. Implementation Notes
3.1 ProfileTime
On x86 and Amd64 platforms, ProfileTime is not counted by performance counters. We can use either Time-Stamp Counter (TSC) or other system timers to count the occurrences of time events. Timer interrupt is also separate from performance monitor interrupt (PMI). For APIC systems, there is a separate local APIC interrupt for TSC Timer and performance monitor interrupt (PMI) respectively. Because of these reasons we handle ProfileTime separately from other profile sources at a few places.

3.2 Interface to MSRs
A set of private interface functions is introduced as an effort to hide the hardware differences from upper layer of code. These interface functions translate the performance monitoring requests into a sequence of platform dependent operations, including programming MSR registers. Here is a list of these functions.
· HalpPriofileInterface.InitializeProfiling
· HalpPriofileInterface.EnableMonitoring

· HalpPriofileInterface.DisableMonitoring

· HalpPriofileInterface.SetInterval

· HalpPriofileInterface.CheckOverflowStatus

· HalpPriofileInterface.QueryInformation
InitializeProfiling
NTSTATUS

InitializeProfiling (
 VOID

)
This function does one time initialization of the performance monitoring registers and data structures. This function is called on every processor.
EnableMonitoring
NTSTATUS

EnableMonitoring (

KPROFILE_SOURCE ProfileSource
)

This function enables the monitoring of the performance event specified by ProfileSource and set up MSRs to generate performance monitor interrupt (PMI) when the counter overflows. This routine is called at PROFILE_LEVEL on every processor.

On Pentium 4 or Xeon this function does the following
1. Select a performance counter to count the event specified by Source and an associated ESCR to select the events to be counted

2. Set up an ESCR for the specific event to be counted.

3. Set up the CCCR for the performance counter to be used to count the event, by selecting the chosen the ESCR and selecting the desired event filters.

4. Set up the CCCR to generate a PMI when counter overflows.

5. Enable the counter to begin counting.

On P6 family processors and Amd’s x86-64 this function does the following,

1. Select a performance counter register to count the event

2. Initialize the selected counter register PerfCtr to its initial count

3. Set up the associated PerfEvlSel register for the specific event to be counted and set EN flag and INT flag.
DisableMonitoring
VOID
DisableMonitoring (

KPROFILE_SOURCE ProfileSource
)

This function disables the monitoring of the hardware event specified by ProfileSource and disables associated performance monitor interrupt (PMI). This routine is called at PROFILE_LEVEL on every processor.

On Pentium 4 or Xeon this function does the following

1. Located the CCCR register assigned to the specified event

2. Clear the enable flag and OVF_PMI flag of the CCCR register

On P6 family CPU or Amd x86-64, this function does the following

1. Located the PerfEvlSel register assigned to the specified event
2. Clear the EN flag and INT flag of the PerfEvlSel register associated with the selected counter

SetInterval
NTSTATUS

SetInterval (

KPROFILE_SOURCE ProfileSource
IN OUT ULONG_PTR *Interval
)
This function adjusts the current interval to specified value. The actual Interval value get used will return to the caller through the pointer Interval. Usually the 2s complement negative value of the integer pointed by Interval will be set the counter register.

CheckOverflowStatus
VOID
CheckOverflowStatus (

OUT POVERFLOW_STATUS pOverflowStatus
)

This function find out the overflowed counters and returns the total number and a array of related profile sources to the caller in following structure.
typedef struct _OVERFLOW_STATUS {

 ULONG Number;

 KPROFILE_SOURCE *pSource;

} OVERFLOW_STATUS, *POVERFLOW_STATUS;

On Pentium 4 or Xeon this function will examine the OVL flag of CCCR registers. Record the profile sources associated with overflowed counters to a buffer. The address of this buffer will be returned to the caller through pSource.
On P6 family CPU or Amd x86-64, this function will examine the current value of active counter registers. If a value is less than the initial value of this counter, record the associated profile source to a buffer. The address of this buffer will be returned to the caller through pSource.

QueryInformation
NTSTATUS

QueryInformation (
IN HAL_QUERY_INFORMATION_CLASS InformationType,

IN ULONG BufferSize,

IN OUT PVOID Buffer,

OUT PULONG ReturnedLength
)
This is private version of HalQueryInformation. It retrieves the information of specified profile sources. (See HalQueryInformation in this document for more details).

4. Consideration of Future Works

· Performance monitoring mechanism is processor specific. One of the problems today is that this processor dependent knowledge is built into applications. We need to provide a way for applications to retrieve this type of information automatically at run time. Typically a performance tool needs to
· Enumerate a list of supported profile sources.

· Retrieve the attributes of each profile source, such as its name, the default interval value and the range of interval setting etc.
· Find out the number and the dependencies of the profile sources that could be monitored at same time.

· Applications could behave more intelligently if it is well informed of the status and cause of failures. The current Hal profile functions don’t even have a return code when it start or stop the profiling.
· Most processors support the counting of performance events selectively in kernel and/or user mode. We can add this feature to Hal and user API if needed.
· We need to save/restore performance monitoring MSRs at power state transactions.

